自动控制原理第三章3
合集下载
自动控制原理3第三节典型环节的频率特性

左图是不同阻尼系数情况下的 对数幅频特性和对数相频特性 图。上图是不同阻尼系数情况 下的对数幅频特性实际曲线与 渐近线之间的误差曲线。
1 2T 1 T 2 T 5 T 10 T
1 5T
Saturday, November 05, 2016
15
微分环节的频率特性
⒌ 微分环节的频率特性: 微分环节有三种:纯微分、一阶微分和二阶微分。传递函 数分别为: G( s) s
05, 2016
12
振荡环节的波德图
2 T ( ) tg 相频特性: 1 T 2 2
1
几个特征点: 0, ( ) 0;
1 , ( ) ; , ( ) 。 T 2
由图可见:
K 10, T 1, 0.3 10 G ( j ) 2 s 0.6s 1 1 o T
1
幅频特性为: 相频特性为:
A( )
(1 T 2 2 )2 (2T )2 2 T ( ) tg 1 1 T 2 2
L( ) 20 log A( ) 20 log (1 T 2 2 ) 2 (2 T ) 2 对数幅频特性为:
低频段渐近线: T 1时,L( ) 0 高频段渐近线: T 1时, L( ) 20 log (T 2 2 ) 2 40 log T 1 两渐进线的交点 o 称为转折频率。斜率为-40dB/Dec。 T Saturday, November
1 2
T
时,无谐振峰值。当
M p A( p )
1 2
1 0.707时, p 0 。 2
时,有谐振峰值。
1 2 1 2
1 当 0 , A(0 ) , 。 L ( ) 20 lg 2 0 2
《自动控制原理》课件第三章

h(t) 1
ent sin(
1 2
1 2nt arccos ) 1
1
1
2
e t
sin(dt
)
(3-13)
2) 无阻尼(ζ=0)二阶系统的单位阶跃响应
系统有两个共轭纯虚根s1=jωn,s2=-jωn 由式(3-10)可知系统的单位阶跃响应为
h(t)=1-cosωnt
(3-14)
这是一条平均值为1的正弦或余弦形式的等幅振荡,其振荡
2. 动态性能与稳态性能 稳定是控制系统能够运行的首要条件,因此只有当动态 过程收敛时,研究系统的动态性能才有意义。 1) 动态性能 通常在阶跃函数作用下,测定或计算系统的动态性能。 一般认为,阶跃输入对系统来说是最严峻的工作状态。如果 系统在阶跃函数作用下的动态性能满足要求,那么系统在其 他形式函数的作用下,其动态性能也是令人满意的。 描述稳定的系统在单位阶跃函数作用下,动态过程随时 间t的变化状况的指标称为动态性能指标。为了便于分析和 比较,假定系统在单位阶跃输入信号作用前处于静止状态, 而且输出量及其各阶导数均为零。
令
T1
n (
1
2
, 1)
T2
n (
1
2
1)
由式(3-12)可得此时二阶系统的单位阶跃响应为
h(t) 1 et T1 et T2 T2 T1 1 T1 T2 1
(3-15)
以上四种情况的单位阶跃响应曲线如图3-5所示,其横 坐标为无因次时间ωnt。由图3-5可见,在过阻尼和临界阻尼 响应曲线中,临界阻尼响应具有最短的上升时间,响应速度 最快; 在欠阻尼响应曲线中,阻尼比越小,超调量越大, 上升时间越短,通常取ζ=0.4~0.8为宜,此时超调量适度, 调节时间较短; 若二阶系统具有相同的ζ和不同的ωn,则其 振荡特性相同,但响应速度不同,ωn越大,响应速度越快。
自动控制原理第三章

➢ 0 1 特征根: s1,2 n jn 1 2
Xc (s)
1 s
s2
n2 2ns n2
1 s
s2
s 2n 2ns n2
1
s 2n
s (s n )2 (n 1 2 )2
其阶跃输入下的暂态响应:
xc (t) 1
e nt
1 2
sin(n
1 2 t ) , arctan
WB (s)
X c (s) X r (s)
(1
1 K)s
1
1 Ts 1
式中:T 1 k , 称为时间常数。
3.2.2 单位阶跃响应函数:
X r (s) 1 s
11
Xc
(s)
Ts
1
s
,
xc (t)
L1[ 1 Ts 1
1] s
L1[ 1 s
s
1
1
]
1
t
eT
T
xc (t ) xss xtt
2
1.8
1.6
1.4
1.2
1
0.8
0.6 0.4 0.2
