离散信号与系统的时域和频域分析..
数字信号处理:时域离散信号和系统的频域分析

2. 线性
设: 则:
FXFXTF1XT1([T(1e[ae(a[jexjax1j)1x()(1n)n()n)FF)TFTbb[Tx[bxx2x[1x2(1x((2n(1nn(n()n))n])]])]),],]XX,aaX2X2aX((2eX1e1((j(e1eje(j)je)j)j))F)FbTFbTX[bTX[xX2x[22(x2(2(e(2en(n(jej)n)]j)])),,]),
1 2
[x(n)
x(n)]
xo
(n)
1 2
[x(n)
x(n)]
将上FT面[x两xe(on式()n]分=) 1别/21进2[X[行x(e(FjnωT)),+X得x*(到(ejωn)])=] Re[X(ejω)]=XR(ejω)
FT[xo(n)]=1/2[X(ejω)-X*(ejω)]=jIm[X(ejω)]=jXI(ejω)
xxr (rxn(nr)XX(e)ne(()eejejjjnnj))n
n nn
FFXXTT(e[(e[xexjrjr()()nn))]]F12T[nX[nx(er(jxnxr))(r]n(n)Xe)
o (XeXojo((e)ejj)F)TF[FTjTx[i[j(xjnix()in]()n])]jnjnjnxxrXXir(x(noonr(()()eeenjj)ejj))njXnFXFTooT(([ee[jjjjxxi))i((nn)12)]F][TX[(jejnjxnji()nx)xr]X(r
2.2 序列的傅里叶变换的定义和性质
实因果序列h(n)与其共轭对称部分he(n)和共轭反对称部分 ho(n)的关系
h(n) = he(n) + ho(n) he(n)=1/2[h(n) + h(-n)] ho(n)=1/2[h(n) - h(-n)] 因为h(n)是实因果序列,he(n)和ho(n)可以用h(n)表示为:
第2章 时域离散信号和系统的频域分析

3、 非周期离散信号的傅里叶变换:频率函数是周期的连续函数 4、 离散周期序列的傅里叶变换:具有既是周期又是离散的频谱,即
时域和频域都是离散的、周期的 规律:一个域的离散就必然造成另一个域的周期延拓。 1、如果信号频域是离散的,则该信号在时域就表现为周期性的时间函 数。 2、在时域上是离散的,则该信号在频域必然表现为周期性的频率函 数。 3、如果时域信号离散且是周期的,由于它时域离散,其频谱必是周期 的,又由于时域是周期的,相应的频谱必是离散的, 4、离散周期序列一定具有既是周期又是离散的频谱,即时域和频域都 是离散周期的。
对于,将以为周期进行周期延拓,得到所示的周期序列, 周期为16, 求的DFS。 可以看出,在时,处频谱的幅度和处是一样的。也就是说,点数越多, 频谱越精确。
..2 离散周期序列的傅里叶变换 各种形式的傅里叶变换 1、 非周期实连续时间信号的傅里叶变换: 频谱是一个非周期的连续
函数 2、 周期性连续时间信号的傅里叶变换: 频谱是非周期性的离散频率
例:设, f0=50 Hz,以采样频率对进行采样, 得到采样信号和时域离 散信号, 求)、和的傅里叶变换的FT。
2.5 序列的Z变换 双边Z变换的定义:序列x(n)的Z变换定义为: 式中:z是一个复变量,它所在的复平面称为z平面。 注意在定义中,对 n求和是在±∞之间求和,可以称为双边Z变换。
为单边Z变换: 适用于因果序列,如果不特别强调,均用双边Z变换对信号进行分析和 变换。 Z变换成立条件: Z变量取值的域称为收敛域。 一般收敛域用环状域表示
在模拟系统中, 的傅里叶变换为 对于时域离散系统中, ,它的傅立叶变换 对于
(
例:求对进行的周期延拓后的周期序列的傅立叶变换FT 注意:对于同一个周期信号, 其DFS和FT分别取模的形状是一样的, 不同的是FT用单位冲激函数表示(用带箭头的竖线表示)。 因此周期序列 的频谱分布用其DFS或者FT表示都可以,但画图时应注意单位冲激函数 的画法。 例:设 ,为有理数,求其FT 物理含义:的FT是在处的单位冲激函数,强度为π,且以2π为周期进行 延拓。
时域离散信号和系统的频域分析

时域离散信号和系统的频域分析信号与系统的分析方法有两种:时域分析方法和频域分析方法。
