自动控制原理(邹伯敏)第三章答案

合集下载

自动控制原理答案第3章

自动控制原理答案第3章

School of Electronic Engineering, Dongguan University of Technology【习题3-1】:已知某控制系统结构图,其中T m =0.2,K =5,求系统的单位阶跃响应性能。

1)对比二阶系统开环传递函数的一般表达式:2)解得:3)进而解得:4)超调量:5)调节时间:6)峰值时间:7)上升时间: School of Electronic Engineering, Dongguan University of Technology【习题3-2】:已知某控制系统结构图,系统的单位阶跃响应曲线,试确定系统参数K 1、的值。

)闭环传递函数:2)从曲线中可以直接获得:3))计算系统的参数:)比较二阶系统闭环传递函数的一般式:阶跃响应的输出通常用h(t)表示,代替c(t)()()()lim lim t s c c t sC s →∞→∞== School of Electronic Engineering, Dongguan University of Technology【习题3-3】:已知某控制系统结构图,要求系统的阻尼比ζ=0.6,试确定K t 的值,并计算动态性能指标:t p 、t s 和σp 的值。

1)闭环传递函数:2)比较二阶系统闭环传递函数的一般式:3)解得:4)计算系统的动态性能: School of Electronic Engineering, Dongguan University of Technology【习题3-4】:已知某控制系统结构图,要求系统的超调量σp =16.3%,峰值时间t p =1 秒,求K 与τ。

1)根据超调量和峰值时间的定义,有:2)计算系统的特征参数:3)闭环传递函数:4)比较二阶系统的闭环传递函数的一般形式:5)解得:【习题3-5】:系统的特征方程为:20=0 School of Electronic Engineering, Dongguan University of Technology【习题3-7】:特征方程为:结论:=0全为零构造辅助特征方程 School of Electronic Engineering, Dongguan University of Technology【习题3-9】:已知单位反馈系统的开环传递函数为:试确定系统稳定时K 的范围:解:闭环特征方程为:劳斯表:结论:0<K<1.708 School of Electronic Engineering, Dongguan University of Technology【习题3-10】:已知控制系统结构图,要求闭环系统特征根全部位于垂线s =-0.2 之左。

自动控制原理第三章课后习题答案(最新)汇总

自动控制原理第三章课后习题答案(最新)汇总

3-1设系统的微分方程式如下:(1)0.2c(t) 2r(t)单位脉冲响应:C(s) 10/s g(t) 103t3 3tc(t) 1 e cos4t e si n4t413-2 温度计的传递函数为 —,用其测量容器内的水温,1min 才能显示出该温度的Ts 198%的数值。

若加热容器使水温按 10(C/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数由一阶系统阶跃响应特性可知: c(4T) 98 o o ,因此有 4T 1 min ,得出T 0.25 min 。

视温度计为单位反馈系统,则开环传递函数为(s)1K 1TG(s)—1(s) Tsv 1用静态误差系数法,当r(t) 10t 时,e ss10 10T 2.5 C oK(2) 0.04c(t)0.24c(t) c(t)r(t)试求系统闭环传递函数① 部初始条件为零。

解:(s),以及系统的单位脉冲响应 g(t)和单位阶跃响应 c(t)。

已知全(1)因为 0.2sC(s)2R(s) 闭环传递函数(s)C(s) 10R(s) s单位阶跃响应c(t) C(s) 10/s 2c(t) 10t t 0(2) (0.04s 20.24s 1)C(s) R(s)C (s )闭环传递函数(s)C(s) R(s)120.04s0.24s 1单位脉冲响应:C(s)120.04s 2 0.24s 1g(t)25 e 33tsi n4t单位阶跃响应h(t) C(s)25 s[(s 3)216]1 s 6 s (s 3)216(s)1 Ts 1解法二依题意,系统误差疋义为e(t) r(t) c(t),应有e(s)E(s)1 C(s)R(s)11 TsR(s) Ts 1 Ts 13-3 已知二阶系统的单位阶跃响应为c(t) 10 12.5e 1.2t sin(1.6t 53.1o)试求系统的超调量c%、峰值时间t p和调节时间t'si n( 1n t )t p Jl- 1.96(s■1 2n1.63.5 3.5t s 2.92(s)n 1.2或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。