0 0
246
nt
8 10 12
⒊ 当 1时,特征方程有一对相等的负实根,称为临界阻尼
系统,系统的阶跃响应为非振荡过程。
➢当 1 时,
阶跃响应曲线为:
xc
(s)
1 s
s2
n2 2n s
n2
n2 s(s n )2
1 1 n s s n (s n )2
1 )( s
T1
1 T2
)
式中
T1
1 a
n (
1
2
1)
自动控制原理——第3章

第三章 时域分析法
系统的特征方程
Js + Fs + K = 0
2
F 称为实际阻尼系数。 称为实际阻尼系数。 当
F = 4JK
2
特征方程有一对相等的负实根, 时 , 特征方程有一对相等的负实根 , 系统 处于临界阻尼状态。 处于临界阻尼状态。 为临界阻尼系数, 令Fc为临界阻尼系数,则
Fc = 2 JK
解: (1) 由结构图写出闭环传递函数
100 / s 10 C ( s) Φ( s ) = = = R( s ) 1 + 100 × 0.1 0.1s + 1 s
自动控制原理
第三章 时域分析法
的分母多项式看出时间常数T=0.1 s, 从Φ(s)的分母多项式看出时间常数 的分母多项式看出时间常数 , 故调节时间 ts = 3T = 3 × 0.1 s = 0.3 s (2) 计算 s=0.1 s的反馈系数值 计算t 的反馈系数值 设反馈系数为Kh,则系统闭环传递函数 设反馈系数为
1/K h 100 / s Φ( s ) = = 100 0.01 1+ s +1 × Kh s Kh 0.01 T= Kh
故
自动控制原理
第三章 时域分析法
调节时间
0.03 ts =3T = Kh
要求t 要求 s=0.1 s,代入上式得 ,
0.03 0.1= Kh
所以
K h =0.3
自动控制原理
第三章 时域分析法
实际阻尼系数 临界阻尼系数
ξ=
F F = = Fc 2 JK
闭环传递函数写成如下一般形式
2 ωn Φ( s ) = 2 2 s + 2ξωn s + ωn
自动控制原理第3章

arctan 9 3
1.25rad
则响应为 y(t) 1 2 e 3t 0.95e j1.25e (1 j)t 0.95e j1.25e (1 j)t 5
1 2 e 3t 0.95e t e j(t1.25) e j(t1.25) 5 1 2 e 3t 1.9e t cos(t 1.25)
平衡位置:力学系统中,当系统外的作 D
用力为零时,位移保持不变的位置。
此时位移对时间的各阶导数为零。 A点和D点是平衡位置, B点和C点不是平衡位置。
O
B
C
A
稳定的平衡位置:若在外力作用下,系统偏离了平衡位置,但 当外力去掉后,系统仍能回到原来的平衡位置,则称这一个平 衡位置是稳定的平衡位置。
所以A点是稳定的平衡位置,而D点不是稳定的平衡位置。
注意:输入信号为非单位阶跃信号时,依齐次性,响应 只是沿纵轴拉伸或压缩,基本形状不变。所以ts 、 tr、 tp 、 σ并不发生变化。
当t < ts时,称系统处于动态;当t > ts时,称系统处于稳态。
3.2 一阶系统的单位阶跃响应
一阶系统(惯性环节)
G(s) 1 Ts 1
单位阶跃响应为
t
y(t) 1 e T
设零初始状态,y(0)=0 r (t)=1(t)时,y(t)的响应曲线为
y(t)
1.05 y(∞)
ym
y(∞)
0.95 y(∞)
tr tp
ts
ym:单位阶跃响应的最大偏离量。 y(∞):单位阶跃响应的稳态值。并非期望值。 ts:调节时间。y(t)进入0.5*y(∞)或0.2* y(∞)构成的误差带 后不再超出的时间。 tr:上升时间。 y(t) 第一次达到 y(∞)的时间。
自动控制原理第三章

5
3-2 一阶系统的时域分析
用一阶微分方程描述的控制系统
3-2-1 一阶系统数学描述 RC电路 其微分方程为: 电路, 例如 RC电路,其微分方程为:
R + r(t) _ I
1 Cs
+ C c(t) _ C(s)
ɺ T c+c = r
其中:c(t) 为电路输出电压, 其中: 为电路输出电压, R(s) UR r(t) 为电路输入电压, 为电路输入电压, T=RC为时间常数 为时间常数 由原理图得系统结构图。 由原理图得系统结构图。 R(s) 当初始条件为零时,其传递函数为: 当初始条件为零时,其传递函数为 C ( s) 1 = Φ ( s) = 一阶惯性环节 R(s) Ts + 1