在连续时间信号与系统中,信号一般用连续变量时间t 的函数表示,系统用微分方程描述,其频域分析方法是拉普拉斯变换和傅立叶变换。
在时域离散信号与系统中,信号用序列表示,其自变量仅取整数,非整数时无定义,系统则用差分方程描述,频域分析方法是Z 变换和序列傅立叶变换法。
Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散系统的差分方程转化为简单的代数方程,使其求解大大简化。
因此,对求解离散时间系统而言,Z变换是一个极重要的数学工具。
2.2 序列的傅立叶变换(离散时间傅立叶变换)一、序列傅立叶变换:正变换:DTFT[x(n)]=(2.2.1)反变换:DTFT-1式(2.2.1)级数收敛条件为||= (2.2.2)上式称为x(n)绝对可和。
这也是DTFT存在的充分必要条件。
当遇到一些绝对不可和的序列,例如周期序列,其DTFT可用冲激函数的形式表示出来。
二、序列傅立叶变换的基本性质:1、 DTFT的周期性,是频率的周期函数,周期为2。
∵ = 。
问题1:设x(n)=R N(n),求x(n)的DTFT。
====设N为4,画出幅度与相位曲线。
2、线性设=DTFT[x1(n)],=DTFT[x2(n)],则:DTFT[a x1(n)+b x2(n)]= = a+b3、序列的移位和频移设 = DTFT[x(n)],则:DTFT[x(n-n0)] ==DTFT[x(n)] == =4、 DTFT的对称性共轭对称序列的定义:设序列满足下式则称为共轭对称序列。
共轭对称序列的性质:共轭对称序列的实部是偶函数,虚部是奇函数证明:=+j(实部加虚部)∵∴+j=-j∴=(偶函数)∴=-(奇函数)一般情况下,共轭对称序列用表示:共轭反对称序列的定义:设序列满足下式则称为共轭反对称序列。
共轭反对称序列的性质:共轭反对称序列的实部是奇函数,虚部是偶函数证明:=+j(实部加虚部)∵∴+j=+j∴=(奇函数)∴=(偶函数)一般情况下,用来表示一个序列可用共轭对称序列与共轭反对称序列之和表示。
离散分析实验报告

一、实验目的1. 理解离散信号与系统的基本概念,熟悉离散信号与系统的特点。
2. 掌握离散信号与系统的分析方法,包括时域分析、频域分析、Z变换分析等。
3. 熟悉MATLAB软件在离散信号与系统分析中的应用,提高运用MATLAB进行实验的能力。
二、实验原理1. 离散信号与系统离散信号是指在一定时间间隔内取有限个值的信号,通常用离散时间序列表示。
离散系统是指输入输出均为离散信号的系统。
2. 离散信号与系统的分析方法(1)时域分析:通过观察信号在时域内的变化规律,分析系统的稳定性和时域特性。
(2)频域分析:通过将信号和系统从时域转换为频域,分析系统的频率响应和频谱特性。
(3)Z变换分析:将离散信号和系统从时域转换为Z域,分析系统的传递函数和频率响应。
三、实验内容1. 离散信号的时域分析(1)输入信号:f(n) = cos(2πn/3) + 0.5sin(4πn/3),n = 0, 1, 2, ..., 15。
(2)MATLAB代码:```n = 0:15;f = cos(2pin/3) + 0.5sin(4pin/3);plot(n, f);xlabel('n');ylabel('f(n)');title('离散信号时域分析');```2. 离散系统的时域分析(1)输入信号:f(n) = cos(2πn/3) + 0.5sin(4πn/3),n = 0, 1, 2, ..., 15。
(2)系统函数:H(z) = (z^2 + 0.5z - 0.25) / (z^3 + 0.75z^2 + 0.25z)。
(3)MATLAB代码:```n = 0:15;f = cos(2pin/3) + 0.5sin(4pin/3);h = (z^2 + 0.5z - 0.25) / (z^3 + 0.75z^2 + 0.25z);y = filter(h, 1, f);plot(n, f, 'b-', n, y, 'r--');xlabel('n');ylabel('f(n), y(n)');title('离散系统时域分析');```3. 离散信号的频域分析(1)输入信号:f(n) = cos(2πn/3) + 0.5sin(4πn/3),n = 0, 1, 2, ..., 15。