自动控制原理第3章习题解答

自动控制原理第3章习题解答
g0sgsfskpskjs2系统位置误差系数为kplimgs在rt作用下系统的稳态误差essrr101kp在n1t作用下系统的稳态误差这时系统的开环传递函数g0sgsfskpskjs2系统位置误差系数为kplimgs在n1t作用下系统的稳态误差essn1在n1t和n2t同时作用下系统的稳态误差10r101kp胡寿松自动控制原理习题解答第三章n2t作用下系统的稳态误差这时系统的开环传递函数为
(2) k (t ) = 5t + 10 sin( 4t + 45 )
0
(3) k (t ) = 0.1(1 − e 解: (1) Φ ( s ) =
−t / 3
)
0.0125 s + 1.25
1
胡寿松自动控制原理习题解答第三章
(2) k (t ) = 5t + 10 sin 4t cos 45 + 10 cos 4t sin 45
3s 4 + 10s 3 + 5s 2 + s + 2 = 0
试用劳思稳定判据和赫尔维茨判据确定系统的稳定性。 解: 列劳思表如下:
s4 s3 s2 s1 s0
3 5 2 10 1 47 2 10 1530 0 − 47 2
由劳思表可以得到该系统不稳定。 3-12 已知系统特征方程如下,试求系统在 s 右半平面的根数及虚根值。 (1)
2ξω n = 70
ξ=
7 2 6
根据(3-17)
h(t ) = 1 +
e − t / T1 e − t / T12 + T2 / T1 − 1 T1 / T2 − 1
解:根据公式(3-17)
3
胡寿松自动控制原理习题解答第三章

自动控制原理第三章习题答案

自动控制原理第三章习题答案

第三章习题答案名词解释1.超调量:系统响应的最大值与稳态值之差除以稳态值。

定义为)()(max ∞∞-=c c c σ 2.开环传递函数中含有2个积分因子的系统称为II 型系统。

3.单位阶跃响应达到第一个峰值所需时间。

4.指响应达到并保持在终值5%内所需要的最短时间。

5. 稳态误差:反馈系统误差信号e(t) 的稳态分量(1分),记作e ss (t)。

6.开环传递函数中不含有积分因子的系统。

7.上升时间:○1响应从终值10%上升到终值90%所需的时间;或○2响应从零第一次上升到终值所需的时间。

简答1. 在实际控制系统中,总存在干扰信号。

1) 时域分析:干扰信号变化速率快,而微分器是对输入信号进行求导,因此干扰信号通过微分器之后,会产生较大的输出;2) 频域分析:干扰信号为高频信号,微分器具有较高的高频增益,因此干扰信号易被放大。

