自动控制原理(邹伯敏)第三章答案

合集下载

自动控制原理答案第3章

自动控制原理答案第3章

School of Electronic Engineering, Dongguan University of Technology【习题3-1】:已知某控制系统结构图,其中T m =0.2,K =5,求系统的单位阶跃响应性能。

1)对比二阶系统开环传递函数的一般表达式:2)解得:3)进而解得:4)超调量:5)调节时间:6)峰值时间:7)上升时间: School of Electronic Engineering, Dongguan University of Technology【习题3-2】:已知某控制系统结构图,系统的单位阶跃响应曲线,试确定系统参数K 1、的值。

)闭环传递函数:2)从曲线中可以直接获得:3))计算系统的参数:)比较二阶系统闭环传递函数的一般式:阶跃响应的输出通常用h(t)表示,代替c(t)()()()lim lim t s c c t sC s →∞→∞== School of Electronic Engineering, Dongguan University of Technology【习题3-3】:已知某控制系统结构图,要求系统的阻尼比ζ=0.6,试确定K t 的值,并计算动态性能指标:t p 、t s 和σp 的值。

1)闭环传递函数:2)比较二阶系统闭环传递函数的一般式:3)解得:4)计算系统的动态性能: School of Electronic Engineering, Dongguan University of Technology【习题3-4】:已知某控制系统结构图,要求系统的超调量σp =16.3%,峰值时间t p =1 秒,求K 与τ。

1)根据超调量和峰值时间的定义,有:2)计算系统的特征参数:3)闭环传递函数:4)比较二阶系统的闭环传递函数的一般形式:5)解得:【习题3-5】:系统的特征方程为:20=0 School of Electronic Engineering, Dongguan University of Technology【习题3-7】:特征方程为:结论:=0全为零构造辅助特征方程 School of Electronic Engineering, Dongguan University of Technology【习题3-9】:已知单位反馈系统的开环传递函数为:试确定系统稳定时K 的范围:解:闭环特征方程为:劳斯表:结论:0<K<1.708 School of Electronic Engineering, Dongguan University of Technology【习题3-10】:已知控制系统结构图,要求闭环系统特征根全部位于垂线s =-0.2 之左。

自动控制原理第三章课后习题答案(最新)汇总

自动控制原理第三章课后习题答案(最新)汇总

3-1设系统的微分方程式如下:(1)0.2c(t) 2r(t)单位脉冲响应:C(s) 10/s g(t) 103t3 3tc(t) 1 e cos4t e si n4t413-2 温度计的传递函数为 —,用其测量容器内的水温,1min 才能显示出该温度的Ts 198%的数值。

若加热容器使水温按 10(C/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数由一阶系统阶跃响应特性可知: c(4T) 98 o o ,因此有 4T 1 min ,得出T 0.25 min 。

视温度计为单位反馈系统,则开环传递函数为(s)1K 1TG(s)—1(s) Tsv 1用静态误差系数法,当r(t) 10t 时,e ss10 10T 2.5 C oK(2) 0.04c(t)0.24c(t) c(t)r(t)试求系统闭环传递函数① 部初始条件为零。

解:(s),以及系统的单位脉冲响应 g(t)和单位阶跃响应 c(t)。

已知全(1)因为 0.2sC(s)2R(s) 闭环传递函数(s)C(s) 10R(s) s单位阶跃响应c(t) C(s) 10/s 2c(t) 10t t 0(2) (0.04s 20.24s 1)C(s) R(s)C (s )闭环传递函数(s)C(s) R(s)120.04s0.24s 1单位脉冲响应:C(s)120.04s 2 0.24s 1g(t)25 e 33tsi n4t单位阶跃响应h(t) C(s)25 s[(s 3)216]1 s 6 s (s 3)216(s)1 Ts 1解法二依题意,系统误差疋义为e(t) r(t) c(t),应有e(s)E(s)1 C(s)R(s)11 TsR(s) Ts 1 Ts 13-3 已知二阶系统的单位阶跃响应为c(t) 10 12.5e 1.2t sin(1.6t 53.1o)试求系统的超调量c%、峰值时间t p和调节时间t'si n( 1n t )t p Jl- 1.96(s■1 2n1.63.5 3.5t s 2.92(s)n 1.2或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。

自动控制原理第3章习题解答

自动控制原理第3章习题解答
g0sgsfskpskjs2系统位置误差系数为kplimgs在rt作用下系统的稳态误差essrr101kp在n1t作用下系统的稳态误差这时系统的开环传递函数g0sgsfskpskjs2系统位置误差系数为kplimgs在n1t作用下系统的稳态误差essn1在n1t和n2t同时作用下系统的稳态误差10r101kp胡寿松自动控制原理习题解答第三章n2t作用下系统的稳态误差这时系统的开环传递函数为
(2) k (t ) = 5t + 10 sin( 4t + 45 )
0
(3) k (t ) = 0.1(1 − e 解: (1) Φ ( s ) =
−t / 3
)
0.0125 s + 1.25
1
胡寿松自动控制原理习题解答第三章
(2) k (t ) = 5t + 10 sin 4t cos 45 + 10 cos 4t sin 45
3s 4 + 10s 3 + 5s 2 + s + 2 = 0
试用劳思稳定判据和赫尔维茨判据确定系统的稳定性。 解: 列劳思表如下:
s4 s3 s2 s1 s0
3 5 2 10 1 47 2 10 1530 0 − 47 2
由劳思表可以得到该系统不稳定。 3-12 已知系统特征方程如下,试求系统在 s 右半平面的根数及虚根值。 (1)
2ξω n = 70
ξ=
7 2 6
根据(3-17)
h(t ) = 1 +
e − t / T1 e − t / T12 + T2 / T1 − 1 T1 / T2 − 1
解:根据公式(3-17)
3
胡寿松自动控制原理习题解答第三章

自控第三章答案

自控第三章答案

K
p
不稳定
稳定
0
K
d
不稳定
不稳定
临界阻尼轨迹: D ( s ) s 4 K d s 4 K
2 p
0 出现重根时
p
临界阻尼条件为: 即: K
2 d
4 K
2
2 d
4 4K
0 线。
K p , 以纵轴为对称轴的抛物 K K
2 d 2 d
过阻尼区: 欠阻尼区: K
B3.15 分析图B3.15所示的两个系统,引入与不引入反馈时 系统的稳定性 。
解 不引入反馈 显然不稳定。 引入反馈 D ( s ) s ( s 1 )( s 5 ) 10 ( s 1 ) 0 闭环稳定。 (s ) 10 ( s 1 ) s ( s 1 )( s 5 )
3
赫尔维茨判据: 9 100 D2 20 1 100 9 80 0
1 20 4 100
2
1
0
故系统是稳定的。
(3)s4+4s3+13s2+36s+K=0

(1 ) 劳思判据: s s s s s
4
1 4 4 36 K K
13 36 K K
K 0
3
2
1
0
若系统稳定,则
36 K 0 0 K 36 K 0
( 2 )由
G (s )
7(s 1) s ( s 4 )( s 2 s 2 )
2
0 . 875 ( s 1 ) s ( 0 . 25 s 1 )( 0 . 5 s s 1 )
2
可知系统为
1
型的,于是

自动控制原理精品课程第三章习题解(1)精品文档6页

自动控制原理精品课程第三章习题解(1)精品文档6页

3-1 设系统特征方程式:试按稳定要求确定T 的取值范围。

解:利用劳斯稳定判据来判断系统的稳定性,列出劳斯列表如下:欲使系统稳定,须有故当T>25时,系统是稳定的。

3-2 已知单位负反馈控制系统的开环传递函数如下,试分别求出当输入信号为,21(),t t t 和 时,系统的稳态误差(),()().ssp ssv ssa e e e ∞∞∞和解:(1)根据系统的开环传递函数可知系统的特征方程为:由赫尔维茨判据可知,n=2且各项系数为正,因此系统是稳定的。

由G(s)可知,系统是0型系统,且K=10,故系统在21(),t t t 和输入信号作用下的稳态误差分别为:(2)根据系统的开环传递函数可知系统的特征方程为:由赫尔维茨判据可知,n=2且各项系数为正,且2212032143450,/16.8a a a a a a a ∆=-=>∆>=以及,因此系统是稳定的。

由G(s)可知,系统式I 型系统,且K=7/8,故系统在21(),t t t 和 信号作用下的稳态误差分别为:(3)根据系统的开环传递函数可知系统的特征方程为:由赫尔维茨判据可知,n=2且各项系数为正,且21203 3.20a a a a ∆=-=>因此系统是稳定的。

由G(s)可知,系统是Ⅱ型系统,且K=8,故系统在21(),t t t 和 信号作用下的稳态误差分别为:3-3 设单位反馈系统的开环传递函数为试求当输入信号2()12r t t t =++时,系统的稳态误差.解:由于系统为单位负反馈系统,根据开环传递函数可以求得闭环系统的特征方程为:由赫尔维茨判据可知,n=2且各项系数为正,因此系统是稳定的。

由G(s)可知,系统是Ⅱ型系统,且K=8,故系统在21(),t t t 和 信号作用下的稳态误差分别为10,,K∞,故根据线性叠加原理有:系统的稳态误差为: 3-4 设舰船消摆系统如图3-1所示,其中n(t)为海涛力矩产生,且所有参数中除1K 外均为已知正值。

自动控制原理第三章习题答案

自动控制原理第三章习题答案

第三章习题答案名词解释1.超调量:系统响应的最大值与稳态值之差除以稳态值。

定义为)()(max ∞∞-=c c c σ 2.开环传递函数中含有2个积分因子的系统称为II 型系统。

3.单位阶跃响应达到第一个峰值所需时间。

4.指响应达到并保持在终值5%内所需要的最短时间。

5. 稳态误差:反馈系统误差信号e(t) 的稳态分量(1分),记作e ss (t)。

6.开环传递函数中不含有积分因子的系统。

7.上升时间:○1响应从终值10%上升到终值90%所需的时间;或○2响应从零第一次上升到终值所需的时间。

简答1. 在实际控制系统中,总存在干扰信号。

1) 时域分析:干扰信号变化速率快,而微分器是对输入信号进行求导,因此干扰信号通过微分器之后,会产生较大的输出;2) 频域分析:干扰信号为高频信号,微分器具有较高的高频增益,因此干扰信号易被放大。

这就是实际控制系统中较少使用纯微分器的原因。

2.系统稳定的充分条件为:劳斯阵列第一列所有元素不变号。

若变号,则改变次数代表正实部特征根的数目。

3.二阶临界阻尼系统特征根在负实轴上有两个相等的实根,其单位阶跃响应为单调递增曲线,最后收敛到一个稳态值。

4. 闭环特征根严格位于s 左半平面;或具有负实部的闭环特征根。

5.欠阻尼状态下特征根为一对具有负实部的共轭复数,单位阶跃响应是一个振荡衰减的曲线,最后收敛到一个稳态值。

6.阻尼小于-1的系统,特征根位于正实轴上,单位阶跃响应是一个单调发散的曲线。

7. 无阻尼状态下特征根为一对虚根,响应为等幅振荡过程,永不衰减。

8.图4(a)所示系统稳定,而图4(b)所示系统不稳定。

原因是图4(b)所示系统的小球收到干扰后将不能恢复到原来的平衡状态。

9.不能。

原因是:两个一阶惯性环节串联后的极点为实极点;而二阶振荡环节的极点为复数极点。

计算题1. 解:r(t)=2t.v=1,系统为I 型系统k v =2,e ss =1.2.解:构造Routh 表:25:010:255:03/803/16:25203:35121:012345s s s s s s辅助方程:02552=+s 故纯虚根为:j s 52,1±=;故系统处于临界稳定状态。

自动控制原理 第3章习题解答

自动控制原理 第3章习题解答

系统的 Bode 图为图 6-2-1(b)。
图 6-2-1(b)
6-2
2( s + 1) 时,则校正后系统的开环传递函数为: (10 s + 1) 10 2( s + 1) 20( s + 1) G" ( s ) = G ( s )Gc ( s ) = ⋅ = s (0.2s + 1) (10 s + 1) s (0.2 s + 1)(10 s + 1) ∴ 系统的 Bode 图为图 6-2-2。
ϕ c = ±(2k + 1)π − ∠G0 ( s1 ) = −180° − [−∠s1 − ∠( s1 + 1)] = 72.6° (4)由校正后系统的幅值条件,求校正装置的零极点位置及参数 α 和 T
由 K v = lim sG0 ( s ) = lim
s →0 s →0
K = K = 2即K = 2 s +1
该网络为一个比例微分环节,为超前网络。 (2)由题:
U N = U p = 0 i1 + i2 = 0
R1 //
∴U i + U 0 =0 1 R3 R1 // sC
∴ G ( s) =
U 0 ( s) =− U i ( s)
R3
1 sC = −
R1 R3 ( R1Cs + 1)
U0 1 1 R1 + ( + R 4 ) //( R 2 // ) sC 1 sC 2 =0
第 6 章 控制系统的设计和校正习题及解答
6-1 试求题 6-1 图有源网络的传递函数,并说明其网络特性。
题 6-1 图 解(1)由题:
U N = U p = 0 i1 + i2 = 0

《自动控制理论(第3版)》邹伯敏课件第03章精编版

《自动控制理论(第3版)》邹伯敏课件第03章精编版

CT


1
-
e

1 T
0.632
阶跃 响应曲线 C(t)上升到其终值的63.2%时,对应的时间就是系统 的时间常数T
二、单位斜坡响应
令Rs 1s 2 则
Cs
1
S 2 1 Ts

1 S2

T S
T2 1 TS
C
t


t

T
1

e
1 T
t

2020/1/10
第三章 控制系统的时域分析
图3-9 二阶系统的实极点
11
自动控制理论
Cs n n 2 1 1
1
s s n n 2 1 s s n n 2 1
c t 1 e 2 1 nt
如令n 1, 2,则输出响应的准确值为
等加速度信号是一种抛物线函数,其数学表达式为
0
r
t



1 2
a
0
t
2
<t 0 t0
a0 常数。若a0 1,称为单位等加速度信号,其拉氏变换为1s3
四、脉冲信号
rt


0 H

t<0, t 0< t<
2020/1/10
图3-2
第三章 控制系统的时域分析
3
Cs
n2
ss n 2

1 s
n
2
s n 2

1 s n
其拉氏反变换为:
ct 1 1 nt ent t 0
2020/1/10
第三章 控制系统的时域分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制理论第三章作业答案
题3-4
解:
系统的闭环传递函数为
2()()1()1()1
C s G s R s G s s s ==+++ 由二阶系统的标准形式可以得到
11, 2
n ωζ==
因此,上升时间arctan 2.418r d
d t s ππβωω--===
峰值时间 3.6276p d t s πω=== 调整时间:35% 642% 8s n s n t s t s ωζ
ωζ∆=≈
=∆=≈
=
超调量:
100%16.3%p M e =⨯=
题3-5
解:
22()10()(51)10
102510.60.5589
n n n C s R s s a s a a ωωζωζ=+++⎧=⎧=⎪⎪⇒⇒⎨⎨=+==⎪⎩⎪⎩
⇒=闭环传递函数
1.242
100%9.45%
p
d
p
t s
M e
π
ω
===
=⨯=
3
5% 1.581
4
2% 2.108
s
n
s
n
t s
t s
ωζ
ωζ
∆=≈=
∆=≈=
题3-7
解:
0.1
1.31
100%30%
1
p
d
p
t
M e
π
ω
===
-
=⨯==
上升时间
超调量
=0.3579
33.64
n
ζ
ω

⇒⎨
=

2
2
1131.9
()
(2)24.08
n
n
G s
s s s s
ω
ζω
==
++
开环传递函数
题3-8
(1)
2
100
()
(824)
G s
s s s
=
++
解:闭环传递函数为
2
()100
()(824)100
C s
R s s s s
=
+++
特征方程为32
8241000
s s s
+++=
列出劳斯表:
3
2
1240
81000
11.50
100
s
s
s
s
第一列都是正数,所以系统稳定
(2)
10(1)
()
(1)(5)
s
G s
s s s
+
=
-+
解:闭环传递函数()10(1)()(1)(5)10(1)
C s s R s s s s s +=-+++ 特征方程为3255100s s s +++=
列出劳斯表:
3
2
01504100
2.5010s s s
s 第一列都是正数,所以系统稳定
(3)10()(1)(23)
G s s s s =-+ 解:闭环传递函数
()10()(1)(23)10C s R s s s s =-++ 特征方程为3223100s s s +-+=
列出劳斯表:
3
2
10230110023010s s s
s --
劳斯表第一列的数符号变了2次,因此在s 平面的右半部分有两个特征根,系统不稳定。

题3-9
(1)320.10s s s K +++=
解:列出劳斯表
3
2
100.1101010.10s s K s K
s K
- 要使系统稳定,则有
{1-0.100100K K k >⎧⇒<<⎨>⎩
(2)432413360s s s s K ++++=
解:列出劳斯表:
4
3
2
1
0113436040360s K s s K s K s K
- 要使系统稳定,则有
3600360
K K K ->⎧⇒<<⎨>⎩
题3-10
解:系统的闭环传递函数为:
2()()(2)(4)(625)C s K R s s s s s K
=+++++ 特征方程为2
(2)(4)(625)=0s s s s K +++++ 系统产生等幅振荡,则特征根在虚轴上
令s j ω=,有43212691982000j j K ωωωω--+++=
423692000 4.062121980666.25K K ωωωωω⎧⎧-++===⎪⎪⇒⇒⎨⎨-=⎪⎩⎪=⎩
题3-12
解:闭环传递函数为
2()10(1)()(110)10(1)
C s s R s s s s τ+=++++ 特征方程为
32(110)10100s s s τ++++=
列出劳斯表:
3
2
10
1100110100100011010s s s s ττ
τ++ 要使系统稳定,有 110001000τττ+>⎧⇒>⎨>⎩。

相关文档
最新文档