离散信号与系统的时域和频域分析

h(k n) an1h(k n 1) an2h(k n 2) ... a0h(k ) 0 K>0时, n 齐次差分方程解: k
h(k ) [ ci ( ) ] (k )
离散信号与系统分析
开始
下一页
结束
本章说明
与连续信号与系统相比较,离散系统的数学描述是激励响应的差分方 程,其系统分析求响应实质是求解描述离散系统的差分方程。离散系 统的零状态响应可以用卷积和来求取。 时域分析: 1.掌握离散信号与系统的基本概念。 2.熟悉并掌握常用基本信号的描述、特性、运算与变换。 3.深刻理解采样定理的意义、内容及应用。 4.掌握离散系统的数学描述方法—差分方程及模拟图 5.掌握离散系统的时域分析—经典法求零输入响应、零状态响应。 6.熟悉卷积和法及其主要性质并会应用卷积和法求零状态响应。
4、图解法卷积
①变量代换 f1(n) 变成f1(k) f2(n) 变成f2( ②反折其中之一信号 ③将反折信号移位 m f2(-k) f2(m-k) 以k代n
④e将平移后的f2(m-k)与对应的f1(k)相乘 ⑤将各乘积值相加可画出全部y(m) ⑥重复步骤③到⑤可画出全部y(n) 5、系统零状态响应为
5、序列的运算
④差分:离散信号的差分运算 f (k ) f (k 1) f (k ) 前向差分: f (k ) f (k ) f (k 1) 后向差分: ⑤反折:将离散信号以纵轴为对称轴反折(转) ⑥压扩:将离散信号中f(k)的自变量k置换为ak得到的过程称为信号的尺 度变换 注意:不存在非整数ak的值! ⑦求和:离散信号的求和运算是对某一离散信号进行历史推演的求和过程。
离散时间信号和系统的频域分析

离散时间信号和系统的频域分析离散时间信号与系统是研究数字信号与系统的频域分析,其中离散时间信号是对连续时间信号进行采样得到的,而离散时间系统是对连续时间系统进行离散化得到的。
频域分析是对信号与系统在频率域上的特性进行研究和分析。
对于离散时间信号,其离散化的过程是将连续时间信号在时间轴上进行均匀采样,得到指定的采样间隔,得到离散时间序列。
在频域上,其频谱是周期性的,并且频谱是以单位圆为单位周期的。
频域分析的目的是研究离散时间信号在频率域上的特性,包括频谱范围、频率分辨率、功率谱密度等。
离散时间信号的频域分析可以通过离散时间傅里叶变换(DTFT)来实现。
DTFT是信号在频域上的完全变换,将一个离散时间信号映射到一个连续的频率域函数。
DTFT是一个复数函数,表示信号在不同频率上的振幅和相位。
频谱的振幅可以表示信号在该频率上的能量大小,相位可以表示信号在该频率上的相对位置。
除了DTFT之外,还可以使用离散傅里叶变换(DFT)进行频域分析。
DFT是DTFT的一种计算方法,可以将离散时间信号转换为有限的频域信号。
DFT的计算是通过对离散时间信号进行有限长的时间窗口进行采样,并进行频域变换得到的。
DFT的结果是一个离散的频域信号,也称为频谱。
DFT通常使用快速傅里叶变换(FFT)算法来快速计算。
离散时间系统的频域分析主要是通过系统的频率响应函数来实现。
频率响应函数是系统在不同频率上对信号的响应情况的描述。
对于线性时不变系统,其频率响应函数是系统的传递函数的傅里叶变换。
频率响应函数拥有类似信号的频谱特性,可以描述系统对不同频率的信号的增益和相位。
频域分析在离散时间信号与系统中有着广泛的应用。
首先,频域分析可以帮助我们理解信号的频率构成和能量分布情况,有助于对信号进行合理的处理和分析。
其次,频域分析可以快速计算离散时间系统的响应,能够有效地评估系统的性能和稳定性。
此外,频域分析还可以进行滤波器设计、信号压缩、信号重构等应用。
实验一 时域离散信号与系统分析(实验报告)-2015

《数字信号处理》 实验报告学院 专业 电子信息工程 班级 姓名 学号 时间实验一 时域离散信号与系统分析一、实验目的1、熟悉连续信号经理想采样后的频谱变化关系,加深对时域采样定理的理解。
2、熟悉时域离散系统的时域特性,利用卷积方法观察分析系统的时域特性。
3、学会离散信号及系统响应的频域分析。
4、学会时域离散信号的MATLAB 编程和绘图。
5、学会利用MATLAB 进行时域离散系统的频率特性分析。
