数学必修二第一章空间几何体测试题

合集下载

必修2第一章《空间几何体》单元测试题

必修2第一章《空间几何体》单元测试题

广东省佛山市南海区九江中学数学选修1-1 圆锥曲线测试卷高二()班学号姓名分数一选择题(每题 4分,8 小题共 32 分,答案填在后边的表内 )1)如图 ,椭圆c1, c2和双曲线 c3 ,c4的离心率分别是 e1 , e2 , e3 ,e4,则有y C4( )C 3(A)e2< e1< e4< e3(B) e1 < e2 < e4 < e3o x C 1(C)e2< e1< e3< e4(D) e1 < e2 < e3 < e4C 22)若椭圆的方程为4x 9 y 360,则其长轴长为( )(A) 3(B)4(C) 6(D) 93)P4,2 2是抛物线上一点,焦点在x 轴,则此抛物线是()(A)x 2 4 2y(B)y2 4 2y (C) x 22y(D) y22x4)若 a c8, a2c234 ,则知足上述条件的双曲线离心率为()5(B)5(C)67(A)4(D)6355)若点 M ( x, y) 知足( x2) 2y 2( x 2) 2y 2 2 ,则点 M 的轨迹表示的曲线是( )(A)双曲线(B) 双曲线的左支(C)双曲线的右支(D) 双曲线两支在x轴上方部分6)椭圆 x2y2 1 上一点p到一个焦点的距离为1,则p到另一焦点的距离为( )925(A) 2(B) 4(C) 8(D) 247)mn< 0是方程x2y 21表示双曲线实轴在y 轴的() m n(A)充足条件(B)必需条件(C) 充要条件(D)不用要亦不充足条件8)方程x 2y 21(10k20) 所表示的曲线是()25k9 k(A)焦点在 x 轴的椭圆(B) 焦点在y轴的椭圆(C)焦点在 x 轴的双曲线(D) 焦点在y轴的双曲线二填空题 (每题4分,6小题共24 分 ,答案填在后边的表上)9)焦距为 2 5 ,一条准线为x 5.的双曲线方程是510)椭圆 y2x21与双曲线x2y2 1 有同样的焦点,则 a.4a22a11)直线 2x ay 3 0过椭圆x2y21的焦点 ,则 a. 81212)椭圆 x 2y 21的离心率e10,则 m.m5513)若抛物线 y2x 与直线y mx1没有交点 , 则m的取值范围是14)某圆锥曲线的一个焦点为(0,3),且过( 3, 1),则其标准方程是______________九江中学数学选修2-1圆锥曲线测试卷05. 12. 12.高二(一、选择题答案填下表题号1答案2)班3学号456姓名78分数二、填空题答案填下表题号91011121314答案三、解答题 (共 44 分)15)( 16 分)求知足以下条件的圆锥曲线标准方程:(1)两极点为( 3, 0)、(3, 0),两焦点为( 1, 0)、(1, 0);(2) e 2 ,焦点在y轴,且a+c=6解:16)(10分)双曲线的离心率为5,且与椭圆x 2y 21有共同焦点,求此双曲线的标准方程294及渐近线方程。

高中数学必修二测试题及答案人教版

高中数学必修二测试题及答案人教版

第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。

高中数学必修2第1章《空间几何体》高考真题及答案

高中数学必修2第1章《空间几何体》高考真题及答案

高中数学必修2第1章《空间几何体》高考真题及答案一、选择题1.【05广东】 已知高为3的直棱柱ABC —A ′B ′C ′的底面是边长为1的正三角形(如图1所示),则三棱锥B ′—ABC 的体积为 A .41B .21C .63D .43图22.【05福建·理】如图2,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是A .515arccosB .4π C .510arccos D .2π3.【05湖北·理】如图3,在三棱柱C B A ABC '''-中,点E 、F 、H 、K 分别为C A '、B C '、B A '、C B '' 的中点,G 为ΔABC 的重心从K 、H 、G 、B '中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为A .KB .HC .GD .B '图3 图44.【05湖南·理】如图4,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,如图1 A C 1A C则O 到平面AB C 1D 1的距离为 A .21B .42C .22 D .235.【05湖北·文】木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的A .60倍B .6030倍C .120倍D .12030倍6.【05江苏】正三棱柱111C B A ABC -中,若AB=2,11AA =则点A 到平面BC A 1的距离为A .43 B .23 C .433 D .3 7.【05江西·理】矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B-AC -D ,则四面体ABCD 的外接球的体积为A .π12125 B .π9125 C .π6125 D .π3125 9.【05全国Ⅰ·理】一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为A .π28B .π8C .π24D .π410.【05全国Ⅰ·理】如图5,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 A .32 B .33C .34D .23 图511.【05全国Ⅱ·理】将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 AB .C .D12.【05全国Ⅱ·文】ABC ∆的顶点在平面α内,A 、C 在α的同一侧,AB 、BC 与α所成的角分别是30o 和45o .若AB =3,BC=AC =5,则AC 与α所成的角为 A .60o B .45o C .30o D .15o13.【05全国Ⅲ·理】设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为A .16V B .14V C .13V D .12V14.【05山东·理】设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度075 东经0120,则甲、乙两地球面距离为 AB .6R π C .56R πD .23R π 15.【05重庆·理】如图6,在体积为1的三棱锥A —BCD 侧棱AB 、AC 、AD 上分别取点E 、F 、G , 使AE : EB=AF : FC=AG : GD=2 : 1,记O 为三平面BCG 、CDE 、DBF 的交点,则三棱锥O —BCD 的体积等于 A .91 B .81 C . 71 D .41图6 图716.【05重庆·文】有一塔形几何体由若干个正方体构成,构成方式如图7所示,上层正方体下底面的四个顶点是下层正方体上底面各连接中点,已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是 A .4 B .5 C .6 D .7二、填空题1.【05辽宁】如图8,正方体的棱长为1,C 、D 分别是两条棱的中点,A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是 .图8 图9M1A2.【05江西·理】如图9,在直三棱柱ABC —A 1B 1C 1中,AB=BC=2,BB 1=2,ο90=∠ABC ,E 、F 分别为AA 1、C 1B 1的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为 .3.【05北京春考·理】如图10,正方体1111D C B A ABCD -的棱长为a ,将该正方体沿对角面D D BB 11切成两块,再将这两块拼接成一个不是正方体的四棱柱,那么所得四棱柱的全面积为_________.4.【05江西·理】如图11,在三棱锥P —ABC 中,PA=PB=PC=BC ,且2π=∠BAC ,则PA与底面ABC 所成角为 .5. 【05上海·理】 如图12,有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为3a 、4a 、5a (0)a >。

数学必修二经典试题

数学必修二经典试题

数学必修二第一章 空间几何体一、选择题1.右面的三视图所示的几何体是( ).A .六棱台B .六棱锥C .六棱柱D .六边形 (第1题)2.已知两个球的表面积之比为1∶9,则这两个球的半径之比为( ). A .1∶3B .1∶3C .1∶9D .1∶813.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( ).4.A ,B 为球面上相异两点,则通过A ,B 两点可作球的大圆(圆心与球心重合的截面圆)有( ).A .一个B .无穷多个C .零个D .一个或无穷多个5.右图是一个几何体的三视图,则此几何体的直观图是( ). ).A B C D6.下图为长方体木块堆成的几何体的三视图,堆成这个几何体的木块共有( ). A .1块 B .2块 C .3块正(主)视图侧(左)视图ABCD(第3题)正视图侧视图俯视图(第5题)正视图俯视图侧视图(第6题)D.4块7.关于斜二测画法画直观图说法不正确的是().A.在实物图中取坐标系不同,所得的直观图有可能不同B.平行于坐标轴的线段在直观图中仍然平行于坐标轴C.平行于坐标轴的线段长度在直观图中仍然保持不变D.斜二测坐标系取的角可能是135°8.如图,下列几何体各自的三视图中,有且仅有两个视图相同的是().①正方体②圆锥③三棱台④正四棱锥(第8题)A.①②B.①③C.①④D.②④9.一正方体的各顶点都在同一球面上,用过球心的平面去截这个组合体,截面图不能是().A B C D10.如果一个三角形的平行投影仍然是一个三角形,则下列结论正确的是().A.原三角形的内心的平行投影还是投影三角形的内心B.原三角形的重心的平行投影还是投影三角形的重心C.原三角形的垂心的平行投影还是投影三角形的垂心D.原三角形的外心的平行投影还是投影三角形的外心二、填空题11.一圆球形气球,体积是8 cm3,再打入一些空气后,气球仍然保持为球形,体积是27 cm3.则气球半径增加的百分率为.12.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的体对角线的长分别是9和15,则这个棱柱的侧面积是.13.右图是一多面体的展开图,每个面内都给了字母,请根据要求回答问题:①如果A 是多面体的下底面,那么上面的面是 ; ②如果面F 在前面,从左边看是面B ,那么上面的面是 .14.一个几何体的三视图如下图所示,则此几何体的体积是 .三、解答题15.圆柱内有一个四棱柱,四棱柱的底面是圆柱底面的内接正方形.已知圆柱表面积为6 ,且底面圆直径与母线长相等,求四棱柱的体积.16.下图是一个几何体的三视图(单位:cm ) (1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积.(第14题)4俯视图正视图侧视图4 43俯视图A BC B 'A ' C '1 1 正视图B 'B A 'A 3 侧视图ABC1 (第16题)(第13题)17.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕直线AD 旋转一周所成几何体的表面积及体积.18.已知正方体、球、底面直径与母线相等的圆柱,它们的表面积相等,试比较它们的体积V 正方体,V 球,V 圆柱的大小.19.如图,一个圆锥形容器的高为a ,内装有一定量的水.如果将容器倒置,这时水所形成的圆锥的高恰为2a,求原来水面的高度.20.如图,四棱柱的底面是菱形,各侧面都是长方形.两个对角面也是长方形,面积分别为Q 1,Q 2.求四棱柱的侧面积.第二章 点、直线、平面之间的位置关系一、选择题1.垂直于同一条直线的两条直线一定( ). A .平行B .相交C .异面D .以上都有可能2.正四棱柱1111D C B A ABCD 中,AB AA 2=1,则异面直线11AD B A 与所成角的余弦值为( ).(第20题)(第19题)(第17题)A .51 B .52 C .53 D .54 3.经过平面外两点与这个平面平行的平面( ). A .可能没有B .至少有一个C .只有一个D .有无数个4.点E ,F ,G ,H 分别为空间四边形ABCD 中AB ,BC ,CD ,AD 的中点,若AC =BD ,且AC 与BD 所成角的大小为90°,则四边形EFGH 是( ).A .菱形B .梯形C .正方形D .空间四边形5.已知 m ,n 为异面直线,m ⊂平面 ,n ⊂平面 β,∩ =l ,则( ). A .l 与m ,n 都相交 B .l 与m ,n 中至少一条相交C .l 与m ,n 都不相交D .l 只与m ,n 中一条相交6.在长方体ABCD -A 1B 1C 1D 1中,AB =AD =23,CC 1=2,则二面角C 1-BD -C 的大小为( ).A .30°B .45°C .60°D .90°7.如果平面外有两点A ,B ,它们到平面 的距离都是a ,则直线AB 和平面的位置关系一定是( ).A .平行B .相交C .平行或相交D .AB ⊂8.设m ,n 是两条不同的直线,,是两个不同的平面.下列命题中正确的是( ).A .⊥,m ⊥,n ∥⇒m ⊥nB .∥,m ⊥,n ∥⇒m ⊥nC .m ⊥,n ⊂,m ⊥n ⇒⊥D .⊥,∩=m ,n ⊥m ⇒n⊥9.平面∥平面,AB ,CD 是夹在 和 之间的两条线段,E ,F 分别为AB ,CD 的中点,则EF 与 的关系是( ).A .平行B .相交C .垂直D .不能确定10.平面 ⊥平面 ,A ∈α,B ∈β,AB 与两平面 ,β所成的角分别为4π和6π,过A ,B 分别作两平面交线的垂线,垂足为A ′,B′,则AB ∶A ′B ′ 等于( ).A .2∶1B .3∶1C .3∶2D .4∶3二、填空题11.下图是无盖正方体纸盒的展开图,在原正方体中直线AB ,CD 所成角的大小为 .12.正三棱柱ABC -A 1B 1C 1的各棱长均为2,E ,F 分别是AB ,A 1C 1的中点,则EF 的长是 .13.如图,AC 是平面 的斜线,且AO =a ,AO 与 成60º角,OC ,AA ′⊥于A ′,∠A ′OC =45º,则点A 到直线OC 的距离是 .(第13题)14.已知正四棱锥的底面边长为2,侧棱长为5,则侧面与底面所成二面角的大小为 .15.已知a ,b 为直线,为平面,a ∥,b ∥,对于a ,b 的位置关系有下面五个(第12题)AB CA 1B 1C 1EFDCAB(第11题)结论:①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交. 其中可能成立的有 个.三、解答题16.正方体AC 1的棱长为a . (1)求证:BD ⊥平面ACC 1A 1;(2)设P 为D 1D 中点,求点P 到平面ACC 1A 1的距离.17.如图,ABCD 是正方形,O 是该正方形的中心,P 是平面ABCD 外一点,PO 底面ABCD ,E 是PC 的中点.求证:(1)P A ∥平面BDE ; (2)BD ⊥平面P AC .18.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC ,∠BCD =90°.(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.19.如图,棱长为1的正方体ABCD -A 1B 1C 1D 1中, (1)求证:AC ⊥平面B 1D 1DB ; (2)求证:BD 1⊥平面ACB 1; (3)求三棱锥B -ACB 1体积.20. 已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E ,F 分别是AC ,AD 上的动点,且AC AE =ADAF=(0<<1). (1)求证:不论 为何值,总有平面BEF ⊥平面ABC ;(2)当为何值时,平面BEF ⊥平面ACD ?POEC DBA(第17题)D 1C 1B 1A 1CD BA(第19题)(第18题)第三章 直线与方程一、选择题1.下列直线中与直线x -2y +1=0平行的一条是( ). A .2x -y +1=0 B .2x -4y +2=0 C .2x +4y +1=0D .2x -4y +1=02.已知两点A (2,m )与点B (m ,1)之间的距离等于13,则实数m =( ). A .-1B .4C .-1或4D .-4或13.过点M (-2,a )和N (a ,4)的直线的斜率为1,则实数a 的值为( ). A .1B .2C .1或4D .1或24.如果AB >0,BC >0,那么直线Ax ―By ―C =0不经过的象限是( ). A .第一象限B .第二象限C .第三象限D .第四象限5.已知等边△ABC 的两个顶点A (0,0),B (4,0),且第三个顶点在第四象限,则BC 边所在的直线方程是( ).A .y =-3xB .y =-3(x -4)C .y =3(x -4)D .y =3(x +4)6.直线l :mx -m 2y -1=0经过点P (2,1),则倾斜角与直线l 的倾斜角互为补角的一条直线方程是( ).A .x ―y ―1=0B .2x ―y ―3=0C .x +y -3=0D .x +2y -4=07.点P (1,2)关于x 轴和y 轴的对称的点依次是( ). A .(2,1),(-1,-2) B .(-1,2),(1,-2) C .(1,-2),(-1,2)D .(-1,-2),(2,1)8.已知两条平行直线l 1 : 3x +4y +5=0,l 2 : 6x +by +c =0间的距离为3,则b +c =( ).A .-12B .48C .36D .-12或489.过点P (1,2),且与原点距离最大的直线方程是( ). A .x +2y -5=0 B .2x +y -4=0 C .x +3y -7=0D .3x +y -5=010.a ,b 满足a +2b =1,则直线ax +3y +b =0必过定点( ). A .⎪⎭⎫⎝⎛21 ,61 -B .⎪⎭⎫ ⎝⎛61 - ,21C .⎪⎭⎫⎝⎛61 ,21D .⎪⎭⎫ ⎝⎛21 - ,61二、填空题11.已知直线AB 与直线AC 有相同的斜率,且A (1,0),B (2,a ),C (a ,1),则实数a 的值是____________.12.已知直线x -2y +2k =0与两坐标轴所围成的三角形的面积不大于1,则实数k 的取值范围是____________.13.已知点(a ,2)(a >0)到直线x -y +3=0的距离为1,则a 的值为________. 14.已知直线ax +y +a +2=0恒经过一个定点,则过这一定点和原点的直线方程是 ____________________.15.已知实数x ,y 满足5x +12y =60,则22 + y x 的最小值等于____________. 三、解答题 16.求斜率为43,且与坐标轴所围成的三角形的周长是12的直线方程. 17.过点P (1,2)的直线l 被两平行线l 1 : 4x +3y +1=0与l 2 : 4x +3y +6=0截得的线段长|AB |=2,求直线l 的方程.18.已知方程(m 2―2m ―3)x +(2m 2+m -1)y +6-2m =0(m ∈R ). (1)求该方程表示一条直线的条件;(2)当m 为何实数时,方程表示的直线斜率不存在?求出这时的直线方程; (3)已知方程表示的直线l 在x 轴上的截距为-3,求实数m 的值; (4)若方程表示的直线l 的倾斜角是45°,求实数m 的值.19.△ABC 中,已知C (2,5),角A 的平分线所在的直线方程是y =x ,BC 边上高线所在的直线方程是y =2x -1,试求顶点B 的坐标.第四章 圆与方程一、选择题1.圆C 1 : x 2+y 2+2x +8y -8=0与圆C 2 : x 2+y 2-4x +4y -2=0的位置关系是( ). A .相交B .外切C .内切D .相离2.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公共切线有( ). A .1条B .2条C .3条D .4条3.若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是( ). A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y +2)2=1D .(x +1)2+(y -2)2=14.与直线l : y =2x +3平行,且与圆x 2+y 2-2x -4y +4=0相切的直线方程是( ). A .x -y ±5=0 B .2x -y +5=0 C .2x -y -5=0D .2x -y ±5=05.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( ). A .2B .2C .22D .426.一圆过圆x 2+y 2-2x =0与直线x +2y -3=0的交点,且圆心在y 轴上,则这个圆的方程是( ).A .x 2+y 2+4y -6=0B .x 2+y 2+4x -6=0C .x 2+y 2-2y =0D .x 2+y 2+4y +6=07.圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是( ).A .30B .18C .62D .528.两圆(x -a )2+(y -b )2=r 2和(x -b )2+(y -a )2=r 2相切,则( ). A .(a -b )2=r 2 B .(a -b )2=2r 2 C .(a +b )2=r 2D .(a +b )2=2r 29.若直线3x -y +c =0,向右平移1个单位长度再向下平移1个单位,平移后与圆x 2+y 2=10相切,则c 的值为( ).A .14或-6B .12或-8C .8或-12D .6或-1410.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM | =( ).A .453B .253 C .253 D .213二、填空题11.若直线3x -4y +12=0与两坐标轴的交点为A ,B ,则以线段AB 为直径的圆的一般方程为____________________.12.已知直线x =a 与圆(x -1)2+y 2=1相切,则a 的值是_________. 13.直线x =0被圆x 2+y 2―6x ―2y ―15=0所截得的弦长为_________. 14.若A (4,-7,1),B (6,2,z ),|AB |=11,则z =_______________.15.已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆(x -1)2+(y -1)2=1的两条切线,A ,B 是切点,C 是圆心,则四边形P ACB 面积的最小值为 .三、解答题16.求下列各圆的标准方程:(1)圆心在直线y =0上,且圆过两点A (1,4),B (3,2);(2)圆心在直线2x +y =0上,且圆与直线x +y -1=0切于点M (2,-1).17.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是AB 的中点,F 是BB 1的中点,G 是不抛弃,不放弃。

(完整版)高一数学必修2第一章空间几何体测试题(答案)

(完整版)高一数学必修2第一章空间几何体测试题(答案)

则四边形 EFGH 是

②若 AC BD , 则四边形 EFGH 是

三、解答题: 解答应写出文字说明、证明过程或演算步骤 (共 76 分 ).
15.( 12 分)将下列几何体按结构分类填空
①集装箱;②油罐;③排球;④羽毛球;⑤橄榄球;⑥氢原子;⑦魔方;
⑧金字塔;⑨三棱镜;⑩滤纸卷成的漏斗;○ 11 量筒;○12 量杯;○13 十字架.
( 1)具有棱柱结构特征的有
;( 2)具有棱锥结构特征的有

( 3)具有圆柱结构特征的有
;( 4)具有圆锥结构特征的有

( 5)具有棱台结构特征的有
;( 6)具有圆台结构特征的有

( 7)具有球结构特征的有
;( 8)是简单集合体的有

( 9)其它的有

16.( 12 分)已知: a ,b ,a b A, P b, PQ // a.求证: PQ ..
C.③④
3.棱台上下底面面积分别为 16 和 81,有一平行于底面的截面面积为
() D . ①②③④
36,则截面戴的两棱台高
的比为
()
A .1∶ 1
B. 1∶ 1
C. 2∶ 3
D .3∶4
4.若一个平行六面体的四个侧面都是正方形 ,则这个平行六面体是
()
A .正方体
B.正四棱锥
C.长方体
D .直平行六面体
2la
Q1 2 Q2 2
S侧 4al 2 Q12 Q2 2
19.解:设 A1B1C1D1 是棱台 ABCD -A2B2C2D 2 的中截面,延长各侧棱交于
P 点.
a
∵ BC=a ,B2C2=b ∴ B1C1=

人教版高一数学必修二第一章空间几何体章末检测题 附答案解析

人教版高一数学必修二第一章空间几何体章末检测题 附答案解析

必修二 第一章 空间几何体章末检测题一、选择题1.右面的三视图所示的几何体是( ).A .六棱台B .六棱锥C .六棱柱D .六边形 (第1题)2.已知两个球的表面积之比为1∶9,则这两个球的半径之比为( ). A .1∶3B .1∶3C .1∶9D .1∶813.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( ).4.A ,B 为球面上相异两点,则通过A ,B 两点可作球的大圆(圆心与球心重合的截面圆)有( ).A .一个B .无穷多个C .零个D .一个或无穷多个5.右图是一个几何体的三视图,则此几何体的直观图是( ). ).A B C D6.下图为长方体木块堆成的几何体的三视图,堆成这个几何体的木块共有( ). A .1块 B .2块 C .3块 D .4块正(主)视图侧(左)视图ABCD(第3题)正视图侧视图俯视图(第5题)正视图俯视图侧视图(第6题)7.关于斜二测画法画直观图说法不正确的是().A.在实物图中取坐标系不同,所得的直观图有可能不同B.平行于坐标轴的线段在直观图中仍然平行于坐标轴C.平行于坐标轴的线段长度在直观图中仍然保持不变D.斜二测坐标系取的角可能是135°8.如图,下列几何体各自的三视图中,有且仅有两个视图相同的是().①正方体②圆锥③三棱台④正四棱锥(第8题)A.①②B.①③C.①④D.②④9.一正方体的各顶点都在同一球面上,用过球心的平面去截这个组合体,截面图不能是().A B C D10.如果一个三角形的平行投影仍然是一个三角形,则下列结论正确的是().A.原三角形的内心的平行投影还是投影三角形的内心B.原三角形的重心的平行投影还是投影三角形的重心C.原三角形的垂心的平行投影还是投影三角形的垂心D.原三角形的外心的平行投影还是投影三角形的外心二、填空题11.一圆球形气球,体积是8 cm3,再打入一些空气后,气球仍然保持为球形,体积是27 cm3.则气球半径增加的百分率为.12.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的体对角线的长分别是9和15,则这个棱柱的侧面积是.13.右图是一多面体的展开图,每个面内都给了字母,请根据要求回答问题:①如果A 是多面体的下底面,那么上面的面是 ;②如果面F 在前面,从左边看是面B ,那么上面的面是 . 14.一个几何体的三视图如下图所示,则此几何体的体积是 .三、解答题15.圆柱内有一个四棱柱,四棱柱的底面是圆柱底面的内接正方形.已知圆柱表面积为6 ,且底面圆直径与母线长相等,求四棱柱的体积.16.下图是一个几何体的三视图(单位:cm ) (1)画出这个几何体的直观图(不要求写画 法);(2)求这个几何体的表面积及体积.题)侧视图俯视BBA C 正视BA侧视(第16题)17.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕直线AD 旋转一周所成几何体的表面积及体积.18.已知正方体、球、底面直径与母线相等的圆柱,它们的表面积相等,试比较它们的体积V 正方体,V 球,V 圆柱的大小.19.如图,一个圆锥形容器的高为a ,内装有一定量的水.如果将容器倒置,这时水所形成的圆锥的高恰为2a,求原来水面的高度.20.如图,四棱柱的底面是菱形,各侧面都是长方形.两个对角面也是长方形,面积分别为Q 1,Q 2.求四棱柱的侧面积.(第20题)(第19题)(第17题)参考答案一、选择题 1.B解析:由正视图和侧视图可知几何体为锥体,由俯视图可知几何体为六棱锥. 2.A解析:由设两个球的半径分别为r ,R ,则 4 r 2∶4πR 2=1∶9. ∴ r 2∶R 2=1∶9, 即r ∶R =1∶3.3.C解析:在根据得到三视图的投影关系,∵正视图中小长方形位于左侧,∴小长方形也位于俯视图的左侧;∵小长方形位于侧视图的右侧,∴小长方形一定位于俯视图的下侧, ∴ 图C 正确.4.D解析:A ,B 不在同一直径的两端点时,过A ,B 两点的大圆只有一个;A ,B 在同一直径的端点时大圆有无数个.5.D解析:由几何体的正视图和侧视图可知,几何体上部分为圆锥体,由三个视图可知几何体下部分为圆柱体,∴ 几何体是由圆锥和圆柱组成的组合体.6.D解析:由三视图可知几何体为右图所示,显然组成几何体的长方体木块有4块.7.C解析:由平行于x 轴和z 轴的线段长度在直观图中仍然保持不变,平行于y 轴的线段长度在直观图中是原来的一半,∴ C 不对.8.D解析:①的三个视图均相同;②的正视图和侧视图相同;③的三个视图均不相同;④的正视图和侧视图相同.∴有且仅有两个视图相同的是②④.9.A(第6题)解析:B 是经过正方体对角面的截面;C 是经过球心且平行于正方体侧面的截面;D 是经过一对平行的侧面的中心,但不是对角面的截面.10.B解析:在平行投影中线段中点在投影后仍为中点,故选B . 二、填空题 11.50%.解析:设最初球的半径为r ,则8=34πr 3;打入空气后的半径为R ,则27=34πR 3. ∴ R 3∶r 3=27∶8.∴ R ∶r =3∶2.∴气球半径增加的百分率为50%. 12.160.解析:依条件得菱形底面对角线的长分别是22515-=200和2259-=56. ∴菱形的边长为4256256220022=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛= 8. ∴棱柱的侧面积是5×4×8=160. 13.F ,C .解析:将多面体看成长方体, A ,F 为相对侧面.如果A 是多面体的下底面,那么上面的面是F ;如果面F 在前面,从左边看是面B ,则右面看必是D ,于是根据展开图,上面的面应该是C .14.80.解析:由三视图可知,几何体是由棱长为4的正方体和底面边长为4,高为3的四棱锥组成,因此它的体积是V =43+31×42×3=64+16=80.三、解答题15.参考答案:设圆柱底面圆半径为r ,则母线长为2r . ∵圆柱表面积为6π,∴ 6π=2πr 2+4πr 2. ∴ r =1.∵ 四棱柱的底面是圆柱底面的内接正方形, ∴ 正方形边长为2. ∴ 四棱柱的体积V =(2)2×2=2×2=4. 16.(1)略.(2)解:这个几何体是三棱柱.由于底面△ABC 的BC 边上的高为1,BC =2,∴ AB =2. 故所求全面积S =2S △ABC +S BB ′C ′C +2S ABB ′A ′=8+62(cm 2). 几何体的体积V =S △ABC ·BB ′=21×2×1×3=3(cm 3). 17.解:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22=(60+42)π.V =V 台-V 锥=31π(21r +r 1r 2+22r )h -31πr 2h 1=3148π.18.解:设正方体的边长为a ,球的半径为r ,圆柱的底面直径为2R , 则6a 2=4πr 2=6πR 2=S .∴ a 2=6S ,r 2=π4S,R 2=π6S . ∴(V 正方体)2=(a 3)2=(a 2)3=36⎪⎭⎫⎝⎛S =2163S ,(V 球)2=23π34⎪⎭⎫⎝⎛r =916π2(r 2)3=916π23π4⎪⎭⎫ ⎝⎛S ≈1083S ,(V 圆柱)2=(πR 2×2R )2=4π2(R 2)3=4π23π6⎪⎭⎫⎝⎛S ≈1623S .∴V 正方体<V 圆柱<V 球.19.解:设水形成的“圆台”的上下底面半径分别为r ,R ,高为h ,则R r =aha -. 则依条件得3π·h ·(r 2+rR +R 2)=3π·2a ·22⎪⎭⎫⎝⎛R ,化简得(h -a )3=-87a 3.解得h =a -873a .即h =⎪⎪⎭⎫ ⎝⎛-271a . 20.解:设底面边长为a ,侧棱长为l ,底面的两对角线长分别为c ,d .则⎪⎪⎩⎪⎪⎨⎧③ = 21 + 21② = ① = 22221a d c Q dl Q cl ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛33(第20题)由 ① 得c =l Q 1,由 ② 得d =l Q 2,代入 ③ 得212⎪⎭⎫ ⎝⎛l Q +222⎪⎭⎫⎝⎛l Q =a 2.∴21Q +22Q =4l 2a 2, ∴2la =2221+Q Q . 故S 侧=4al =22221+Q Q .。

高中数学必修2 第一章 空间几何体(A卷)

高中数学必修2 第一章 空间几何体(A卷)

高中数学必修2 第一章空间几何体(A卷)试卷一、选择题(共19题;共71分)1.下列说法正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.棱柱的底面一定是平行四边形C.棱锥的底面一定是三角形D.用任意一个平面去截球体得到的截面一定是一个圆面【答案】D【考点】柱体结构特征,台体结构特征【解析】A不正确,因为根据棱台的定义,要求棱锥底面和截面平行;B不正确,棱柱的底面不一定是平行四边形,可以是任意多边形;C不正确,棱锥的底面不一定是三角形,三棱锥的底面是三角形,其他不是;D正确,故选D.2.一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高为()A.B.C.20cmD.10 cm【答案】A【考点】锥体结构特征【解析】如图所示,在Rt△ABO中,AB=20 cm,∠A=30°,所以.3.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的()A.B.C.D.【答案】B【考点】柱体结构特征,球体结构特征,组合体结构特征【解析】由组合体的结构特征知,球与正方体各面相切,与各棱相离,故选B.4.下面图形中是正方体展开图的是()A.B.C.D.【答案】A【考点】柱体结构特征【解析】由正方体表面展开图性质知A是正方体的展开图;B折叠后第一行两个面无法折起来,而且下边没有面,故不能折成正方体;C缺少一个正方形;D折叠后有一个面重合,另外还少一个面,故不能折成正方体.故选A.5.如图,在正方体ABCD-A1B1C1D1中,M,N分别是BB1,BC的中点,则图中阴影部分在平面ADD1A1上的投影为()A.B.C.D.【答案】A【考点】柱体结构特征,投影【解析】点D在平面ADD1A1上的投影为点D,点M在平面ADD1A1上的投影为AA1的中点,点N在平面ADD1A1上的投影为DA的中点,连接三点可知A正确.6.下面的三视图对应的物体是()A.B.C.D.【答案】D【考点】组合体结构特征,三视图【解析】从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D满足这两点,故选D.7.如图,的斜二测直观图为等腰Rt△A′B′C′,其中A′B′=2,则的面积为()A.2B.4C.D.【答案】D【考点】空间几何体的三视图与直观图【解析】∵Rt是一平面图形的直观图,直角边长为A′B′=2,∴直角三角形的面积是,∵平面图形与直观图的面积的比为,∴原平面图形的面积是.故选D.8.如图,B′C′∥x′轴,A′C′∥y′轴,则下面直观图所表示的平面图形是()A.正三角形B.锐角三角形C.钝角三角形D.直角三角形【答案】D【考点】空间几何体的三视图与直观图【解析】因为B′C′∥x′轴,A′C′∥y′轴,所以直观图中BC∥x轴,AC∥y轴,所以三角形是直角三角形.故选D.9.《算数书》竹简于上世纪八十年代在湖北省张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“禾盖”的术:置如其周,令相乘也,又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式相当于将圆锥体积公式中的圆周率π近似取为()A.B.C.D.【答案】D【考点】空间几何体的表面积与体积【解析】设圆锥的底面半径为r,则圆锥的底面周长L=2πr,∴,∴.令,提,故选D.10.正三棱锥的一个侧面面积与底面面积之比为2:3,则此三棱锥的高与斜高之比为()A.B.C.1∶2D.【答案】A【考点】几何体的表面积【解析】如图:SO⊥平面ABC,SE⊥AB,∵△ABC为正三角形,∴CE=3OE,侧面面积S△SAB=×AB×SE,底面面积S△ABC=×AB×CE=×AB×3OE,∵一个侧面面积与底面面积之比为2:3,∴∴SE=2OE,∴在直角三角形SOE中,∠ESO=30°,∴,故选A.11.一个正四棱柱的各个顶点都在一个半径为2 cm的球面上,如果正四棱柱的底面边长为2 cm,那么该棱柱的表面积为()A.(2+4) cm2B.(4+8) cm2C.(8+16) cm2D.(16+32) cm2【答案】C【考点】几何体的表面积,组合体的表面积和体积【解析】∵一个正四棱柱的各个顶点都在一个半径为2 cm的球面上,正四棱柱的底面边长为2cm,球的直径为正四棱柱的体对角线,∴正四棱柱的体对角线为4,正四棱柱的底面对角线长为,∴正四棱柱的高为,∴该棱柱的表面积为,故选C.12.已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为() A.B.C.2D.【答案】B【考点】几何体的体积,组合体的表面积和体积【解析】如图所示,OA、OB、OC、OD四条线段把四面体ABCD分成四个三棱锥,且三棱锥B-ODC与A-ODC同底,三棱锥D -AOB与C-AOB同底.在三棱锥B-ODC和A-ODC中,底面积为,高分别为B到平面ODC的距离与A到平面ODC的距离,只有AB⊥平面ODC时,两距离之和才能取得最大值2,所以其体积和最大值为.同理可得三棱锥D-AOB与C-AOB的体积和的最大值为.所以四面体ABCD的体积的最大值为.13.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于()A.πB.2πC.4πD.8π【答案】B【考点】几何体的表面积,几何体的体积【解析】设圆柱母线长为l,底面半径为r,由题意得解得∴V=πr2l=2π.圆柱14.如图是一个三棱锥的三视图,那么这个三棱锥的四个面中直角三角形的个数有()A.1个B.2个C.3个D.4个【答案】D【考点】柱体结构特征,三视图【解析】由题意可知,几何体是三棱锥,其放置在长方体中形状如图所示,利用长方体模型可知,此三棱锥的四个面中,全部是直角三角形.故选D.15.用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,则圆台的母线长是()A.9 cmB.10 cmC.12 cmD.15 cm【答案】A【考点】锥体结构特征,台体结构特征【解析】∵截得的圆台上、下底面的面积之比为1∶16,∴圆台的上、下底面半径之比是1∶4,如图,设圆台的母线长为y,小圆锥底面与被截的圆锥底面半径分别是x,4x,根据相似三角形的性质得,解此方程得y=9,所以圆台的母线长为9 cm.故选A.16.球与圆台的上、下底面及侧面都相切,且球面面积与圆台的侧面积之比为3∶4,则球的体积与圆台的体积之比为()A.6∶13B.5∶14C.3∶4D.7∶15【答案】A【考点】空间几何体的表面积与体积,几何体的表面积,几何体的体积,组合体的表面积和体积【解析】如图所示,作圆台的轴截面等腰梯形ABCD,球的轴截面圆O内切于梯形ABCD.设球的半径为R,圆台的上、下底面半径分别为r1、r2,由平面几何知识知,圆台的高为2R,母线长为r1+r2.∵∠AOB=90°,OE⊥AB(E为切点),∴R2=OE2=AE·BE=r1·r2.由已知S球∶S圆台侧=4πR2∶π(r1+r2)2=3∶4.(r1+r2)2=R2.. 17.如图是一梯形OABC的直观图,其直观图面积为S,求梯形OABC的面积( )A.B.C.D.【考点】空间几何体的三视图与直观图【解析】设O′C′=h,则原梯形是一个直角梯形且高为2h.过C′作C′D′⊥O′A′于D′,则.由题意知即.又原直角梯形面积为所以梯形OABC的面积为.18.如图是在底面半径为2,母线长为4的圆锥中内接一个高为的圆柱,求圆柱的表面积()A.B.C.D.【考点】柱体结构特征,锥体结构特征,几何体的表面积【解析】如图所示,设圆锥的底面半径为R,圆柱的底面半径为r,表面积为S,则R=OC=2,AC=4,.易知△AEB∽△AOC,∴,即,∴r=1,S底=2πr2=2π,S侧=2πr·h=π.∴S=S+S侧=2π+π=(2+)π.底19.如图在三棱柱ABC-A1B1C1中,各侧棱都垂直于底面且底面为等腰直角三角形,∠ACB=90°,AC=BC=4,AA1=4,E,F分别在AC,BC上,且CE=3,CF=2,几何体EFC-A1B1C1的体积是()A.B.C.20D.【答案】C【考点】几何体的体积,组合体的表面积和体积【解析】所求几何体EFC-A1B1C1的体积,转化为两个棱锥A1-CEF和的体积之和,∵三棱柱ABC-A1B1C1中,各侧棱都垂直于底面且底面为等腰直角三角形,∠ACB=90°,AC=BC=4,AA1=4,E,F分别在AC,BC上,且CE=3,CF=2,∴.∴几何体EFC-A1B1C1的体积为4+16=20.二、解答题(共3题;共29分)20.如图,正方体ABCD-A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥A′-BC′D,求:(1).三棱锥A′-BC′D的表面积与正方体表面积的比值()A.B.C.D.【答案】A【考点】几何体的表面积【解析】∵ABCD-A′B′C′D′是正方体,∴A′B=A′C′=A′D=BC′=BD=C′D=∴三棱锥A′-BC′D的表面积为,而正方体的表面积为6a2,故三棱锥A′-BC′D的表面积与正方体表面积的比值为. (2).三棱锥A′-BC′D的体积( )A.B.C.D.【答案】A【考点】几何体的体积【解析】三棱锥A′-ABD,C′-BCD,D-A′D′C′,B-A′B′C′是完全一样的.故.21.已知直角三角形ABC,其中∠ABC=60°,∠C=90°,AB=2.(1).△ABC绕斜边AB旋转一周所形成的几何体的表面积( )A.B.C.D.【答案】B【考点】锥体结构特征,几何体的表面积【解析】如图以斜边AB为轴旋转一周,得旋转体是以AB边的高CO为底面半径的两个圆锥组成的组合体.∵AB=2,CB=1,∠B=60°,∴CB=sin 30°·AB=1,CA=cos 30°·AB=,,故此旋转体的表面积S=π×OC×AC+π×OC×BC.(2).△ABC绕斜边AB旋转一周所形成的几何体的体积( )A.B.C.D.【答案】C【考点】几何体的体积【解析】故此旋转体的体积.22.如图,一个圆锥的底面半径为1,高为3,在圆锥中有一个半径为x的内接圆柱.(1).试用x表示圆柱的高( )A.h=3-xB.h=2-3xC.h=3-2xD.h=3-3x【答案】D【考点】柱体结构特征,锥体结构特征【解析】设所求的圆柱的底面半径为x,它的轴截面如图,BO=1,PO=3,圆柱的高为h,由图,得,即h=3-3x.(2).圆柱的最大侧面积是()A.B.C.D.2【答案】C【考点】柱体结构特征【解析】∵S圆柱侧=2πhx=2π(3-3x)x=6π(x-x2),当时,圆柱的侧面积取得最大值为.。

高中数学必修二第一章测试题及答案

高中数学必修二第一章测试题及答案

第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题)A .棱台B .棱锥C .棱柱D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+ C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ). A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ). A .25πB .50πC .125πD .都不对5.正方体的棱长和外接球的半径之比为( ). A .3∶1B .3∶2C .2∶3D .3∶36.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130B .140C .150D .1607.如图是一个物体的三视图,则此物体的直观图是( ).(第7题)8.已知a 、b 、c 是直线,β是平面,给出下列命题: ①若c a c b b a //,,则⊥⊥;②若c a c b b a ⊥⊥则,,//;③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是 A .1 B .2 C .3 D .4二、填空题9.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.10.正方体ABCD -A 1B 1C 1D 1 中,O 是上底面ABCD 的中心,若正方体的棱长为a ,则三棱锥O -AB 1D 1的体积为_____________. 11.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.三、解答题12 .已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.13.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.(第13题)15.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC , 且2ASB BSC CSA π∠=∠=∠=,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值.B M ANCS第一章 空间几何体参考答案一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台. 2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2. 3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径,l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160.7.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.8.D解析:从三视图看底面为圆,且为组合体,所以选D. 9.A 二、填空题10.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.11.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3.另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面. 12.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1,l =1+2+3=6.三、解答题 13.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第14题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2, 即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 14.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π.V =V 台-V 锥=31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π. 15.证明:连结CM ,设Q 为CM 的中点,连结QN 则QN∥SM∴∠QNB 是SM 与BN 所成的角或其补角 连结BQ ,设SC =a ,在△BQN 中 BN =a 25 NQ =21SM =42a BQ =a 414∴COS∠QNB=5102222=⋅-+NQ BN BQ NQ BNCO A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章空间几何体检测试题
(时间:120分钟满分:150分)
一、选择题(每小题5分,共50分)
1.下列命题正确的是( )
A.棱柱的底面一定是平行四边形
B.棱锥的底面一定是三角形
C.棱锥被平面分成的两部分不可能都是棱锥
D.棱柱被平面分成的两部分可以都是棱柱
2.若正棱锥底面边长与侧棱长相等,则该棱锥一定不是( )
A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥
3.给出四个命题:
①各侧面都是正方形的棱柱一定是正棱柱;②底面是矩形的平行六面体是长方体;
③有两个侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.
其中正确命题的个数是( )
A.0个 B.1个 C.2个 D.3个
4.如图1­1是一幅电热水壶的主视图,它的俯视图是( )
图1­1
5.已知各顶点都在一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A.16π B.20π C.24π D.32π
6.两个球的体积之和为12π,且这两个球的大圆周长之和为6π,那么这两球半径之差是( )
A.1
2
B.1 C.2 D.3
7.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧且相距是1,那么这个球的半径是( )
A.4 B.3 C.2 D.5
8.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现又沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图1­2所示的平面图形,则标“△”的面的方位是( )
A.南 B.北 C.西 D.下
9.图1­3是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )
图1­3图1­2
A.32π B.16π C.12π D.8π图1­4
10.在△ABC中,AB=2,BC=1.5,∠ABC=120°,如图1­4.若将△ABC绕BC旋转一周,则所形成的旋转体的体积是( )
A.9
2
π B.
7
2
π C.
5
2
π D.
3
2
π
二、填空题(每小题5分,共20分)
11.正三棱柱的底面边长为2,高为2,则它的体积为__________.
12.圆台的高是12 cm,上、下两个底面半径分别为4 cm和9 cm,则圆台的侧面积是__________.13.已知四棱锥P­ABCD的底面是边长为6的正方形,侧棱PA⊥底面ABCD,且PA=8,则该四棱锥的体积是________.
14.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长比为1∶2,则它们的体积比为__________.
三、解答题(共80分)
15.(12分)圆柱的轴截面是边长为5 cm的正方形ABCD,求圆柱的侧面上从A到C的最短距离.
16.(12分)如图1­5,设计一个正四棱锥形冷水塔塔顶,高是0.85 m,底面的边长是
1.5 m,制造这种塔顶需要多少平方米铁板(精确到0.1 m2)?
图1­5
17.(14分)如图1­6是一个奖杯的三视图.求这个奖杯的体积(精确到0.01 cm3).
图1­6
18.(14分)如图1­7,一个直三棱柱形容器中盛有水,且侧棱AA1=8.若侧面AA1B1B水平放置时,液面恰好过AC,BC,A1C1的中点,则当底面ABC水平放置时,液面的高为多少?
图1­7 19.(14分)如图1­8,已知一个圆锥的底面半径为R,高为H,在其中有一个高为x的内接圆柱.
(1)求圆柱的侧面积;
(2)当x为何值时,圆柱的侧面积最大.
图1­8
20.(14分)如图1­9,在正四棱台内,以小底为底面,大底面中心为顶点作一内接棱锥.已知棱台小底面边长为b,大底面边长为a,并且棱台的侧面积与内接棱锥的侧面面积相等,求这个棱锥的高,并指出有解的条件.
图1­9
第一章自主检测
1.D 2.D 3.A 4.D 5.C 6.B
7.B 解析:如图D60,设球的半径是r ,则π·BD 2=5π,π·AC 2=8π,∴BD 2
=5, AC 2=8.又AB =1,设OA =x .∴x 2+8=r 2,(x +1)2+5=r 2.解得r =3. 8.B 9.C
10.D 解析:旋转体的体积就是一个大圆锥体积减去一个小圆锥的体积,13·π·(3)2
×52

13·π·(3)2×1=32π. 11.2 3 12.169π cm 2 13.96 14.1∶8 15.解:如图D61,由圆柱的轴截面是边长为5 cm 的正方形,知:圆柱高CD 为5 cm ,底面半径为2.5 cm ,底面周长为5π cm,则AD 为2.5π cm,圆柱侧面上从A 到C 的最短距离即是矩形ABCD 的对角线长为
52+ 2.5π2=5
2
π2+4 (cm).
16.解:SE =0.852+0.752.所需铁板面积为S =4×⎝ ⎛⎭
⎪⎫
12×1.5×0.852+0.752≈3.4(m 2).
17.解:由三视图可以得到奖杯的结构,底座是一个正四棱台,杯身是一个长方体,顶部是球体.
V 正四棱台=1
3×5×(152+15×11+112)≈851.667(cm 3),V 长方体=18×8×8=1152(cm 3),
V 球=4
3
π×33≈113.097(cm 3),所以,这个奖杯的体积为V =V 正四棱台+V 长方体+V 球≈2116.76(cm 3).
18.解:当侧面AA 1B 1B 水平放置时,纵截面中水液面积占1-14=34,所以水液体积与三棱柱体积比为3
4
.
当底面ABC 水平放置时,液面高度为8×3
4
=6.
19.解:(1)设内接圆柱底面半径为r .其轴截面如图D62.
S 圆柱侧=2πr ·x . ①∵r R
=H -x H ,∴r =R
H
(H -x ). ②
②代入①,得S 圆柱侧=2πx ·R H (H -x )=2πR
H
(-x 2+Hx )(0<x <H ).
(2)S 圆柱侧=2πR H (-x 2
+Hx )=2πR H ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x -H 22+H 24,
∴x =H 2
时,S 圆柱侧最大=πRH 2
.
20.解:如图D63,过高OO 1和AD 的中点E 作棱锥和棱台的截面,得棱台的斜高EE 1和棱锥的斜高EO 1. 设OO 1=h ,所以
S 锥侧=1
2·4b ·EO 1=2bEO 1,
S 台侧=1
2(4a +4b )·EE 1=2(a +b )·EE 1.所以2bEO 1=2(a +b )EE 1. ①
由于OO 1E 1E 是直角梯形,其中OE =b 2,O 1E 1=a
2
.
由勾股定理,有EE 21=h 2+⎝ ⎛⎭⎪⎫a 2-b 22,EO 21=h 2+⎝ ⎛⎭⎪⎫
b 22
. ②
①式两边平方,把②代入,得b 2
⎝ ⎛⎭⎪⎫h 2+b 2
4=(a +b )2⎣⎢⎡⎦
⎥⎤h 2
+⎝ ⎛⎭⎪⎫a 2-b 22.
解得h 2
=a 2b 2-a 24a +2b ,所以h =12 a 2b 2-a 2a +2b
.
显然,由于a >0,b >0,所以此题当且仅当a <2b 时才有解.。

相关文档
最新文档