这就是实际控制系统中较少使用纯微分器的原因。

2.系统稳定的充分条件为:劳斯阵列第一列所有元素不变号。

若变号,则改变次数代表正实部特征根的数目。

3.二阶临界阻尼系统特征根在负实轴上有两个相等的实根,其单位阶跃响应为单调递增曲线,最后收敛到一个稳态值。

4. 闭环特征根严格位于s 左半平面;或具有负实部的闭环特征根。

5.欠阻尼状态下特征根为一对具有负实部的共轭复数,单位阶跃响应是一个振荡衰减的曲线,最后收敛到一个稳态值。

6.阻尼小于-1的系统,特征根位于正实轴上,单位阶跃响应是一个单调发散的曲线。

7. 无阻尼状态下特征根为一对虚根,响应为等幅振荡过程,永不衰减。

8.图4(a)所示系统稳定,而图4(b)所示系统不稳定。

原因是图4(b)所示系统的小球收到干扰后将不能恢复到原来的平衡状态。

9.不能。

原因是:两个一阶惯性环节串联后的极点为实极点;而二阶振荡环节的极点为复数极点。

计算题1. 解:r(t)=2t.v=1,系统为I 型系统k v =2,e ss =1.2.解:构造Routh 表:25:010:255:03/803/16:25203:35121:012345s s s s s s辅助方程:02552=+s 故纯虚根为:j s 52,1±=;故系统处于临界稳定状态。

自动控制原理课后答案

自动控制原理课后答案
第三章习题主要问题
3-3 判断使系统稳定的K的范围:放大系数可否为复数 ? 3-11(2) 过阻尼系统,求ts(用欠阻尼公式?) 3-11(1) 主导极点分析(偶极子,模比(wn)>5)
计算ts的时候,需指明Δ是5%还是2%
3-14 计算稳态误差 3-17 计算复合控制
自动控制原理习题分析第三章3-1(1)
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17

自动控制原理习题分析第三章3-1(1)
自动控制原理习题分析第三章3-1(4)
自动控制原理习题分析第三章3-2(3)
自动控制原理习题分析第三章3-2(3)
自动控制原理习题分析第三章3-2(4)
自动控制原理习题分析第三章3-2(4)
自动控制原理习题分析第三章3-3(2)
自动控制原理习题分析第三章3-3(2)
自动控制原理习题分析第三章3-6
自动控制原理习题分析第三章3-6
自动控制原理习题分析第三章3-8
自动控制原理习题分析第三章3-8
自动控制原理习题分析第三章3-9
自动控制原理习题分析第三章3-9
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(2)
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-17

《自动控制理论(第3版)》邹伯敏课件第03章精编版

《自动控制理论(第3版)》邹伯敏课件第03章精编版

CT


1
-
e

1 T
0.632
阶跃 响应曲线 C(t)上升到其终值的63.2%时,对应的时间就是系统 的时间常数T
二、单位斜坡响应
令Rs 1s 2 则
Cs
1
S 2 1 Ts

1 S2

T S
T2 1 TS
C
t


t

T
1

e
1 T
t

2020/1/10
第三章 控制系统的时域分析
图3-9 二阶系统的实极点
11
自动控制理论
Cs n n 2 1 1
1
s s n n 2 1 s s n n 2 1
c t 1 e 2 1 nt
如令n 1, 2,则输出响应的准确值为
等加速度信号是一种抛物线函数,其数学表达式为
0
r
t



1 2
a
0
t
2
<t 0 t0
a0 常数。若a0 1,称为单位等加速度信号,其拉氏变换为1s3
四、脉冲信号
rt


0 H

t<0, t 0< t<
2020/1/10
图3-2
第三章 控制系统的时域分析
3
Cs
n2
ss n 2

1 s
n
2
s n 2

1 s n
其拉氏反变换为:
ct 1 1 nt ent t 0
2020/1/10
第三章 控制系统的时域分析

《自动控制原理》课后习题解答第三章

《自动控制原理》课后习题解答第三章

第三章习题及答案3-1 已知系统脉冲响应如下,试求系统闭环传递函数Φ(s)。

t e t k 25.10125.0)(-=解 Φ()()./(.)s L k t s ==+001251253-2 设某高阶系统可用下列一阶微分方程近似描述T c t c t r t r t ••+=+()()()()τ其中,0<(T-τ)<1。

试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(= 当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττ C t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; Tt T T d-⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从0.1到0.9所需时间) 当 Tt e TT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ∴=--t T T T s [ln ln .]τ005=-+T T T[ln ln ]τ20=+-T T T [ln]3τ3-3 一阶系统结构图如题3-3图所示。