二、实验内容1、序列的产生(用Matlab 编程实现下列序列(数组),并用stem 语句绘出杆图。
(要求标注横轴、纵轴和标题)(1). 单位脉冲序列x(n)=δ(n ) (2). 矩形序列x(n)=R N (n) ,N=10nδ(n )nR N (n )图1.1 单位脉冲序列 图1.2 矩形序列(3) . x(n)=e (0.8+3j )n ; n 取0-15。
4n|x (n )|201321111053 陈闽焜n<x (n )/R a d图1.3 复指数序列的 模 图1.4 复指数序列的 相角(4). x(n)=3cos (0. 25πn +0.3π)+2sin (0.125πn +0.2π) n 取0-15。
ny (n )图1.4 复合正弦实数序列(5). 把第(3)小题的复指数x(n)周期化,周期20点,延拓3个周期。
4m|y (m )|201321111053 陈闽焜图1.5 第(3)的20点周期延拓杆图(6). 假设x(n)= [1,-3,2,3,-2 ], 编程产生以下序列并绘出杆图:y(n) y(n)= x(n)-2x(n+1)+x(n-1)+x(n-3);5201321111053 陈闽焜图1.6 y(n)序列杆图(7)、编一个用户自定义matlab 函数,名为stepshf (n0,n1,n2)实现单位阶跃序列u[n -n1]。
其中位移点数n1在起点n0和终点n2之间任意可选。
自选3个入口参数产生杆图。
第2章 时域离散信号和系统的频域分析

1第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性22.1 引言信号和系统的分析方法:时域分析方法和变换域分析方法。
频域变换(傅里叶变换->复频域拉氏变换)连续时间信号(系统微分方程)频域变换(傅里叶变换->复频域Z 变换)时域离散信号(系统差分方程)本章学习内容是本书也是数字信号处理这一领域的基础。
3第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性2.2 序列的傅里叶变换的定义及性质5例2.2.1 设x(n)=R 4(n),求x(n)的DTFT 图2.2.1 R (n)的幅度与相位曲线sin /2ω常用序列的傅立叶变换7(2)()j M nn x n eωπ∞−+=−∞=∑二、序列离散时间傅里叶变换(DTFT)的性质1. DTFT 的周期性()()j j nn X e x n eωω∞−=−∞=∑(2)()j M X eωπ+=时域离散,频域周期函数。
周期是2π。
由于DTFT 的周期,一般只分析0-2π之间的DTFT 。
2. 线性1122:()[()],()[()]j j X e DTFT x n X e DTFT x n ωω==若1212:[()()]()()j j DTFT ax n bx n aX e bX e ωω+=+则3. 时移与频移00(0:[()](),[()]()j n j nj j DTFT x n n eX e DTFT ex n X eωωωωω−−−==则:()[()]j X e DTFT x n ω=若4. 反转7. 帕斯维尔(Parseval)定理8. 频域微分序列的Fourier变换的对称性质*()x n−)n也可分解成:e−*(e对称性质•序列Fourier 变换()()j x n X e ωRe[()]()j e x n X e ωIm[()]()j o j x n X e ω()Re[()]j e x n X e ω()Im[()]j o x n j X e ω实数序列的对称性质•序列Fourier 变换Re[()]()()j j e x n X e X e ωω=Im[()]0()0j o j x n X e ω==()Re[()]j e x n X e ω()Im[()]j o x n j X e ω)j eω−变换满足共轭对称性()]j X eω−Im[()]j X e ω−)arg[结论:z序列分成实部与虚部两部分,实部对应的DTFT具有共轭对称性,虚部和j一起对应的DTFT具有共轭反对称性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开始
上一页 下一页 结束