t − 1 2 c (t ) = t − Tt + T 2 1 − e T 2
误差: 误差:
(t ≥ 0)
t − e (t ) = r (t ) − c (t ) = Tt − T 1 − e T 2
(t ≥ 0)
跟踪误差随时间推移而增大,直至无限大。 跟踪误差随时间推移而增大,直至无限大。 因此,一阶系统不能跟踪加速度输入。 因此,一阶系统不能跟踪加速度输入。
1 R
-
1 Ts
C(s)
6
3-2-2 一阶系统单位阶跃响应 系统输入: 系统输入:R(s ) = 1 系统输出: 系统输出:C ( s ) = Φ ( s ) R( s ) = 1 ⋅ 1 Ts + 1 s 1 T = − s Ts + 1 变换, Λ−1变换,得:h( t ) = 1 − e ,t ≥ 0 阶跃响应的特点: 阶跃响应的特点: 1 1) 在 t=0 时的斜率最大,为: 时的斜率最大,
3-2 一阶系统的时域分析
用一阶微分方程描述的控制系统
3-2-1 一阶系统数学描述 RC电路 其微分方程为: 电路, 例如 RC电路,其微分方程为:
R + r(t) _ I
1 Cs
+ C c(t) _ C(s)
ɺ T c+c = r
其中:c(t) 为电路输出电压, 其中: 为电路输出电压, R(s) UR r(t) 为电路输入电压, 为电路输入电压, T=RC为时间常数 为时间常数 由原理图得系统结构图。 由原理图得系统结构图。 R(s) 当初始条件为零时,其传递函数为: 当初始条件为零时,其传递函数为 C ( s) 1 = Φ ( s) = 一阶惯性环节 R(s) Ts + 1
t − 1 2 c (t ) = t − Tt + T 2 1 − e T 2
误差: 误差:
(t ≥ 0)
t − e (t ) = r (t ) − c (t ) = Tt − T 1 − e T 2
(t ≥ 0)
跟踪误差随时间推移而增大,直至无限大。 跟踪误差随时间推移而增大,直至无限大。 因此,一阶系统不能跟踪加速度输入。 因此,一阶系统不能跟踪加速度输入。
1 R
-
1 Ts
C(s)
6
3-2-2 一阶系统单位阶跃响应 系统输入: 系统输入:R(s ) = 1 系统输出: 系统输出:C ( s ) = Φ ( s ) R( s ) = 1 ⋅ 1 Ts + 1 s 1 T = − s Ts + 1 变换, Λ−1变换,得:h( t ) = 1 − e ,t ≥ 0 阶跃响应的特点: 阶跃响应的特点: 1 1) 在 t=0 时的斜率最大,为: 时的斜率最大,
[工学]自动控制原理第3章
![[工学]自动控制原理第3章](https://img.taocdn.com/s3/m/d9a77406bf23482fb4daa58da0116c175f0e1e8a.png)
25
三、劳斯判据 系统特征方程的标准形式: ■ 系统稳定的必要条件: 特征方程所有系数均为正,则系统可能稳定,可 ■ 用劳斯判据判稳。 ■ 系统稳定的充分条件: 特征方程所有系数组成劳斯表,其第一列元素必须
为正。 ■ 列劳斯表:
26
例 四阶系统特征方程式: 试判别系统的稳定性,并说明特征根中具有正部根 的个数。 列劳斯表:
(1)用
代入特征方程;
(2)将z看作新坐标, 用劳斯判据再次判稳。
30
3.6 稳态误差分析及计算
一、误差及稳态误差概念定义
1.误差: (2种定义) 输入端定义 输出端定义 两者之间的关系
31
32
2.稳态误差: 稳定系统误差的终值。 3.稳态误差的计算公式: 终值定理 二、稳态误差计算 1.在给定输入信号作用下的分析: 令
28
四、劳斯判据的其它应用 1.分析系统参数对稳定性的影响 例 系统如图所示,求使系统稳定的K值的 范围。解 : 系统闭环特征方程为 列劳斯表
系统稳定必须满足 所以
29
2.确定系统的相对稳定性
稳定裕量: 系统离稳定的边界有多少余量。也就是实部最大的特 征根与虚轴的距离。
若要求系统有 的稳定裕量, 则
18
例 有一位置随动系统,结构图如下图所示,其中K=4 。 求该系统的自然振荡角频率和阻尼比; 求该系统的超调量和调节时间; 若要阻尼比等于0.707,应怎样改变系统 放大倍数K ?
解(1)系统的闭环传递函数为
写成标准形式
可知
19
(2)超调量和调节时间
(3)要求
时,
四、提高二阶系统动态性能的方法 1.比例——微分(PD)串联校 正
将其代入超调量公式得
, 叫 峰值时间。
三、劳斯判据 系统特征方程的标准形式: ■ 系统稳定的必要条件: 特征方程所有系数均为正,则系统可能稳定,可 ■ 用劳斯判据判稳。 ■ 系统稳定的充分条件: 特征方程所有系数组成劳斯表,其第一列元素必须
为正。 ■ 列劳斯表:
26
例 四阶系统特征方程式: 试判别系统的稳定性,并说明特征根中具有正部根 的个数。 列劳斯表:
(1)用
代入特征方程;
(2)将z看作新坐标, 用劳斯判据再次判稳。
30
3.6 稳态误差分析及计算
一、误差及稳态误差概念定义
1.误差: (2种定义) 输入端定义 输出端定义 两者之间的关系
31
32
2.稳态误差: 稳定系统误差的终值。 3.稳态误差的计算公式: 终值定理 二、稳态误差计算 1.在给定输入信号作用下的分析: 令
28
四、劳斯判据的其它应用 1.分析系统参数对稳定性的影响 例 系统如图所示,求使系统稳定的K值的 范围。解 : 系统闭环特征方程为 列劳斯表
系统稳定必须满足 所以
29
2.确定系统的相对稳定性
稳定裕量: 系统离稳定的边界有多少余量。也就是实部最大的特 征根与虚轴的距离。
若要求系统有 的稳定裕量, 则
18
例 有一位置随动系统,结构图如下图所示,其中K=4 。 求该系统的自然振荡角频率和阻尼比; 求该系统的超调量和调节时间; 若要阻尼比等于0.707,应怎样改变系统 放大倍数K ?
解(1)系统的闭环传递函数为
写成标准形式
可知
19
(2)超调量和调节时间
(3)要求
时,
四、提高二阶系统动态性能的方法 1.比例——微分(PD)串联校 正
将其代入超调量公式得
, 叫 峰值时间。
自动控制原理(3)

# 3—3 一阶系统分析 四、一阶系统的单位脉冲响应 R(s)=1 C(s)=[1/(Ts+1)]*1 -1 Ct(t)=L [1/(Ts+1)] --t/T K(t)=(1/T)*e (t > 0) 响应初始斜率: 响应初始斜率: 1/T dk(t)/dt|t=0 --t/T 2 = --(1/T )*e 1/2T 2 = --1/T
# 3—3 一阶系统分析 3— 3、性能指标 、 1)暂态性能 ) 由于一阶系统的阶跃响应没有超调量, 由于一阶系统的阶跃响应没有超调量, 所以性能指标主要 是调节时间ts,它表征 系统过渡过程的快慢。由于t=3T时,输 系统过渡过程的快慢。由于 时 出响应可达稳定值的95%;t=4T时,输 出响应可达稳定值的 ; 时 出响应可达稳定值的98%,故一般取: 出响应可达稳定值的 ,故一般取: ts=3T(s)(对应误差带为 ) )(对应误差带为 ( )(对应误差带为5%) ts=4T(s)(对应误差带为 ) )(对应误差带为 ( )(对应误差带为2%) 显然,系统的时间常数T越小,调节 显然,系统的时间常数 越小, 越小 就越小,响应过程的快速性也好。 时间ts就越小,响应过程的快速性也好。
0 T 2T 3T 4T 3/2T
# 3—3 一阶系统分析 五、三种响应之间的关系 Ct(t) = ∫ = ∫ (1-e )dt (t > 0 ) 0 --t/T = t – T+Te
超调 量 0.9 0.5 0.1 tr 峰值 tp ts td
误差带
# 3—3 一阶系统分析 3—
由一阶微分方程描述的系统即 为一阶系统,一些控制元、 为一阶系统,一些控制元、部件 及简单系统如R——C网络,发 网络, 及简单系统如 网络 电机,空气加热器, 电机,空气加热器,液面控制系 统等。 统等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② ξ = 1时,(临界阻尼) S1 ,S2 为一对相等的负实数根。
h(t) ? 1? e??nt (1? ? nt)
ts ? 4.75T1
响应是没有超调,具有没有超调中最快的响应速度;
2
课程回顾( 3)
③ 0<ξ<1时,(欠阻尼) S1 ,S2 为一对具有负实部的共轭复
根。
h(t) ? 1 ?
e ? ?ωn t
要使二阶系统具有满意的动态性能,必须选取合适的阻尼 比和无阻尼自振荡率。通常可根据系统对超调量的限制要求 选定 ξ ,然后在根据其它要求来确定 ω n 。
??阻尼比: ?不变;固有频率 ? n ??
?
?? % ?
? ?
t
s
?
tr
?
tp
?
?
?固有频率 ?
??
n不变;阻尼比
?
??
?? % ?
??t s ? t p ?
令dh(t) dt
? 0,得
t?tp
? ?sin(ωdt ?β)? 1? ? 2 cos(ωdt ?β)? 0
tan(ωdt ?β)? 1? ? 2 /? ? tanβ
? ωdtp ? nπ (n ? 0,1,2,3?) 按定义取 n=1得:
tp
?
π ωd
? ωn
π
1? ? 2
6
?3. 超调量 ? %:
?例3-3设位置随动系统,其结构图如图所示,当给 定输入为 单位阶跃时,试计算放大器增益 KA=200, 1500,13.5时,输出位置响应特性的性能指标:峰 值时间tp,调节时间 ts和超调量 ?? ,并分析比较之。
e sine( ) (由0σ﹤%ξ=h≤(0t.)h8=()t ph1)(-∞-t)sh(?∞√?3)?1.1%5-n0ξ21(0取5%S得1,误2-σ=ξ%ω差n-t=带ξω)n
ts ?
±j
-πξ
ωn
1?
√1-ξ2
? 2 100%
ωd t+ β
4.5 (取2%误差10 带)
?? n
三、二阶系统举例
j
j
h(t) ? 1?
1
?1t
e T1 ?
1
?1t
e T2 ,( t ? 0)
T2 / T1 ? 1
T1 / T2 ? 1
S1 S2
0
ts ~ f (T1 )
T1
T2
0
t
T1/T2 ? 4( ? ? 1.25), ts ? 3.3T1
T1/T2 ? 4( ? ? 1.25), ts ? 3T1
响应与一阶系统相似,没有超调,但调节速度慢;
5
h(t) ? 1? 1 e?ζ
?2. 峰1值?ζ时2 间
tωntps:in(ωd
t
?β),t
?
0
dhd(t峰t) 值? ?时1间?1ζt2p:?(?为ζωc(n )t?)e?ζ ωntsin(ωdt ?β)?ωde?ζ ωntcos(ωdt ?β)?
? ? dhd根(t第t)据一? 极?次ω值n出1e定??ζ现ζω理2n峰t 有?值ζ:s时in间(ω。dt ?β)? 1?ζ2 cos(ωdt ?β)
? 1 ? e??? /
π ?β) 1 ?ζ2
1?
?
2
?
%?
h(t
p) ?
h(?
) ? 100%
?
e? ??
/
1? ? 2
? 100%
h(? )
即σ%完全由 ?决定,? ? ,σ%出调节时间的表达式相当困难。在分析设计系统 十,经常采用下列近似公式。
当阻尼比 0 ? ? ? 0.8时
将峰值时间 tp ? ? / ? d 代入下式
h(t) ? 1?
1
1? ?
2
e? ?? nt
sin(?
dt
?
arccos?
)
得: h(t )max ?
?
所以:
shi(?nthhp(((t)ttπp)p?)??1?ω?1π?1?βd?e??1)ω?11?1???ζ1n?/ζ2π?1?12?e??2se?ζζ2?iζ2ωsnω nitnnsβ?ωi(n?nπ(1??ζω?2 ?saditrnc?(1cβωo?s)d??ω)n2
4
欠阻尼二阶系统 单位阶跃响应性能指标
?1. 上升时间 tr :令 h(tr ) ? 1,则
1?
1
1? ?2
e? ?? nt
sin(?
dt
?
arccos? )
?
1
所以: ? ωdtr ? arccos? ?π
tr
π- arccos ?
?
ωd
π- ?
?
ωn 1? ? 2
由上式可见,如欲减小tr ,当ζ一定时,需增大ω n,反之, 若ω n一定时,则需减小ζ。
1? ? 2
sin(ω
dt ? β)
虽然响应有超调,但上升速度较快,调节时间也较短。合理选 择?的取值,使系统具有满意的响应快速性和平稳性。 ④ 当ξ=0时,(无阻尼,零阻尼) S1 ,S2 为一对幅值相等的 虚根。
h(t) ? 1? cosωnt
响应曲线是等幅振荡;
3
课程小结(4)
⑤ 当ξ<0时,(负阻尼) S1 ,S2 为一对不等的负实数根。
(0 ? ? ? 0.8)
实际设计中,一般取ξ = 0.4 ~ 0.8。其中以ξ = 0.707 时为 最佳阻尼。
9
欠阻尼二阶系统动态性能分析与计算
e sin( ) 令令 取-hξh其hω(((βtωntt)解)=)n一1=中0ωj取阶的1d其导=-最解数ω小√n中1√=值-10ξ-的ξ21,,2 最小值Φ-ξ0ω(,snt<)=得ξ得<st12pωt+=时r=d2tξωω:+πωdβnπ2nωs-+dβω n2
响应是发散的,系统不能正常工作;
小结: ⅰ) 二阶系统正常工作的基本条件是 ξ>0 ;而ξ<0系统不稳定; ⅱ) 当ξ ≥1时,其阶跃响应曲线是单调上升的(即非周期性的);
※ⅲ)当0<ξ<1时,其阶跃响应曲线是振荡衰减的(即具周期性)。
工程上有时把阻尼比?=0.707称为最佳阻尼比。实际设计 中,一般取ξ = 0.4~0.8的欠阻尼状态下。此时,系统在具 有适度振荡特性的情况下,能有较短的过渡过程时间。
ts
?
3.5
?? n
(取5%误差带)
ts
?
4.5
?? n
(取2%误差带)
8
除了一些不允许产生振荡的系统外,通常希望二阶系统工 作在ξ=0.4~0.8的欠阻尼状态下。此时,系统在具有适度振
荡特性的情况下,能有较短的过渡过程时间,因此有关性能 指标的定义和定量关系的推导,主要是针对二阶系统的欠阻 尼工作状态进行的。
课程回顾( 1)
§3-2-2二阶系统的数学模型及单位阶跃响应
Φ(s)?
T2s2
?
1
2?Ts? 1 ?
s2
?
ωn2
2?ωns ? ωn2
式中,ωn
?
1, T
特征方程
s2
?
2??
ns
?
?
2 n
?
0
特征方程的两个根(闭环极点) S1,2 ? ???n ? ? n ? 2 ? 1
1
课程回顾( 2)
① ξ>1时,(过阻尼) S1 ,S2 为一对不等的负实数根。