要求系统闭环增益2=ΦK ,调节时间4.0≤s t (s ),试确定参数21,K K 的值。

自动控制原理第三章课后习题 答案(最新)要点

自动控制原理第三章课后习题 答案(最新)要点

3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。

已知全部初始条件为零。

解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4s i n 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。

若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。

视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK 用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。

解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制理论第三章作业答案
题3-4
解:
系统的闭环传递函数为
2()()1()1()1
C s G s R s G s s s ==+++ 由二阶系统的标准形式可以得到
1
1, 2
n ωζ==
因此,上升时间 2.418r d
d t s ππβωω--===
峰值时间 3.6276p d t s πω=== 调整时间:35% 642% 8s n s n t s t s ωζ
ωζ∆=≈
=∆=≈
=
超调量:
100%16.3%p M e =⨯=
题3-5
解:
22()10()(51)10
102510.60.5589
n n n C s R s s a s a a ωωζωζ=+++⎧=⎧=⎪⎪⇒⇒⎨⎨=+==⎪⎩⎪⎩
⇒=闭环传递函数
1.242
100%9.45%
p
d
p
t s
M e
π
ω
===
=⨯=
3
5% 1.581
4
2% 2.108
s
n
s
n
t s
t s
ωζ
ωζ
∆=≈=
∆=≈=
题3-7
解:
0.1
1.31
100%30%
1
p
d
p
t
M e
π
ω
===
-
=⨯==
上升时间
超调量
=0.3579
33.64
n
ζ
ω

⇒⎨
=

2
2
1131.9
()
(2)24.08
n
n
G s
s s s s
ω
ζω
==
++
开环传递函数
题3-8
(1)
2
100
()
(824)
G s
s s s
=
++
解:闭环传递函数为
2
()100
()(824)100
C s
R s s s s
=
+++
特征方程为32
8241000
s s s
+++=
列出劳斯表:
3
2
1240
81000
11.50
100
s
s
s
s
第一列都是正数,所以系统稳定
(2)
10(1)
()
(1)(5)
s
G s
s s s
+
=
-+
解:闭环传递函数
()10(1)()(1)(5)10(1)C s s R s s s s s +=-+++ 特征方程为3255100s s s +++=
列出劳斯表:
3
2
015041002.5010
s s s
s 第一列都是正数,所以系统稳定 (3)10()(1)(23)
G s s s s =-+ 解:闭环传递函数
()10()(1)(23)10C s R s s s s =-++ 特征方程为3223100s s s +-+=
列出劳斯表:
3
2
10230110023010s s s
s --
劳斯表第一列的数符号变了2次,因此在s 平面的右半部分有两个特征根,系统不稳定。

题3-9
(1)320.10s s s K +++=
解:列出劳斯表
3
2100.1101010.10s s K
s K
s K
- 要使系统稳定,则有
{1-0.100100K K k >⎧⇒<<⎨>⎩
(2)432413360s s s s K ++++=
解:列出劳斯表:
4
3
2
1
0113436040360s K s s K s K s K
- 要使系统稳定,则有
3600360
K K K ->⎧⇒<<⎨>⎩ 题3-10
解:系统的闭环传递函数为:
2()()(2)(4)(625)C s K R s s s s s K
=+++++ 特征方程为2
(2)(4)(625)=0s s s s K +++++ 系统产生等幅振荡,则特征根在虚轴上
令s j ω=,有43212691982000j j K ωωωω--+++=
423692000 4.062121980666.25K K ωωωωω⎧⎧-++===⎪⎪⇒⇒⎨⎨-=⎪⎩⎪=⎩
题3-12
解:闭环传递函数为
2()10(1)()(110)10(1)
C s s R s s s s τ+=++++ 特征方程为
32(110)10100s s s τ++++=
列出劳斯表:
32101
100110100100011010
s s s s τ
ττ++
要使系统稳定,有
110001000
τττ+>⎧⇒>⎨>⎩。

相关文档
最新文档