1、直观认识离散时间信号与连续时间信号
离散时间信号获取:
①某种不连续事件获取,可不限于时间变量。 ②由连续信号抽(采)样获得。 总之,离散信号可淡化时间意义。
2、离散时间信号的意义
只在某些规定的离散点上给出的函 数值,而其它点函数无定义或为零 的信号。简称离散信号或数值序列
开始 上一页 下一页
由其收敛域可知原序列应为单边左序列,因此幂级数应按 Z的升幂排列展开。即长除法应从Z的最低次幂开始除。
结束
【部分分式展开法】
含单极点
含重极点
开始
上一页 下一页
结束
【留数法】
F(Z)仅含一阶极点 F(Z)含r重极点
n 1
Res ( Z k ) ( Z Z k ) F ( Z ) Z
实质上是一个脉冲调幅过程。被调制的脉冲载波是一
串周期为T,宽度为τ 的矩形脉冲即f s (t)=f(t)
· p(t)
二、采样信号的频谱与原连续信号频谱的关系 采样信号的频谱是原连续信号的频谱的周 期延拓,即将原信号的频谱不断的频移
n ωs 开始
上一页 下一页
结束
三、采样定理:观察一下采样信号的频谱与采样频率的关系
y (k )
n
f 3的门序列为:
f (k ) (k ) (k 4) (k ) (k 1) (k 2) (k 3)
冲激信号:
(k ) (k ) (k 1)
6、采样信号与采样定理(离散信号的频率特性)
f (n) 2 (n 2) 2.5 (n 1) 3 (n) 2.3 (n 1) 2 (n 2) (n 3) (n 4)
开始 上一页 下一页 结束
4、典型离散信号
①单位序列
②单位阶跃序列 ⑤正弦序列
③矩形序列
④指数序列
开始
上一页
下一页
*Z变换必须对应收敛域存在 开始 上一页 下一页 结束
3、求指数序列的Z变换
4、常用序列的Z变换
开始 上一页 下一页 结束
1、性质 ①线性性质
二、Z变换性质及应用
②移位性质 ③尺度变换性质
④卷积定理
⑤序列求和性
⑥Z域微分性
⑦时间反转性
⑧初值及终值定理
f (n) F ( z 1 )
开始 上一页 下一页 结束
结束
5、序列的运算
①相加:两序列同序号的序列值逐项对应相加 ②相乘:两序列同序号的序列值逐项对应相乘 ③移位:序列沿n轴逐项依次移位 f(n+j) f(n)向左平移 j f(n-j) f(n)向右平移 j
f(-n) 以y轴为对称轴反折
开始
上一页 下一页
结束
f (k ) f (k 1) f (k )
离散信号与系统分析
开始
下一页
结束
本章说明
与连续信号与系统相比较,离散系统的数学描述是激励响应的差分方 程,其系统分析求响应实质是求解描述离散系统的差分方程。离散系 统的零状态响应可以用卷积和来求取。 时域分析: 1.掌握离散信号与系统的基本概念。 2.熟悉并掌握常用基本信号的描述、特性、运算与变换。 3.深刻理解采样定理的意义、内容及应用。 4.掌握离散系统的数学描述方法—差分方程及模拟图 5.掌握离散系统的时域分析—经典法求零输入响应、零状态响应。 6.熟悉卷积和法及其主要性质并会应用卷积和法求零状态响应。
4、图解法卷积
①变量代换 f1(n) 变成f1(k) f2(n) 变成f2(k) ②反折其中之一信号 ③将反折信号移位 m f2(-k) f2(m-k) 以k代n
④e将平移后的f2(m-k)与对应的f1(k)相乘 ⑤将各乘积值相加可画出全部y(m) ⑥重复步骤③到⑤可画出全部y(n) 5、系统零状态响应为
5、序列的运算
④差分:离散信号的差分运算 f (k ) f (k 1) f (k ) 前向差分: f (k ) f (k ) f (k 1) 后向差分: ⑤反折:将离散信号以纵轴为对称轴反折(转) ⑥压扩:将离散信号中f(k)的自变量k置换为ak得到的过程称为信号的尺 度变换 注意:不存在非整数ak的值! ⑦求和:离散信号的求和运算是对某一离散信号进行历史推演的求和过程。
h(0) h(1) ... h(n 1) 0 h(n) 1
h(k n) an1h(k n 1) an2h(k n 2) ... a0h(k ) 0 K>0时, n 齐次差分方程解: k
h(k ) [ ci ( ) ] (k )
三、卷积和求零状态响应
本节说明: 卷积和法是在时域求解离散系统状态响应 的好方法。实质也是求非齐次差分方程解 的方法。
