应用数理统计吴翊李永乐第三章假设检验课后作业参考答案

合集下载

《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案汇编

《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案汇编

第二章 参数估计课后习题参考答案2.1 设总体X 服从二项分布()n X X X p p N B ,,,,11,,21 <<为其子样,求N 及p 的矩法估计。

解:()()()p Np X D Np X E -==1,令()⎪⎩⎪⎨⎧-==p Np S Np X 12解上述关于N 、p 的方程得:2.2 对容量为n 的子样,对密度函数22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩其中参数α的矩法估计。

解:122()()a E x xx dx ααα==-⎰22022()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n=+++为n 个样本的观察值。

2.3 使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm) 232.50,232.48,232.15,232.52,232.53,232.30 232.48,232.05,232.45,232.60,232.47,232.30 试用矩法估计测量的真值和方差(设仪器无系统差)。

⎪⎪⎩⎪⎪⎨⎧-=-==X S p S X X p X N 2221ˆˆˆ解:()()()∑∑====-====ni i ni i S X X n X D X X n X E 12210255.014025.23212.4 设子样1.3,0.6,1.7,2.2,0.3,1.1是来自具有密度函数()10,1,<<=βββx f 的总体,试用矩法估计总体均值、总体方差及参数β。

解:()()()()4.22ˆ2,1,407.012.1101221========-===⎰⎰∑∑==X Xdx xdx x xf X E x f XX n S X n X ni i ni i ββββββββ参数:总体方差:总体均值:2.5 设n X X X ,,,21 为()1N ,μ的一个字样,求参数μ的MLE ;又若总体为()21N σ,的MLE 。

数理统计课后答案-第三章

数理统计课后答案-第三章

d ln L = dθ
n θ
+
n
ln xi
i =1
=0
,得到极大似然估计
θˆ = − n = −1 = −1 。
n
∑ ln X i
i =1
∑ 1 n
n i=1 ln X i
ln X
1
3.3 设总体 ξ 服从 Poisson 分布,概率分布为
P{ξ = k} = λk e−λ , k = 0, 1, 2,L , k!
Xi =
X

3.7 已知总体 ξ 服从 Maxwell 分布,概率密度为

ϕ
(
x)
=
⎪ ⎨
4x2 a3 π
− x2
e a2
⎪⎩
0
x>0 x≤0
其中, a > 0 是未知参数, ( X1, X 2 ,L, X n ) 是 ξ 的样本,求 a 的极大似然估计。
解 似然函数
∏ ∏ L =
n
ϕ(xi )
i =1
∏ ∏ ∏ L =
n
ϕ(xi )
=
⎪⎧ ⎨
n i =1
θ
xiθ −1 = θ n
n i =1
xiθ −1
i =1
⎪⎩
0
0 < xi < 1 ( i = 1,2,L, n) 其他
n
∑ 当 L ≠ 0 时,对 L 取对数,得到 ln L = n lnθ + (θ −1) ln xi 。 i =1
∑ 解方程
⎧aˆ = X − ⎩⎨bˆ = X +
3S 3S

(2) 似然函数
3
∏ ∏ L =
n

《应用数理统计》吴翊李永乐第三章假设检验课后作业参考答案

《应用数理统计》吴翊李永乐第三章假设检验课后作业参考答案

第三章 假设检验课后作业参考答案某电器元件平均电阻值一直保持Ω,今测得采用新工艺生产36个元件的平均电阻值为Ω。

假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。

已知改变工艺前的标准差为Ω,问新工艺对产品的电阻值是否有显著影响(01.0=α) 解:(1)提出假设64.2:64.2:10≠=μμH H ,(2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u u u u u V(4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。

一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。

已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平下确定这批元件是否合格。

解:{}01001:1000, H :1000950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。

某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。

现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。

设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高 解:(1)提出假设0100::μμμμ>=H H ,(2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。

《应用数理统计》吴翊李永乐第三章假设检验课后作业参考答案

《应用数理统计》吴翊李永乐第三章假设检验课后作业参考答案

《应用数理统计》吴翊李永乐第三章假设检验课后作业参考答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。

假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。

已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响( 01.0=α)解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u u u u u V(4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。

3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。

已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。

解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。

3.3某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。

现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

(完整版)《应用数理统计》吴翊_习题解答

(完整版)《应用数理统计》吴翊_习题解答
《应用数理统计》作业题及参考答案(前三章)第一章 数理统计的基本概念P26
1.2设总体X的分布函数为F x,密度函数为f x,X1,X2,⋯,
最大顺序统计量Xn与最小顺序统计量X1的分布函数与密度函数。
解:Fnx P Xix P X1x,X2x,L,Xnx F xn.
n1
fnx Fnx n F x f x.
F1x P Xix 1 P X1x,X2x,L,Xnx.
1
P
X1
x P X2
x L P Xn
x
1
1
P
X1x 1
P X2x
L 1 P Xnx
n
1
1
F
x
n1
f1x
F1
x n 1
F x f
x.
5
5
5
1 P Xi10 1
1 P Xi10
1 1 P X 10
P Xmin10 1 P Xmin10
1 P X110,X210,L,X510
1.4试证:
n
i)xi
i1
xi
2ห้องสมุดไป่ตู้
n x a对任意实数
a成立。并由此证明当
x时,
2xia
i1
i1
达到最小。
ii)
n
xi
i1
2
xi
i1
2nx
其中x
n
xi
i1
证明:
i)
xi
n
xi
i1
xx
xi
i1
i1
当a
ii)
P27
i1
xi
xi
2 xix x a
时,
xi
i1

《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考标准答案

《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考标准答案

《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考答案————————————————————————————————作者:————————————————————————————————日期:第四章 回归分析课后作业参考答案4.1 炼铝厂测得铝的硬度x 与抗张强度y 的数据如下:i x68 53 70 84 60 72 51 83 70 64 i y288 298 349 343 290 354 283 324 340 286(1)求y 对x 的回归方程(2)检验回归方程的显著性(05.0=α) (3)求y 在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果一元线性回归模型εββ++=x y 10只有一个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机干扰项。

()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使用普通最小二乘法估计参数10,ββ上述参数估计可写为95.193ˆˆ,80.1ˆ101=-===x y L L xxxy βββ 所求得的回归方程为:x y80.195.193ˆ+= 实际意义为:当铝的硬度每增加一个单位,抗张强度增加1.80个单位。

2、软件运行结果 根据所给数据画散点图9080706050xi360340320300280y i由散点图不能够确定y 与x 之间是否存在线性关系,先建立线性回归方程然后看其是否能通过检验线性回归分析的系数模型 非标准化系数标准化系数T 值 P 值95% 系数的置信区间β值 学生残差 β值下限上限 1 常数项 193.951 46.796 4.145 0.003 86.039 301.862x1.8010.6850.6812.629 0.030 0.2213.381由线性回归分析系数表得回归方程为:x y801.1951.193ˆ+=,说明x 每增加一个单位,y 相应提高1.801。

统计学第三章---课后习题(精编文档).doc

统计学第三章---课后习题(精编文档).doc

【最新整理,下载后即可编辑】1.略2 .某技术小组有12人,他们的性别和职称如下,现要产生一名幸运者。

试求这位幸运者分别是以下几种可能的概率:(1)女性;(2)工程师;(3)女工程师,(4)女性或工程师。

并说明几个计算结果之间有何关系?师(1)P(A)=4/12=1/3(2)P(B)=4/12=1/3(3)P(AB)=2/12=1/6(4)P(A+B)=P(A)+P(B)-P(AB)=1/3+1/3-1/6=1/23.向两个相邻的军火库发射一枚导弹,如果命中第一个和第二个军火库的概率分别是0.06、0.09,而且只要命中其中任何一个军火库都会引起另一个军火库的爆炸。

试求炸毁这两个军火库的概率有多大。

解:本题考查互斥事件的概率,是一个基础题,解题的关键是看清楚军火库只要一个爆炸就可以,所以知军火库爆炸是几个事件的和事件.P(A)=0.06+0.09=0.154. 某项飞碟射击比赛规定一个碟靶有两次命中机会(即允许在第一次脱靶后进行第二次射击)。

某射击选手第一发命中的可能性是80%,第二发命中的可能性为50%。

求该选手两发都脱靶的概率。

解:设A =第1发命中。

B =命中碟靶。

求命中概率是一个全概率的计算问题。

再利用对立事件的概率即可求得脱靶的概率。

)|()()|()()(A B P A P A B P A P B P +==0.8×1+0.2×0.5=0.9脱靶的概率=1-0.9=0.1或(解法二):P (脱靶)=P (第1次脱靶)×P(第2次脱靶)=0.2×0.5=0.15. 已知某产品的合格率是98%,现有一检查系统,它能以0.98的概率准确的判断出合格品,而对不合格品进行检查时,有0.05的可能性判断错误,该检查系统产生错判的概率是多少?解:考虑两种情况,一种就是将合格品判断错误,概率为98%*(1-0.98)=0.0196另一种情况就是将不合格品判断错误,概率为(1-98%)*0.05=0.001所以该检查系统产生错判的概率是0.0196+0.001=0.02066. 有一男女比例为51:49的人群,一直男人中5%是色盲,女人中0.25%是色盲,现随机抽中了一个色盲者,求这个人恰好是男性的概率?954163.0026725.00.050.51P(B))A ()P(A )P(A 026725.00.00250.490.050.51 )A ()P(A )A ()P(A P(B) 111221121=⨯===⨯+⨯=+====B P B B P B P B A A 抽到色盲抽到女性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 假设检验课后作业参考答案某电器元件平均电阻值一直保持Ω,今测得采用新工艺生产36个元件的平均电阻值为Ω。

假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。

已知改变工艺前的标准差为Ω,问新工艺对产品的电阻值是否有显著影响(01.0=α) 解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u uu u u V (4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。

一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。

已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平下确定这批元件是否合格。

解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。

某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。

现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。

设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高 解:(1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。

某批矿砂的五个样品中镍含量经测定为(%):设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为解:0101102: 3.25 H :t 3.252, S=0.0117, n=50.3419H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴Q 本题中,接受认为这批矿砂的镍含量为。

确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}0.95()0.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。

取检验统计量为X 本题中,代入上式得: 拒绝域为:V=t >t 本题中,01 4.1143H <=∴t 拒绝{}22200222212210.952()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919ii n n ααμχσσχχχχχχ--===*==>--==Q 2构造统计量:未知,可选择统计量本题中,代入上式得:()()否定域为:本题中, 210(1)n H αχ-<-∴接受使用A(电学法)与B(混合法)两种方法来研究冰的潜热,样品都是C o72.0-的冰块,下列数据是每克冰从C o72.0-变成C o0水的过程中吸收的热量(卡/克); 方法A :,,,,,, ,,,,, 方法B :,,,,,,,假设每种方法测得的数据都服从正态分布,且他们的方差相等。

检验:0H 两种方法的总体均值相等。

(05.0=α)解:()()481222413122181131106.881,104.51319788.7981,0208.80131-=-===⨯=-=⨯=-=====∑∑∑∑i i i i i i i i Y Y S X X S Y Y X X(1)提出假设211210::μμμμ≠=H H ,(2)构造统计量()98.32222211212121=+-+-+=S n S n YX n n n n n n t (3)否定域()()()⎭⎬⎫⎩⎨⎧-+>=⎭⎬⎫⎩⎨⎧-+>⋃⎭⎬⎫⎩⎨⎧-+<=--22221212121212n n t t n n t t n n t t V ααα(4)给定显著性水平05.0=α时,临界值()()0930.2192975.02121==-+-t n n tα(5) ()22121-+>-n n tt α,样本点在否定域内,故拒绝原假设,认为两种方法的总体均值不相等。

今有两台机床加工同一种零件,分别取6个及9个零件侧其口径,数据记为61,,X X X Λ及921,,Y Y Y Λ,计算得∑∑∑∑========9129161261173.15280,8.307,93.6978,6.204i i i i i i i iY Y X X假设零件的口径服从正态分布,给定显著性水平05.0=α,问是否可认为这两台机床加工零件口径的方法无显著性差异 解:357.01,345.011222212221=-==-=∑∑==n i i n i i Y Y n S X X n S(1)提出假设2221122210::σσσσ≠=H H ,(2)构造统计量()()031.11122122121=--=S n n S n n F (3)否定域()()()⎭⎬⎫⎩⎨⎧-->=⎭⎬⎫⎩⎨⎧-->⋃⎭⎬⎫⎩⎨⎧--<=--1,11,11,121212121212n n F F n n F F n n F F V ααα(4)给定显著性水平05.0=α时,临界值()()82.48,51,1975.02121==---F n n Fα(5) ()1,12121--<-n n FF α,样本点在否定域之外,故接受原假设,认为两台机床加工零件口径的方差无显著性影响。

用重量法和比色法两种方法测定平炉炉渣中2SiO 的含量,得如下结果 重量法:n=5次测量,120.5%,0.206%X S == 比色法:n=5次测量,221.3%,0.358%Y S == 假设两种分析法结果都服从正态分布,问 (i )两种分析方法的精度σ()是否相同 (ii )两种分析方法的μ均值()是否相同0.01α=() 解:(i )121122121221212121211H : H :n (1) F=n (1)H F F 11(11)(11)V H 0.015, n S n S n n n n n n n αασσσσα-=≠----⎧⎫⎧⎫----⎨⎬⎨⎬⎩⎭⎩⎭==:U 00220提出原假设:对此可采用统计量在下,(,),我们可取否定域为 V=F<F ,F>F ,此时 P()=本题中,111 x 20.5%, S =0.206% 5, y 21.3%, S =0.358%n ===212122120.0050.9950.0050.995n (1)5(51)0.206%F=0.3311n (1)5(51) F 0.0669 F F F H n S n S -*-*==-*-*=∴220代入上式得:()(0.358%)1(5,5)=14.94(5,5)=14.94由于 (5,5)<F<(5,5)接受即无明显差异。

(ii)1202122222121112012H H :11() ()H 2 V=n n i i i i X Y S X X S Y Y n n t n n t μμμμσ===≠=-=-+-∑∑11提出假设::这种未知的场合,用统计量其中在成立时,服从自由度为的分布。

否定域为:12121111t ((2))V H 0.015, x 20.5%, S =0.206% 5, y 21.3%, S =0.358%)t n n n n X Y αα-⎧⎫>+-⎨⎬⎩⎭======0此时 P()=本题中,代入上式得:120.9951-2121-20 =-3.8737 t(2)t (8) 3.3554t(2),n n t n n H αα+-==>+-∴Q 拒绝即差距显著。

设总体116(,4),,,X N X X μ:K 为样本,考虑如下检验问题:{}{}01123:0 H :1() =0.05 V ={2X -1.645}V = 1.502X 2.125V =2X 1.962X 1.96(ii)H i μμα==-≤≤≤≤-≥试证下述三个检验(否定域)犯第一类错误的概率同为或通过计算他们犯第二类错误的概率,说明哪个检验最好?解:{}{}{}{}00.97512012()0.050.05:02*1.960.052 1.64502 1.645 1.645( 1.645)1(1.645)=1-0.95=0.05V 1.502 2.i P x V H X U U H X V X X P X P X ααμσμσ-=∈=⎧⎫-⎪⎪=>==⎨⎬⎪⎪⎩⎭=∴>==≤-⎧⎫⎪⎪-⎪⎪≤-=≤-=Φ-=-Φ⎨⎬⎪⎪⎪⎪⎩⎭=≤≤即,P U 这里P {}{}{}{}{}{}203301110125 1.50 2.120(2.215)(1.50)0.980.930.052 1.962 1.962 1.96 1.96P(V H )=1-P 2 1.962(1(1.96))0.05ii :2 1.645X P V H V X X X X H V X σββ⎧⎫⎪⎪-⎪⎪=≤≤⎨⎬⎪⎪⎪⎪⎩⎭=Φ-Φ=-=⎫⎪⎪=≤-≥=≥=≥⎬⎪⎪⎭<=-Φ=X ≥-或()犯第二类错误的概率 =P -V =P {}1μ=-{}{}223310.3551(0.355)0.36:1 1.502 2.12511 4.125:2 1.96110.04 3.96V P X V P X σβμσβμσ⎧⎫⎪⎪+⎪⎪≥=-Φ=⎨⎬⎪⎪⎪⎪⎩⎭=-≤≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎪⎩⎭ΦΦ=≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎩⎭X =P X =1-P 3.50 =1-(4.125)+(3.50) =1X =P ⎪ΦΦ∴11 =(3.96)-(0.04)=0.99996092-0.516=0.48396092V 出现第二类错误的概率最小,即V 最好。

相关文档
最新文档