江西省南昌市2015届高三第一轮复习训练 数学(4)(导数及其应用)
(全国通用)高考数学一轮复习 第二章 函数、导数及其应用 第四节 指数函数习题 理-人教版高三全册数

第四节指数函数[基础达标]一、选择题(每小题5分,共35分)1.(2015·威海测试)若点(a,9)在函数y=()x的图象上,则+1的值为()A.4B.C.D.01.C【解析】点(a,9)在函数y=()x的图象上,所以9=()a,解得a=4,所以+1+1=2+(24=2+2-1=.2.下列函数中值域为正实数的是()A.y=-5xB.y=C.y=D.y=(-3)|x|2.B【解析】∵1-x∈R,y=的值域是正实数,∴y=的值域是正实数.3.(2016·某某某某一中月考)方程2-x+x2=3的实数解的个数为()A.2B.3C.1D.43.A【解析】方程2-x+x2=3的解的个数即为方程=3-x2的解的个数,易知两图象y1=,y2=3-x2有两个交点,因此方程的实数解的个数为2.4.(2015·某某质检)曲线y=e x与直线y=5-x交点的纵坐标在区间(m,m+1)(m∈Z)内,则实数m 的值为()A.1B.2C.3D.44.C【解析】因为函数y1=e x的图象单调递增,y2=5-x的图象单调递减,当x=1时,y1=e,y2=4,∴y1<y2,当x=2时,y1=e2,y2=3,∴y1>y2,∴交点的横坐标x0满足1<x0<2,对应的纵坐标y0满足3<y0<4,故m=3.5.(2016·某某某某中学开学测试)若函数f(x)=2(x-a)(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的取值X围()A.(-∞,1]B.(-∞,0]C.[1,+∞)D.[2,+∞)5.C【解析】由f(1+x)=f(1-x)可知函数图象关于直线x=1对称,所以a=1,所以f(x)=2|x-a|=2|x-1|,易知其在(-∞,1]上单调递减,在[1,+∞)上单调递增,故要使f(x)在[m,+∞)上单调递增,则m的取值X围是[1,+∞).6.(2016·某某三校联考)定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0)(x1≠x2),都有<0.则下列结论正确的是()A.f(0.32)<f(20.3)<f(log25)B.f(log25)<f(20.3)<f(0.32)C.f(log25)<f(0.32)<f(20.3)D.f(0.32)<f(log25)<f(20.3)6.A【解析】对任意的x1,x2∈(-∞,0)(x1≠x2),都有<0可知函数在(-∞,0)上单调递减,又由于f(x)为偶函数,因此在(0,+∞)上函数f(x)单调递增,而0<0.32<1,1<20.3<2,log25>2,所以f(0.32)<f(20.3)<f(log25).7.(2016·某某一中调研)如图给出了函数y=a x,y=log a x,y=log(a+1)x,y=(a-1)x2的图象,则与函数y=a x,y=log a x,y=log(a+1)x,y=(a-1)x2依次对应的图象是()A.①②③④B.①③②④C.②③①④D.①④③②7.B【解析】由题可知a>0,a≠1,由图可知①对应函数y=a x,且0<a<1,所以a+1>1,a-1<0,因此③对应于函数y=log a x,④对应于函数y=(a-1)x2,②对应于函数y=log(a+1)x.二、填空题(每小题5分,共15分)8.函数y=a x-2016+2016(a>0,且a≠1)的图象恒过定点.8.(2016,2017)【解析】令x-2016=0,得x=2016,此时y=a0+2016=2017,故函数y=a x-2016+2016的图象恒过定点(2016,2017).9.已知函数f(x)=+sin x,则f(-2)+f(-1)+f(0)+f(1)+f(2)=.9.5【解析】由f(x)=+sin x,得f(x)+f(-x)=2,所以f(-2)+f(-1)+f(0)+f(1)+f(2)=2×2+f(0)=4++sin 0=5.10.(2015·某某师大附中模拟)已知函数f(x)=log2x(x>0)的反函数为f-1(x),且f-1(a)·f-1(b)=8,若a>0且b>0,且的最小值为.10.3【解析】由题可知函数f(x)=log2x(x>0)的反函数为y=2x,即f-1(x)=2x,所以f-1(a)·f-1(b)=2a·2b=2a+b,因此2a+b=8,即a+b=3,所以(a+b)·×(5+2)=3.[高考冲关]1.(5分)(2015·某某质检)已知函数f(x)=|2x-1|,a<b<c,且f(a)>f(c)>f(b),下列结论必成立的是()A.a<0,b<0,c<0B.a<0,b≥0,c>0C.2-a<2cD.2a+2c<21.D【解析】因为f(x)=|2x-1|=其图象如图所示,要使a<b<c,且f(a)>f(c)>f(b)成立,则有a<0,b<0,c>0且1-2a>2c-1,即2a+2c<2,观察选项知D项正确.2.(5分)关于x=1对称的函数f(x)满足f(x-1)=f(x+1),且在x∈[0,1]时,f(x)=1-x,则关于x的方程f(x)=在x∈[0,3]上解的个数是()A.1B.2C.3D.42.D【解析】由f(x-1)=f(x+1)知函数的周期为2,作出f(x)在[0,3]上的图象与函数y=的图象,易知它们交点个数为4,则方程f(x)=在x∈[0,3]上解的个数是4.3.(5分)(2015·某某一诊)计算:2=.3.6【解析】原式=2××1=2×=2×=6.4.(5分)(2015·某某调研)已知函数f(x)=x-4+,x∈(0,4),当x=a时,f(x)取得最小值b,则在直角坐标系下函数g(x)=的图象为()4.B【解析】由题可知f(x)=x-4+=x+1+-5≥2-5=1,当且仅当x=2时,等号成立,所以a=2,b=f(2)=1,故g(x)=,其图象可由y=向左平移1个单位得到,观察知B项正确.5.(10分)(2015·某某日照一中月考)已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上有最小值1和最大值4,设f(x)=.(1)求a,b的值;(2)若不等式f(2x)-k·2x≥0在区间[-1,1]上有解,某某数k的取值X围.5.【解析】(1)由已知可得g(x)=a(x-1)2+1+b-a,因为a>0,所以g(x)在区间[2,3]上是增函数,故解得a=1,b=0.(2)由已知可得f(x)=x+-2,所以f(2x)-k·2x≥0可化为2x+-2≥k·2x,即1+-2·≥k,令t=,由x∈[-1,1],得t∈,则k≤t2-2t+1,t∈.记h(t)=t2-2t+1,t∈,易得h(t)max=h(2)=1,所以k的取值X围是(-∞,1].。
2015届高考数学第一轮复习 第三章 导数及其应用章末检测(新人教A版)

第三章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2013·泰安高三二模)如图,函数y =f (x )的图象在点P (5,f (5))处的切线方程是y =-x +8,则f (5)+f ′(5)等于 ( )A.12B .1C .2D .02.函数f (x )=ax 3-x 在(-∞,+∞)上是减函数,则 ( )A .a <1B .a <13C .a <0D .a ≤03.(2013·洛阳模拟)已知f (x )=(a +1)x +a x +1,且f (x -1)的图象的对称中心是(0,3),则f ′(2)的值为 ( )A .-19 B.19C .-14 D.144.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为 ( )A.π2B .0C .钝角D .锐角 5.(2013·山东)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为 ( ) A .13万件 B .11万件C .9万件D .7万件6.已知f (x )=2x 3-6x 2+a (a 是常数)在[-2,2]上有最大值3,那么在[-2,2]上f (x )的最小值是 ( )A .-5B .-11C .-29D .-377.(2013·江西) 如图,一个正五角形薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为S (t ) (S (0)=0),则导函数y =S ′(t )的图象大致( )8.已知x ≥0,y ≥0,x +3y =9,则x 2y 的最大值为 ( )A .36B .18C .25D .429.(2013·合肥模拟)已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)f ′(x )>0的解集为 ( )A .(-∞,-2)∪(1,+∞)B .(-∞,-2)∪(1,2)C .(-∞,-1)∪(-1,0)∪(2,+∞)D .(-∞,-1)∪(-1,1)∪(3,+∞)10.如图所示的曲线是函数f (x )=x 3+bx 2+cx +d 的大致图象,则x 21+x 22等于 ( )A.89B.109C.169D.5411.(2013·宝鸡高三检测三)已知f ′(x )是f (x )的导函数,在区间[0,+∞)上f ′(x )>0,且偶函数f (x )满足f (2x -1)<f ⎝⎛⎭⎫13,则x 的取值范围是 ( ) A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23 D.⎣⎡⎭⎫12,23 12.(2013·唐山月考)已知函数y =f (x )=x 3+px 2+qx 的图象与x 轴切于非原点的一点,且y 极小值=-4,那么p ,q 的值分别为 ( )A .6,9B .9,613.函数f (x )=x ln x 在(0,5)上的单调递增区间是____________.14.(2013·安庆模拟)已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝⎛⎭⎫-π2,π2时,f (x )=x +sin x ,则f (1),f (2),f (3)的大小关系为________________________.15.(2013·福建改编)22(1cos )x dx ππ-+⎰=________. 16.下列关于函数f (x )=(2x -x 2)e x 的判断正确的是________(填写所有正确的序号). ①f (x )>0的解集是{x |0<x <2};②f (-2)是极小值,f (2)是极大值;③f (x )没有最小值,也没有最大值.三、解答题(本大题共6小题,共70分)17.(10分)设f (x )=x 3-12x 2-2x +5. (1)求函数f (x )的单调递增、递减区间;(2)当x ∈[-1,2]时,f (x )<m 恒成立,求实数m 的取值范围.18.(12分)(2013·莆田月考)已知函数f (x )=23x 3-2ax 2+3x (x ∈R ). (1)若a =1,点P 为曲线y =f (x )上的一个动点,求以点P 为切点的切线斜率取得最小值时的切线方程;(2)若函数y =f (x )在(0,+∞)上为单调增函数,试求满足条件的最大整数a .19.(12分)(2013·福州高三质检)已知函数f (x )=x ln x .(1)求f (x )的极小值;(2)讨论关于x 的方程f (x )-m =0 (m ∈R )的解的个数.20.(12分)(2013·全国)已知函数f (x )=3ax 4-2(3a +1)x 2+4x .(1)当a =16时,求f (x )的极值; (2)若f (x )在(-1,1)上是增函数,求a 的取值范围.21.(12分)某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?22.(12分)(2013·黄山模拟)设函数f (x )=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f (x )的极值点.(1)求a 和b 的值;(2)讨论f (x )的单调性;(3)设g (x )=23x 3-x 2,试比较f (x )与g (x )的大小.答案 1.C [由题意知f ′(5)=-1,f (5)=-5+8=3,所以f (5)+f ′(5)=3-1=2.]2.D [由题意知,f ′(x )=3ax 2-1≤0在(-∞,+∞)上恒成立,a =0时,f ′(x )≤0在(-∞,+∞)上恒成立;a >0时,1a≥3x 2在(-∞,+∞)上恒成立,这样的a 不存在; a <0时,1a≤3x 2在(-∞,+∞)上恒成立,而3x 2≥0, ∴a <0.综上,a ≤0.]3.B [f (x )=a +1-1x +1,中心为(-1,a +1),由f (x -1)的中心为(0,3)知f (x )的中心为(-1,3),∴a =2.∴f (x )=3-1x +1. ∴f ′(x )=1(x +1)2.∴f ′(2)=19.] 4.C [f ′(x )=e x sin x +e x cos x=e x (sin x +cos x )=2e x sin ⎝⎛⎭⎫x +π4, f ′(4)=2e 4sin ⎝⎛⎭⎫4+π4<0, 则此函数图象在点(4,f (4))处的切线的倾斜角为钝角.]5.C [∵y ′=-x 2+81,令y ′=0得x =9(x =-9舍去).当0<x ≤9时,y ′≥0,f (x )为增函数,当x >9时,y ′<0,f (x )为减函数.∴当x =9时,y 有最大值.]6.D [f ′(x )=6x 2-12x ,若f ′(x )>0,则x <0或x >2,又f (x )在x =0处连续,∴f (x )的增区间为[-2,0).同理f ′(x )<0,得减区间(0,2].∴f (0)=a 最大.∴a =3,即f (x )=2x 3-6x 2+3.比较f (-2),f (2)得f (-2)=-37为最小值.]7.A [利用排除法.∵露出水面的图形面积S (t )逐渐增大,∴S ′(t )≥0,排除B.记露出最上端小三角形的时刻为t 0.则S (t )在t =t 0处不可导.排除C 、D ,故选A.]8.A [由x +3y =9,得y =3-x 3≥0,∴0≤x ≤9. 将y =3-x 3代入u =x 2y , 得u =x 2⎝⎛⎭⎫3-x 3=-x 33+3x 2. u ′=-x 2+6x =-x (x -6).令u ′=0,得x =6或x =0.当0<x <6时,u ′>0;6<x <9时,u ′<0.∴x =6时,u =x 2y 取最大值36.]9.D [由f (x )的图象可知,在(-∞,-1),(1,+∞)上f ′(x )>0,在(-1,1)上f ′(x )<0. 由(x 2-2x -3)f ′(x )>0,得⎩⎪⎨⎪⎧ f ′(x )>0,x 2-2x -3>0或⎩⎪⎨⎪⎧ f ′(x )<0,x 2-2x -3<0. 即⎩⎪⎨⎪⎧ x >1或x <-1,x >3或x <-1或⎩⎪⎨⎪⎧-1<x <1-1<x <3, 所以不等式的解集为(-∞,-1)∪(-1,1)∪(3,+∞).]10.C [由图象知f (x )=x (x +1)(x -2)=x 3-x 2-2x =x 3+bx 2+cx +d ,∴b =-1,c =-2,d =0.而x 1,x 2是函数f (x )的极值点,故x 1,x 2是f ′(x )=0,即3x 2+2bx +c =0的根,∴x 1+x 2=-2b 3,x 1x 2=c 3, x 21+x 22=(x 1+x 2)2-2x 1x 2=49b 2-2c 3=169.] 11.A [∵x ∈[0,+∞),f ′(x )>0,∴f (x )在[0,+∞)上单调递增,又因f (x )是偶函数,∴f (2x -1)<f ⎝⎛⎭⎫13⇔f (|2x -1|)<f ⎝⎛⎭⎫13⇒|2x -1|<13,∴-13<2x -1<13. 即13<x <23.] 12.A [y ′=3x 2+2px +q ,令切点为(a,0),a ≠0,则f (x )=x (x 2+px +q )=0有两个不相等实根a,0 (a ≠0),∴x 2+px +q =(x -a )2.∴f (x )=x (x -a )2,f ′(x )=(x -a )(3x -a ).令f ′(x )=0,得x =a 或x =a 3. 当x =a 时,f (x )=0≠-4,∴f ⎝⎛⎭⎫a 3=y 极小值=-4,即427a 3=-4,a =-3,∴x 2+px +q =(x +3)2. ∴p =6,q =9.]13.⎝⎛⎭⎫1e ,5解析 ∵f ′(x )=ln x +1,f ′(x )>0,∴ln x +1>0,ln x >-1,∴x >1e.∴递增区间为⎝⎛⎭⎫1e ,5. 14.f (3)<f (1)<f (2)解析 由f (x )=f (π-x ),得函数f (x )的图象关于直线x =π2对称, 又当x ∈⎝⎛⎭⎫-π2,π2时,f ′(x )=1+cos x >0恒成立, 所以f (x )在⎝⎛⎭⎫-π2,π2上为增函数,。
江西省南昌市2015届高三一模考试数学(理科)

2015 届南昌市第一次模拟考试数学试卷(理科) 参考答案
一、选择题 1 题目 答案
理科一模
2 A
3 A
4 A
5 C
6 C
7 B
8 B
9 B
10 C
11 B
12 A
5
D
二、填空题 13.
3 4
14. 4
15. [
2 10 , ] 3 3
16 ( 1,0) (0,)
三、解答题 17. (Ⅰ)解:等差数列 {a n } , a1 1 , S 3 6 , d 1 ,故 a n n ………3 分
A. 2 或
3
B. 2 或
A.2 个 9. 给出下列命题
B.3 个
C.4 个
D.5 个
5 2 3 4 5 ① 若 (1 x) a 0 a1 x a 2 x a3 x a 4 x a5 x ,则 | a1 | | a2 | | a3 | | a4 | | a5 | 32
12.设函数 f ( x ) ( x a ) 2 (ln x 2 2a) 2 , 其中 ( x 0, a R ) ,存在 x0 使得 f ( x0 ) 实数 a 值是 A.
4 成立,则 5
1 5
B.
2 5
C.
1 2
D. 1
第Ⅱ卷
本卷包括必考题和选考题两个部分。第(13)题—第(21)题为必考题,每个考生都必须作答。 第(22)题—第(24)题为选考题,考生根据要求作答。 二.填空题:本大题共四小题,每小题 5 分。 13. a, b.c, d 四封不同的信随机放入 A, B, C , D 4 个不同的信封里,每个信封至少有一封信。其中 a 没有放入 A 中的概率是 14. 直三棱柱 ABC A1 B1C1 中, BAC 90 0 ,矩形 BCC1 B1 的面积为 2 ,则直三棱柱
江西省南昌市2014-2015学年高考数学第一轮复习函数训练题1

2014-2015学年度南昌市新课标高三第一轮复习训练题数学(二)(函数1)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知)(x f 是奇函数,)(x g 是偶函数,且4)1()1(,2)1()1(=-+=+-g f g f ,则)1(g 等于A .4B .3C .2D .1 2.函数)1ln(x x y -=的定义域为 A .(0,1) B .(0,1] C .[0,1) D .[0,1]3.若函数ax y =与xb y -=在),0(+∞上都是减函数,则bx ax y +=2在),0(+∞上 A .单调递减 B .单调递增 C .先增后减 D .先减后增4.下列函数中,在(1,1)-内有零点且单调递增的是A .2log (2)y x =+B .21xy =-C D .3y x =- 5.若a b c <<,则函数()()()()()f x x a x b x a x c =--++--的两个零点分别位于区间A .(,)a b ,(,)b cB .(,)a -∞,(,)a bC .(,)b c ,(,)c +∞D .(,)a -∞,(,)c +∞ 6.定义在R 上的函数)(x f y =在),(a -∞上是增函数,且函数)(a x f y +=是偶函数, 当a x a x ><21,,且a x a x -<-21时,有A .)()(21x f x f >B .)()(21x f x f ≥C .)()(21x f x f <D .)()(21x f x f ≤7.设函数)(2)(2R x x x g ∈-=,⎩⎨⎧≥-<++=)(,)(),(,4)()(x g x x x g x g x x x g x f ,则)(x f 的值域是A .9[,0](1,)4-+∞B .[0)+∞,C .9[,)4-+∞D .9[,0](2,)4-+∞8.已知函数)(x f 对任意R x ∈都有)3(2)()6(f x f x f =++,)1(-=x f y 的图像关于点)0,1(对称,且4)1(=f ,则=)2015(f A .0 B .4- C .8- D .16-9.函数()y f x =,x D ∈,若存在常数C ,对任意的1x D ∈,存在唯一的2x D ∈,使得C =,则称函数()f x 在D 上的几何平均数为C .已知3()f x x =,[1,2]x ∈,则函数()f x 在[1,2]上的几何平均数为A.2 B .2 C .4D .2210.在如图所示的锐角三角形空地中,欲建一个面积不小于2300m 的内接矩形花园(阴影部分),则其边长x (单位:m )的取值范围是 A .]20,15[ B .]25,12[ C .]30,10[ D .]30,20[二、填空题:本大题共5小题;每小题5分,共25分,把答案填在题中的横线上.11.若)(x f 的定义域为R ,2)(>'x f 恒成立,2)1(=-f ,则42)(+>x x f 解集为 . 12.已知函数()f x 是定义在(,0)(0,)-∞+∞上的奇函数,在(0,)+∞上单调递减,且0)3()21(>->f f ,则方程()0f x =的根的个数为 . 13.若存在正数x 使1)(2<-a x x成立,则a 的取值范围是 .14.若函数14)(2+=x xx f 在区间)12,(+m m 上是单调递增函数,则m 的取值范围是 . 15.若函数)(x f y =的值域是]3,1[,则函数)3(21)(+-=x f x F 的值域是 .三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或推演步骤.16.已知⎩⎨⎧<-≥-=-=.0,2,0,1)(,1)(2x x x x x g x x f(1)求)]2([g f 和)]2([f g 的值; (2)求)]([x g f 和)]([x f g 的表达式.17.已知函数)(x f y =的定义域为R ,且对任意R b a ∈,,都有)()()(b f a f b a f +=+. 且当0>x 时,0)(<x f 恒成立,.3)3(-=f (1)证明:函数)(x f y =是R 上的减函数; (2)证明:函数)(x f y =是奇函数;(3)试求函数)(x f y =在),](,[*N n m n m ∈上的值域. .18.已知函数)(x f 的定义域为R ,且满足)()2(x f x f -=+.若f (x )为奇函数,且当10≤≤x 时,x x f 21)(=,求使21)(-=x f 在区间]2014,0[上的所有x 的个数.19.设()f x 是定义在R 上的奇函数,且对任意实数x ,恒有(2)()f x f x +=-. 当[0,2]x ∈时,2()2f x x x =-. (1)求证:()f x 是周期函数;(2)当[2,4]x ∈时,求()f x 的解析式; (3)计算(0)(1)(2)(2014)f f f f ++++L .20.(1)已知函数()y f x =的定义域为R ,且当R x ∈时,()()f m x f m x +=-恒成 立,求证()y f x =的图象关于直线x m =对称;(2)若函数2log |1|y ax =-的图象的对称轴是2x =,求非零实数a 的值.21.已知函数x b b ax x f ⋅-+-=22242)(,).,()(1)(2R b a a x x g ∈---= (1)当0=b 时,若)(x f 在]2,(-∞上单调递减,求a 的取值范围;(2)求满足下列条件的所有整数对),(b a :存在0x ,使得0()()f x f x 是的最大值,0()()g x g x 是的最小值.2014-2015学年度南昌市新课标高三第一轮复习训练题数学(二)参考答案11.(1)-+∞, 12.2 13.(1)-+∞, 14.(-1,0] 15.[51]--, 三.解答题:本大题共6小题,共75分16.解:(1)由已知,g (2)=1,f (2)=3,∴f [g (2)]=f (1)=0,g [f (2)]=g (3)=2.(2)当x ≥0时,g (x )=x -1,∴f [g (x )]=(x -1)2-1=x 2-2x ;当x <0时, g (x )=2-x ,∴f [g (x )]=(2-x )2-1=x 2-4x +3;⎩⎨⎧<+-≥-=∴.0,34,0,2)]([22x x x x x x x g f 当x ≥1或1-≤x 时,f (x )≥0,∴g [f (x )]=f (x )-1=x 2-2;当11<<-x 时,0)(<x f ,.3)(2)]([2x x f x f g -=-=∴⎩⎨⎧<<---≤≥-=∴.11,3,11,2)]([22x x x x x x f g 或 17.(1)证明:设任意R x x ∈21,,且21x x <,f (x 2)=f [x 1+(x 2-x 1)]=f (x 1)+f (x 2-x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)=f (x 1)+f (x 2-x 1)<f (x 1), 故f (x )是R 上的减函数.(2)证明:∵f (a +b )=f (a )+f (b )恒成立, ∴可令a =-b =x ,则有f (x )+f (-x )=f (0).又令a =b =0,则有f (0)=f (0)+f (0),∴f (0)=0.从而任意的R x ∈,f (x )+f (-x )=0,∴f (-x )=-f (x ).)(x f y =∴是奇函数. (3)解:)(x f y = 是R 上的单调递减函数,)(x f y =∴在],[n m 上也是减函数, 故f (x )在],[n m 上的最大值f (x )max =f (m ),最小值f (x )min =f (n ).)1()1()1()]1(1[)(nf n f f n f n f ==-+=-+= ,同理f (m )=mf (1). 又f (3)=3f (1)=-3,.)(,)(,1)1(n n f m m f f -=-=∴-=∴ )(x f y =∴在],[n m 上的值域为].,[m n -- 18. 解:当0≤x ≤1时,1()2f x x =,设-1≤x ≤0,则0≤-x ≤1,∴11()()22f x x x -=-=- ∵f (x )是奇函数,∴f (-x )=-f (x ).∴1()2f x x -=-,即1()2f x x =. ).11(21)(≤≤-=∴x x x f 又设1<x <3,则-1<x -2<1. ∴f (x -2)=12(x -2).又)()]([]2)[()2()2(x f x f x f x f x f -=---==--=--=- ,).2(21)(-=-∴x x f )31)(2(21)(<<--=∴x x x f .⎪⎩⎪⎨⎧<<--≤≤-=∴.31),2(21,11,21)(x x x x x f 由21)(-=x f ,解得1-=x .又∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ),)(x f ∴是以4为周期的周期函数.21)(-=∴x f 的所有)(14Z n n x ∈-=. 令2014140≤-≤n ,则4201541≤≤n , 又Z n ∈ ,).(5031Z n n ∈≤≤∴ ∴在]2014,0[上共有503个x 使.21)(-=x f19.解:(1))()2(x f x f -=+ ,).()2()4(x f x f x f =+-=+∴ )(x f ∴是周期为4的周期函数.(2)当]0,2[-∈x 时,]2,0[∈-x ,由已知得.2)()(2)(22x x x x x f --=---=-又)(x f 是奇函数,.2)(,2)()(22x x x f x x x f x f +=∴--=-=-∴又当]4,2[∈x 时,]0,2[4-∈-x ,).4(2)4()4(2-+-=-∴x x x f 又)(x f 是周期为4的周期函数,∴f (x )=f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. ∴当]4,2[∈x 时,.86)(2+-=x x x f(3)f (0)=0,f (2)=0,f (1)=1,f (3)=-1.又)(x f 是周期为4的周期函数, f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7) == f (2 009)+f (2010)+f (2011)+f (2012)=0.又0)2()1()2014()2013(=+=+f f f f ,.0)2014()2()1()0(=++++∴f f f f 20.解:(1)设P (x 0,y 0)是y =f (x )图象上任意一点,则y 0=f (x 0). 又P 点关于x =m 的对称点为P ′,则P ′的坐标为(2m -x 0,y 0).又f (x +m )=f (m -x ),得f (2m -x 0)=f [m +(m -x 0)]=f [m -(m -x 0)]=f (x 0)=y 0. 即P ′(2m -x 0,y 0)在y =f (x )的图象上.∴y =f (x )的图象关于直线x =m 对称. (2)对定义域内的任意x ,有f (2-x )=f (2+x )恒成立.∴|a (2-x )-1|=|a (2+x )-1|恒成立,即|-ax +(2a -1)|=|ax +(2a -1)|恒成立. 又0≠a ,012=-∴a ,.21=∴a 21.解: (1)当0b =时,()24f x ax x =-,若0a =,()4f x x =-,则()f x 在]2,(-∞上单调递减,符合题意; 若0a ≠,要使()f x 在]2,(-∞上单调递减,必须满足0,42,2a a>⎧⎪⎨≥⎪⎩∴01a <≤.综上所述,a 的取值范围是]1,0[.(2)若0a =,()f x =-,则()f x 无最大值,故0a ≠,∴()f x 为二次函数,要使)(x f 有最大值,必须满足20,420,a b b <⎧⎨+-≥⎩即0a <且11b ≤+此时,0x =()f x 有最大值.又()g x 取最小值时,0x a =,a =∈Z ,则2a ,∵0a <且11b ≤+,∴)20a a <≤∈Z ,得1a =-,此时1b =-或3b =.∴满足条件的整数对(),a b 是()()1,1,1,3---.。
南昌市2015届高三调研考试复习 数学理试题答案(2014.12.25)

页眉内容南昌市2015届高三调研考试模拟卷理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中只有一个是符合要求的.1.设{|{|ln(1)}A x y B x y x ====+,则AB =(C )A .{|1}x x >-B .{|1}x x ≤C .{|11}x x -<≤D .ϕ 2.复数5)z i i i -+(i 为虚数单位),则复数z 的共轭复数为( A ) A .2i - B .2i + C .4i - D .4i + 3.下列说法不正确...的是( D ) A.命题“对x R ∀∈,都有20x ≥”的否定为“0x R ∃∈,使得200x <”B.“a b >”是“22ac bc >”的必要不充分条件;C.“若tan α≠3πα≠” 是真命题D. 甲、乙两位学生参与数学模拟考试,设命题p 是“甲考试及格”,q 是“乙考试及格”,则命题“至少有一位学生不及格”可表示为()()p q ⌝∧⌝4.设若2lg ,0,()3,0,ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰((1))1f f =,则a 的值是( C ) A.1- B. 2 C. 1 D. 2-5.阅读如下程序框图,如果输出4i =,那么空白的判断框中应填人的条件是( A )A .?10≤SB .?12≤SC .?14≤SD .?16≤S6.过抛物线24y x =焦点F 的直线交其于,A B 两点,O 为坐标原点.若||3AF =,则AOB ∆的面积为( C ) ABCD.7.一个圆锥被过顶点的平面截去了较小的一部分几何体,余下的几何体的 三视图(如图所示),则余下部分的几何体的表面积为 ( A )A .532323++ππ+1 B .523323++ππ+1 C .53233++ππ D .52333++ππ8.在各项均为正数的等比数列{}n a 中,若112(2)m m m a a a m +-⋅=≥,数列{}n a 的前n 项积为n T ,若21512m T -=,则m 的值为( B )A .4B .5C .6D .79.由()y f x =的图象向左平移3π个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到12sin(3)6y x π=-的图象,则()f x 为( B )A .312sin()26x π+B .12sin(6)6x π-C .312sin()23x π+D .12sin(6)3x π+10. 若不等式lg 1x +2x +…+(n -1)x +(1-a )n xn≥(x -1)lg n 对任意不大于1的实数x 和大于1的正整数n 都成立,则a 的取值范围是( D )(A )[0,+∞) (B )(-∞,0] (C )[ 1 2,+∞) (D )(-∞, 12]11. 已知三棱锥A BCD -中,2,2AB AC BD CD BC AD =====, 直线AD 与底面BCD 所成角为3π,则此三棱锥外接球的表面积为( B )A .4πB .8πC .16πD .312. 已知)()(R x ex x f x∈=,若关于x 的方程01)()(2=-+-m x mf x f 恰好有4个不相等的实数根,则实数m 的取值范围为( C )A.),2()2,1(e e⋃ B.)1,1(e C.)11,1(+e D.),1(e e第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分13. 已知向量a =(2,1),b =(-1,2),若a ,b 在向量c 上的投影相等,且(c -a )·(c -b )=- 52,则向量c的坐标为________.(1 2, 32)14.若实数x ,y 满足条件04(3)(3)0x y x y x y ≤+≤⎧⎨--≤⎩,则2z x y =+的最大值为_______.【答案】715.已知F 是双曲线的右焦点12222=-by a x 的右焦点,点B A ,分别在其两条渐近线上,且满足2=,0=⋅(O 为坐标原点),则该双曲线的离心率为____________.16.ABC ∆中,角C B A 、、所对的边分别为c b a 、、,下列命题正确的是________(写出正确命题的编号). ○1④⑤○1总存在某内角α,使1cos 2α≥ ②若AsinB>BsinA ,则B >A③存在某钝角ABC ∆,有0tan tan tan >++C B A ; ④若02=++AB c CA b BC a ,则ABC ∆的最小角小于6π; ⑤若()10≤<<t tb a ,则tB A <.三、解答题:本大题共6小题,共70分17. (本小题满分12分)已知函数23()2cos 22f x x x =+- (I )求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦的最大值(II )在ABC ∆中,A B C ∠∠∠、、所对的边分别是,,a b c ,2,a =1()2f A =-,求ABC ∆周长L 的最大值.解:(Ⅰ)23()2cos 2f x x x=+-1cos 23222x x +=+-=sin(2)16x π+-所以()f x 最小正周期22T ππ== 70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦ 1sin(2),162x π⎡⎤∴+∈-⎢⎥⎣⎦()f x ∴最大值为0.(Ⅱ) 由1()2f A =-得1sin(2)62A π+= 又132666A πππ<+<5266A ππ∴+=3A π∴= 解法一:由余弦定理得, 222222cos a b c bc A b c bc =+-=+-22223()()()3()44b c b c b c bc b c ++=+-≥+-=即4b c +≤=, 6a b c ∴++≤ (当且仅当2b c ==时取等号)所以6L =解法二:由正弦定理得2sin sin sin3b cB Cπ==,即,b B cC ==, 所以sin )b c B C +=+2sin()]4sin()36B B B ππ=+-=+ 2503666B B ππππ<<∴<+< 1s i n ()126Bπ∴<+≤(当且仅当3B C π==时取最大值) 4b c ∴+≤,∴6a b c ++≤ 所以6L =18. (本小题满分12分)已知等比数列{}n a 满足13223a a a +=,且32a +是24,a a 的等差中项,()n N *∈(1)求数列{}n a 的通项公式;(2)若2log ,n n n n b aa S =+为数列{}nb 的前n 项和,求使1280n n S +--≤成立的n 的 取值集合。
2015届高考数学(人教,理科)大一轮配套练透:第2章 函数、导数及其应用 第5节

[课堂练通考点]1.下面给出4个幂函数的图像,则图像与函数的大致对应是( )A .①y =x 13,②y =x 2,③y =x 12,④y =x -1B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1D .①y =x 13,②y =x 12,③y =x 2,④y =x -1解析:选B 图像①对应的幂函数的幂指数必然大于1,排除A ,D.图像②中幂函数是偶函数,幂指数必为正偶数,排除C.故选B.2.(2013·张家口模拟)已知函数h (x )=4x 2-kx -8在[5,20]上是单调函数,则k 的取值范围是( )A .(-∞,40]B .[160,+∞)C .(-∞,40]∪[160,+∞)D .∅解析:选C 函数h (x )的对称轴为x =k 8,要使h (x )在[5,20]上是单调函数,应有k 8≤5或k 8≥20,即k ≤40或k ≥160,故选C.3.二次函数的图像过点(0,1),对称轴为x =2,最小值为-1,则它的解析式为________. 解析:依题意可设f (x )=a (x -2)2-1, 又其图像过点(0,1), ∴4a -1=1,∴a =12.∴f (x )=12(x -2)2-1.答案:f (x )=12(x -2)2-14.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________.解析:由已知得⎩⎪⎨⎪⎧a >0,4ac -164a =0,⇒⎩⎪⎨⎪⎧a >0,ac -4=0.答案:a >0,ac =45.已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时,f (x )是幂函数,且在(0,+∞)上是增函数?解:∵函数f (x )=(m 2-m -1)x-5m -3是幂函数,∴m 2-m -1=1,解得m =2或m =-1. 当m =2时,-5m -3=-13,函数y =x-13在(0,+∞)上是减函数;当m =-1时,-5m -3=2,函数y =x 2在(0,+∞)上是增函数. ∴m =-1.[课下提升考能]第Ⅰ组:全员必做题1.(2014·济南模拟)函数y =x -x 13的图像大致为( )解析:选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x 可得x 2>1,即x >1,结合选项,选A.2.已知二次函数的图像如图所示,那么此函数的解析式可能是( )A .y =-x 2+2x +1B .y =-x 2-2x -1C .y =-x 2-2x +1D .y =x 2+2x +1解析:选C 设二次函数的解析式为f (x )=ax 2+bx +c (a ≠0),由题图像得:a <0,b <0,c >0.选C.3.已知函数f (x )=x 12,若0<a <b <1,则下列各式中正确的是( ) A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b )解析:选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a .4.(2013·浙江高考)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0解析:选A 由f (0)=f (4)得f (x )=ax 2+bx +c 的对称轴为x =-b2a =2,∴4a +b =0,又f (0)>f (1),∴f (x )先减后增,于是a >0.5.关于x 的二次方程(m +3)x 2-4mx +2m -1=0的两根异号,且负根的绝对值比正根大,那么实数m 的取值范围是( )A .-3<m <0B .0<m <3C .m <-3或m >0D .m <0或m >3解析:选A 由题意知⎩⎨⎧Δ=16m 2-4(m +3)(2m -1)>0, ①x 1+x 2=4m m +3<0, ②x 1·x 2=2m-1m +3<0, ③由①②③得-3<m <0,故选A.6.“a =1”是“函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数”的________条件. 解析:函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数,则满足对称轴--4a 2=2a ≤2,即a ≤1,所以“a =1”是“函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数”的充分不必要条件.答案:充分不必要7.(2014·中山一模)若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于________.解析:函数f (x )=x 2-ax -a 的图像为开口向上的抛物线,∴函数的最大值在区间的端点取得,∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧ -a >4-3a ,-a =1或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1.答案:18.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么,不等式f (x +2)<5的解集是________.解析:设x <0,则-x >0.∵当x ≥0时,f (x )=x 2-4x ,∴f (-x )=(-x )2-4(-x ). ∵f (x )是定义在R 上的偶函数, ∴f (-x )=f (x ), ∴f (x )=x 2+4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x ≥0,x 2+4x ,x <0.由f (x )=5得⎩⎪⎨⎪⎧x 2-4x =5,x ≥0或⎩⎪⎨⎪⎧x 2+4x =5,x <0,∴x =5或x =-5.观察图像可知由f (x )<5,得-5<x <5. ∴由f (x +2)<5,得-5<x +2<5,∴-7<x <3. ∴不等式f (x +2)<5的解集是{x |-7<x <3}. 答案:{x |-7<x <3} 9.已知幂函数f (x )=x21()m m -+(m ∈N *),经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解:∵幂函数f (x )经过点(2,2), ∴2=221()m m -+,即212=221()m m -+ .∴m 2+m =2. 解得m =1或m =-2. 又∵m ∈N *, ∴m =1.∴f (x )=x 12,则函数的定义域为[0,+∞),并且在定义域上为增函数. 