开始
上一页 下一页 结束
1、思想:
①将复杂激励f(n)分解 f (n)ε(n)=f(0)δ(n)+f(1)+δ(n-1)+f(2)δ(n-2)+… …………+f (j) δ( n -j) ②求出每个简单激励的响应 f(0)δ(n) →f(0)h(0),f(1)δ(n-1) →f(1)h(n-1)…… ……f (j )δ (n -j) →f(j)h(n-j) ③迭加全部简单激励的响应得复杂激励的响应 开始 上一页 2、卷积和公式 3、卷积和性质 ①交换律 ②分配律 ③结合律 下一页 结束
i 0
后向方程: y(k ) a1 y(k 1) a2 y(k 2) ... an y(k n) x(k )
h(k ) a1h(k 1) a2h(k 2) ... an h(k n) (k )
h(0) 1 h(1) h(2) ... h(n 1) 0
1、离散时间系统:系统激励(输入)与响应(输出)均为离散信号 2、LTI(线性时不变)离散系统的特点
①齐次性:激励f(n) →y(n )响应 k f(n) →k y (n)
②线性可加性:激励 a1f1(n)+a2f2(n) →a1y1(n)+a2y2(n) 响应 ③时不变性:激励 f(n-m) →y(n-m) 响应
定理内容: 如果f(t)为带宽有限的连续信号, 其频谱的最高频率为fm,则以采 样频率f s>2fm对信号进行等间 隔采样所得的f s (t)将包含原信 号f(t)的信息,因而可利用 f s (t)完全恢复出原信号。即为 使信号采样后能够不失真还原, 采样频率必须大于原连续信号 的最高频率的两倍。
开始
上一页 下一页 结束
四、从采样信号fs(t)恢复原连续信号f(t) 频域恢复 采样信号通过理想低通滤波器
开始
上一页 下一页 结束
二、离散系统的差分方程及求解
本节说明: 线性时不变离散系统的数学描述为激励响 应的线性常系数差分方程 求差分方程的解即为系统响应,从而完成 系统分析的任务。
开始 上一页 下一页 结束
K>0时, h(k ) a1h(k 1) a2h(k 2) ...... an h(k n) 0 n 齐次差分方程解: h(k ) [ ci ( ) k ] (k )
i 0
(2)单位阶跃响应
r (k ) h(k n)
n 0
离散信号与系统的Z域分析
内容:采样信号与采样定理 1、采样信号的产生
2、采样信号的频谱与原 连续频谱的关系
3、采样定理
4、从采样信号恢复原连 续信号
本章说明: 从采样信号的产生和恢复 过程理解采样频率的意义, 采样定理是数字化分析处 理信号的基础。
开始
上一页 下一页 结束
一、采样信号的产生: 按一定的时间间隔对连续信号抽取样本值的过程。
开始
经典法
上一页 下一页 结束
5、离散系统的模拟
(1)基本运算器
5、离散系统的模拟
(2)差分方程直接模拟
y(k ) 5 y(k 1) 6 y(k 2) x(k ) 2 x(k 1)
y(k 2) a1 y(k 1) a0 y(k ) b1 x(k 1) b0 x(k )
由其收敛域可知原序列应为单边右序列,因此幂级数应按 Z的降幂排列展开。即长除法应从Z的最高次幂开始除。
单边左序列:
N ( z) 1 2 k F ( z) a1 z a2 z ... ak z f (k ) z k D( z ) k 1 f (1) a1 , f (2) a2 , f (3) a3 ... f (k ) ak
2、应用
开始
上一页 下一页 结束
本节说明:
幂级展开法 部分分式法 留数法 查表法
开始
上一页 下一页 结束
【幂级数展开法】
利用定义通过长除将其商表达式写出: 单边右序列:
N ( z) 1 2 k F ( z) a0 a1 z a 2 z ... a k z f (k ) z k D( z ) k 0 f (0) a0 , f (1) a1 , f (2) a 2 ... f (k ) a k
离散信号与系统分析
离散信号与系统的时域分析 离散信号与系统的Z域分析 离散信号的频域分析
开始
下一页
结束
离散信号与系统的时域分析
离散时间信号分析 离散系统的差分方程及分析 卷积和求零状态响应
开始
上一页 下一页 结束
一、离散时间信号
本节说明: 离散信号的概念表示方法,掌握几个常用序列
内容: