自动控制原理第三章课后习题 答案

合集下载

自动控制原理_王万良(课后答案3

自动控制原理_王万良(课后答案3

(3)当 D1 ( z ) = 1 , D 2 ( z ) = 0 时, 由(2)得
Φ( z ) =
Gh G1G2 ( z ) 1 + D1 ( z ) ⋅ Gh G1G2 ( z )
代入数据,化简可得:
Φ( z ) =
k (1 − e −T ) z + k (1 − e −T ) − e −T
4
G ( z ) = K (1 − z −1 ) Z [ 1 = K (1 − z −1 )[ 1 − z −1 K (1 − e −T ) z −1 = 1 − e −T z −1
(2) Φ ( z ) =
C ( z) G( z) K (1 − e −T ) z −1 = = R ( z ) 1 + G ( z ) 1 + ( K − e −T − Ke −T ) z −1
k =0

F ∗ ( s ) = ∑ kTe − akT e − kTs
k =0 ∞

(2) f (t ) =

∑ e −akT sin ωkTδ (t − kT )
k =0
F ∗ ( s ) = ∑ e − akT sin ωkTe − kTs
k =0
3.2 求下列序列的 Z 变换,设 k < 0 时 f ( k ) = 0 。 (1) 1, λ , λ , λ , Λ Λ
G1 ( z ) R( z ) 1 + G1G2 ( z ) + G1 ( z )G3 ( z )
3.8 如图题 3.8 所示采样控制系统 (1)求在输入和扰动共同作用下的输出量的 Z 变换表达式; (2)求系统输出 C ( z ) 与输入 R( z ) 之间的 Z 传递函数; (3)设 D1 ( z ) = 1 , D 2 ( z ) = 0 , G1 ( s ) =

自动控制原理第三章课后习题答案

自动控制原理第三章课后习题答案

3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。

已知全部初始条件为零。

解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。

若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。

视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。

解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。

自动控制原理第三章习题解答

自动控制原理第三章习题解答
σ % = e −πξ /
tp =
1−ξ 2
= e −π 0.6 /
1−0.62
= e −π 0.6 /
1−0.62
= 9 .5 %
π
1 − ξ ωn
2
=
π
1.6
= 1.96( s )
ts =
3-5
3.5
ξω n
=
3.5 = 2.92( s ) 1.2
设单位反馈系统的开环传递函数为
G ( s) =
0.4 s + 1 s ( s + 0.6)
s5 s4 s3 s2 s1 s0
1 12 35 3 20 25 16 80 3 3 5 25 10 25
有一对虚根,系统不稳定 3-13 已知单位反馈系统的开环传递函数
G ( s) =
K (0.5s + 1) s ( s + 1)(0.5s 2 + s + 1)
试确定系统稳定时的 K 值范围。 解:系统特征方程为
ε 0 ,试问 k1 应满足什么条件?
见习题 3-20 解答 3-2 设系统的微分方程式如下: (1)
&(t ) = 2r (t ) 0.2c
&&(t ) + 0.24c &(t ) + c(t ) = r (t ) (2) 0.04c
试求系统的单位脉冲响应 k(t)和单位阶跃响应 h(t)。已知全部初始条件为零。 解: (1) 因为 0.2 sC ( s ) = 2 R ( s ) 单位脉冲响应: C ( s ) = 10 / s 单位阶跃响应 h(t)
试求系统的超调量σ%、峰值时间tp 和调节时间ts。 解: h(t ) = 1 −

自动控制原理课后习题答案,第三章(西科技大学)

自动控制原理课后习题答案,第三章(西科技大学)
提示: • 阶跃响应为 解: d
c(t ) 1
1
e
n t
1
2
sin(d t )(t 0)
1.6,
1 2
1.25,n 1.2 1.6 1.25 2, 0.6
n
d
1 2


s% e
1 2
tp 1.96s d
10 K 斜坡输入时: K v lim sG ( s ) s 0 10 1 ess 1 Kv 0.25 得:10 1 2.5K 稳态误差:
与二阶系统的典型形式对比,有
10 1 2n 10K
得:K=1.6,= 0.3,n=4
闭环传递函数为
(2)
则辅助方程的解为
s1.2 1
s3.4 5 j
劳斯表第一列出现了负数,系统不稳定。第一列元素符号变 化一次,可知系统存在一个s右半平面的特征根。系统有一 共轭纯虚根±5 j。
K (0.5s 1) 3-11 已知单位反馈系统的开环传函为G ( s) 2 s(s 1)(0.5s s 1) 试确定系统稳定时的K值范围。
系统稳定的 K 范围为 0 < K < 1.708。
100 3-15 已知单位反馈系统的开环传递函数 G பைடு நூலகம் s ) s ( s 10) 试求:
(1) 位置误差系数Kp,速度误差系数Kv和加速度误差系数Ka; (2) 当参考输入 r(t) = 1+ t + at2 时,系统的稳态误差。
解:(1)
-50
48
0 0 0 8 96 8 48 2 96 8 ( 50 ) 2 0 2 24 50 s 8 8 0 s1 24 96 8 ( 50 ) 112 .7 24 0 s -50

自动控制原理第三章课后习题答案(最新)汇总

自动控制原理第三章课后习题答案(最新)汇总

3-1设系统的微分方程式如下:(1)0.2c(t) 2r(t)单位脉冲响应:C(s) 10/s g(t) 103t3 3tc(t) 1 e cos4t e si n4t413-2 温度计的传递函数为 —,用其测量容器内的水温,1min 才能显示出该温度的Ts 198%的数值。

若加热容器使水温按 10(C/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数由一阶系统阶跃响应特性可知: c(4T) 98 o o ,因此有 4T 1 min ,得出T 0.25 min 。

视温度计为单位反馈系统,则开环传递函数为(s)1K 1TG(s)—1(s) Tsv 1用静态误差系数法,当r(t) 10t 时,e ss10 10T 2.5 C oK(2) 0.04c(t)0.24c(t) c(t)r(t)试求系统闭环传递函数① 部初始条件为零。

解:(s),以及系统的单位脉冲响应 g(t)和单位阶跃响应 c(t)。

已知全(1)因为 0.2sC(s)2R(s) 闭环传递函数(s)C(s) 10R(s) s单位阶跃响应c(t) C(s) 10/s 2c(t) 10t t 0(2) (0.04s 20.24s 1)C(s) R(s)C (s )闭环传递函数(s)C(s) R(s)120.04s0.24s 1单位脉冲响应:C(s)120.04s 2 0.24s 1g(t)25 e 33tsi n4t单位阶跃响应h(t) C(s)25 s[(s 3)216]1 s 6 s (s 3)216(s)1 Ts 1解法二依题意,系统误差疋义为e(t) r(t) c(t),应有e(s)E(s)1 C(s)R(s)11 TsR(s) Ts 1 Ts 13-3 已知二阶系统的单位阶跃响应为c(t) 10 12.5e 1.2t sin(1.6t 53.1o)试求系统的超调量c%、峰值时间t p和调节时间t'si n( 1n t )t p Jl- 1.96(s■1 2n1.63.5 3.5t s 2.92(s)n 1.2或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。

自动控制原理第三章习题参考答案

自动控制原理第三章习题参考答案

Y (s) 1 1 600 ( s) 12 ( ) 2 R( s ) s 10 s 60 s 70 s 600
n 600 24.5
70 70 1.43 2 n 2 24 .5
3-7 简化的飞行控制系统结构图如下,试选择参数K1和Kt, 使系统的ωn=6,ξ=1
S2+5=0
S3 16/3 S2 5
S1 10 S0 25
s1, 2 5 j
有1对纯虚根,系统临界稳定。
3-13单位反馈系统的开环传递函数为:
K (0.5s 1) G( s) 2 s( s 1)(0.5s s 1)
确定使系统稳定的K值范围。 解:闭环传递函数为:
K (0.5s 1) ( s) 0.5s 4 1.5s 3 2 s 2 (1 0.5 K ) s K K ( s 2) 4 s 3s 3 4 s 2 ( 2 K ) s 2 K
K 速度误差系数: P lim sG ( s ) 10
s 0
速度误差:
1 e ss 0.1 Kp
3-11 已知系统的特征方程为:
3s 4 10 s 3 5s 2 s 2 0
用劳斯判据确定系统的稳定性 解:列劳斯列表 S4 3 5 2
S3 10
S2 4.7 S1 -3.26
1
2
S0 2 第1列符号变化两次, 说明有两个正根,系统不稳定。
3-12 已知Βιβλιοθήκη 统的特征方程如下,试求系统在S右半平面的根 数及虚根值。
(1) s 3s 12 s 24 s 32 s 48 0
5 4 3 2
S5 1 S4 3 S3 4 S2 12

自动控制原理第3章习题解答

自动控制原理第3章习题解答



ω n (ξ − ξ 2 − 1)
1 10
2
T2 = 1 60
1
ω n (ξ + ξ 2 − 1)
显然: T1 =
T2 =
ξ2 T1 ξ + ξ − 1 = =6= T2 ξ − ξ 2 − 1 1 1− 1− 2 ξ
由 T1 =
1+ 1−
1
解方程得 ξ =
7 2 6
1
ω n (ξ − ξ − 1)
试求系统在单位阶跃输入下的动态性能。 解:闭环传递函数
0.4 s + 1 G( s) 0.4 s + 1 s ( s + 0.6) GB ( s) = = = 2 s + s +1 1 + G ( s ) 1 + 0.4 s + 1 s( s + 0.6) C ( s ) = GB ( s ) R( s ) = 1 0.4 s + 1 0.4 1 = 2 + 2 2 s s + s + 1 s + s + 1 s( s + s + 1) s +1 s + 0.6 0.4 1 1 = 2 + − 2 = − 2 s + s +1 s s + s +1 s s + s +1
3.5 = 7s 0.5
3-6 已知控制系统的单位阶跃响应为
h(t ) = 1 + 0.2e −60t − 1.2e −10t
试确定系统的阻尼比ζ和自然频率ωn。 解: 求拉氏变换得
H (s) =
1 0.2 1.2 ( s + 60)( s + 10) 0.2s ( s + 10) 1.2s ( s + 60) + − = + − s s + 60 s + 10 s ( s + 60)( s + 10) s ( s + 60)( s + 10) s ( s + 60)( s + 10)

《自动控制原理》课后习题解答第三章

《自动控制原理》课后习题解答第三章

第三章习题及答案3-1 已知系统脉冲响应如下,试求系统闭环传递函数Φ(s)。

t e t k 25.10125.0)(-=解 Φ()()./(.)s L k t s ==+001251253-2 设某高阶系统可用下列一阶微分方程近似描述T c t c t r t r t ••+=+()()()()τ其中,0<(T-τ)<1。

试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(= 当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττ C t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; Tt T T d-⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从0.1到0.9所需时间) 当 Tt e TT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ∴=--t T T T s [ln ln .]τ005=-+T T T[ln ln ]τ20=+-T T T [ln]3τ3-3 一阶系统结构图如题3-3图所示。

要求系统闭环增益2=ΦK ,调节时间4.0≤s t (s ),试确定参数21,K K 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3-1 设系统的微分方程式如下:(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。

已知全部初始条件为零。

解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。

若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。

视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK 用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。

解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。

解:)1sin(111)(22βωζζζω+---=-t e t c n t nζβarccos = 21/%ζπζσ--=e np t ωζπ21-=ns t ζω5.3=6.01.53cos cos 0===βζ%5.9%2226.01/6.06.01/6.01/====------ππζπζσe e e)(96.16.112s t np ==-=πωζπ)(92.22.15.35.3s t ns ===ζω 或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。

3-4 机器人控制系统结构图如图所示。

试确定参数21,K K 值,使系统阶跃响应的峰值时间5.0=p t s ,超调量%2%=σ。

图 习题3-4 图解 依题,系统传递函数为222121212112)1()1()1(1)1()(n n n s s K K s K K s K s s s K K s s K s ωζωω++=+++=++++=ΦΦ由 ⎪⎩⎪⎨⎧=-===--5.0102.0212n p oo t e ωζπσζπζ 联立求解得 ⎩⎨⎧==1078.0n ωζ比较)(s Φ分母系数得⎪⎩⎪⎨⎧=-===146.0121001221K K K n n ζωω 3-5 设图(a )所示系统的单位阶跃响应如图(b )所示。

试确定系统参数,1K 2K 和a 。

图 习题3-5 图解 由系统阶跃响应曲线有⎪⎩⎪⎨⎧=-===∞oo o op t c 3.33)34(1.03)(σ系统闭环传递函数为222212212)(nn n s s K K as s K K s ωξωω++=++=Φ (1) 由 ⎪⎩⎪⎨⎧===-=--o o oo np e t 3.331.01212ζζπσωζπ 联立求解得 ⎩⎨⎧==28.3333.0n ωζ 由式(1)⎩⎨⎧====222110821n n a K ζωω另外 3lim 1)(lim )(2122100==++=⋅Φ=∞→→K K as s K K s s s c s s3-6已知单位反馈随动系统如图所示,K=16s -1,T=,试求: (1)特征参数和; (2)计算σ%和t s ;(3)若要求σ%=16%,当T 不变时K 应当取何值?图 习题3-6 图【解】:(1)求出系统的闭环传递函数为:因此有: (2)(3)为了使σ%=16%,由式可得,当T 不变时,有:3-7 系统结构图如图所示。

已知系统单位阶跃响应的超调量σ%3.16=%,峰值时间1=p t s 。

图 习题3-7 图(1) 求系统的开环传递函数)(s G ; (2) 求系统的闭环传递函数)(s Φ;(3) 根据已知的性能指标σ%、p t 确定系统参数K 及τ; (4) 计算等速输入s t t r )(5.1)(︒=时系统的稳态误差。

解 (1) )110(10)1(101)1(10)(++=+++=ττs s K s s s s s K s G(2) 2222210)110(10)(1)()(nn n s s K s s Ks G s G s ωζωωτ++=+++=+=Φ (3)由 ⎪⎩⎪⎨⎧=-===--113.16212ζωπσζζπn p o o o o t e 联立解出 ⎪⎩⎪⎨⎧===263.063.35.0τωζn 由(2) 18.1363.31022===n K ω,得出 318.1=K。

(4)63.31263.01018.1311010)(lim 0=+⨯=+==→τK s sG K s v413.063.35.1===v ss K A e3-8 已知单位反馈系统的单位阶跃响应为 ,求(1)开环传递函数 ; (2)s n %t σως; (3)在 作用下的稳态误差 。

3-9 已知系统结构图如图所示,)125.0)(11.0()(++=s s s Ks G试确定系统稳定时的增益K 的取值范围。

图 习题3-9 图解:3-10 已知单位反馈系统的开环传递函数为)22)(4()1(7)(2++++=s s s s s s G 试分别求出当输入信号t t t r ),(1)(=和2t 时系统的稳态误差。

解 )22)(4()1(7)(2++++=s s s s s s G ⎩⎨⎧==17v K 由静态误差系数法)(1)(t t r =时, 0=ss et t r =)(时, 14.178===K A e ss2)(t t r =时, ∞=ss e3-11 已知单位负反馈系统的开环传递函数为 ()(0.11)(0.21)KG S s s s =++,若r(t) = 2t +2时,要求系统的稳态误差为,试求K 应取何值。

3-12设系统结构图如图所示,图 习题3-12 图(1) 当025,0f K K ==时,求系统的动态性能指标%σ和s t ; (2) 若使系统ζ=,单位速度误差0.1ss e =时,试确定0K 和f K 值。

(1)%25.4%1.75ts σ== (5分) (2)0100,6f K K ==(5分)3-13 已知系统的特征方程,试判别系统的稳定性,并确定在右半s 平面根的个数及纯虚根。

(1)01011422)(2345=+++++=s s s s s s D (2)0483224123)(2345=+++++=s s s s s s D (3)022)(45=--+=s s s s D(4)0502548242)(2345=--+++=s s s s s s D解(1)1011422)(2345+++++=s s s s s s D =0Routh : S 5 1 2 11 S 4 2 4 10 S 3 ε 6 S 2 εε124- 10S 6 S 0 10第一列元素变号两次,有2个正根。

(2)483224123)(2345+++++=s s s s s s D =0 Routh : S 5 1 12 32S 4 3 24 48S 33122434⨯-= 32348316⨯-= 0 S 2424316412⨯-⨯= 48 S 1216448120⨯-⨯= 0 辅助方程 124802s +=,S 24 辅助方程求导:024=sS 0 48系统没有正根。

对辅助方程求解,得到系统一对虚根 s j 122,=±。

(3)022)(45=--+=s s s s DRouth : S 5 1 0 -1S 4 2 0 -2 辅助方程 0224=-s S 3 8 0 辅助方程求导 083=sS 2 ε -2 S ε16S 0 -2第一列元素变号一次,有1个正根;由辅助方程0224=-s 可解出: ))()(1)(1(2224j s j s s s s -+-+=-))()(1)(1)(2(22)(45j s j s s s s s s s s D -+-++=--+= (4)0502548242)(2345=--+++=s s s s s s D Routh : S 5 1 24 -25S 4 2 48 -50 辅助方程 05048224=-+s s S 3 8 96 辅助方程求导 09683=+s sS 2 24 -50 S 338/3S 0 -50第一列元素变号一次,有1个正根;由辅助方程05048224=-+s s 可解出: )5)(5)(1)(1(25048224j s j s s s s s -+-+=-+)5)(5)(1)(1)(2(502548242)(2345j s j s s s s s s s s s s D -+-++=--+++=3-14 某控制系统方块图如图所示,试确定使系统稳定的K 值范围。

图 习题3-14 图解 由结构图,系统开环传递函数为:)4()124()(232++++=s s s s s K s G⎩⎨⎧==34v K K k 系统型别开环增益 0244)(2345=+++++=K Ks Ks s s s s D Routh : S 5 1 4 2K S 4 1 4K KS 3 )1(4K -- K 1<⇒KS 2 )1(4)1615(K K K -- K 067.11516=>⇒KS )1(41647322K K K --+- 933.0536.0<<⇒K S 0 K 0>⇒K∴使系统稳定的K 值范围是: 933.0536.0<<K 。

相关文档
最新文档