由f (2-a )>f (a -1) 得⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1, 解得1≤a <32.∴a 的取值范围为⎣⎡⎭⎫1,32. 10.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-mx 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . 当a >0时,f (x )在[2,3]上为增函数,故⎩⎪⎨⎪⎧ f (3)=5,f (2)=2,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =5,4a -4a +2+b =2,⇒⎩⎪⎨⎪⎧a =1,b =0. 当a <0时,f (x )在[2,3]上为减函数,故⎩⎪⎨⎪⎧f (3)=2,f (2)=5,⇒⎩⎪⎨⎪⎧9a -6a +2+b =2,4a -4a +2+b =5,⇒⎩⎪⎨⎪⎧a =-1,b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2. g (x )=x 2-2x +2-mx =x 2-(2+m )x +2, ∵g (x )在[2,4]上单调,∴2+m 2≤2或m +22≥4.∴m ≤2或m ≥6.故m 的取值范围为(-∞,2]∪[6,+∞). 第Ⅱ组:重点选做题1.(创新题)已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13 B.12 C.34D .1解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2,∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1,∴m ≥1,n ≤0,m -n ≥1. ∴m -n 的最小值是1.2.(2013·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像如图所示,结合图像可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像有两个交点.答案:⎝⎛⎦⎤-94,-2。
2015届高考数学(文科)一轮总复习导数及其应用

2015 届高考数学(文科)一轮总复习导数及其应用第三篇导数及其应用第 1 讲导数的观点及运算基础稳固题组( 建议用时: 40 分钟 )一、填空题1.(2014 ?深圳中学模拟 ) 曲线 y =x3 在原点处的切线方程为 ________.分析∵ y′= 3x2 ,∴= y′ |x = 0= 0,∴曲线 y= x3 在原点处的切线方程为y= 0.答案y= 02 .已知 f(x)=xlnx,若f′ (x0)=2,则x0=________.分析f(x)的定义域为(0,+∞ ),f′ (x)=lnx+1,由 f ′ (x0) = 2,即 lnx0 + 1= 2,解得 x0= e.答案 e3 .(2014 ?辽宁五校联考 ) 曲线 y= 3lnx +x+ 2 在点 P0 处的切线方程为 4x- y- 1= 0,则点 P0 的坐标是 ________.分析由题意知 y′= 3x+1= 4,解得 x= 1,此时 4× 1 -y- 1=0,解得 y= 3,∴点 P0 的坐标是 (1,3) .答案 (1,3)4 .(2014 ?烟台期末 ) 设函数 f(x)=xsinx+cosx的图象在点 (t ,f(t))处切线的斜率为,则函数=g(t)的部分图象为 ________.分析函数 f(x)的导函数为 f ′ (x) =(xsinx+cosx)′=xcosx ,即= g(t) = tcost ,则函数 g(t) 为奇函数,图象对于原点对称,清除①,③ . 当 0< t <π 2 时, g(t) > 0,因此清除④,选② .答案②5.曲线 y= sinxsinx + cosx - 12 在点π 4, 0 处的切线的斜率为 ________.分析y′= cos2x + sin2x sinx + cosx2= 11+sin2x ,故所求切线斜率==12.答案126.(2013 ?广东卷 ) 若曲线 y= ax2 - lnx 在点 (1 ,a) 处的切线平行于 x 轴,则 a= ________.分析y′= 2ax- 1x ,∴ y′ |x = 1=2a- 1= 0,∴a=12.7 答案12.已知 f(x)=x2+3xf′ (2),则f′ (2)=________. 分析由题意得 f ′ (x) = 2x+ 3f ′ (2) ,∴f ′ (2) = 2× 2+ 3f ′(2) ,∴ f ′ (2) =- 2.答案- 28 .(2013 ?江西卷 ) 若曲线 y=xα+ 1( α∈ R)在点 (1,2) 处的切线经过坐标原点,则α= ________.分析y′=α xα- 1,∴斜率= y ′ |x = 1=α= 2- 01-0= 2,∴α= 2.答案 2二、解答题9.求以下函数的导数:(1)y=ex?lnx;(2)y=xx2+1x+1x3;(3)y=x-sinx2cosx2;(4)y=(x+1)1x-1.解(1)y ′= (ex ?lnx) ′= exlnx + ex ?1x = exlnx +1x.(2)∵ y= x3 +1+ 1x2,∴ y ′= 3x2- 2x3.(3)先使用三角公式进行化简,得y =x- sinx2cosx2 = x- 12sinx ,∴ y′=x- 12sinx ′= x′-12(sinx) ′= 1- 12cosx.(4)先化简, y = x?1x-x+ 1x - 1=,∴y′= n=- 12x1+ 1x.10 .(2014 ?南通二模 )f(x)=ax-1x,g(x)=lnx,x>0,a∈ R 是常数.(1)求曲线 y = g(x) 在点 P(1 , g(1)) 处的切线 l.(2)能否存在常数 a,使 l 也是曲线 y= f(x) 的一条切线.若存在,求 a 的值;若不存在,简要说明原因.解 (1) 由题意知, g(1) = 0,又 g′(x) = 1x, g′ (1)=1,因此直线 l 的方程为 y= x- 1.(2)设 y=f(x) 在 x= x0 处的切线为 l ,则有ax0 - 1x0= x0- 1, a+1x20 = 1,解得 x0= 2,a= 34,此时 f(2)=1,即当 a=34 时, l 是曲线 y= f(x)在点Q(2,1)的切线.能力提高题组( 建议用时: 25 分钟 )一、填空题1.(2014 ?盐城一模 ) 设 P 为曲线 c :y= x2+ 2x+ 3 上的点,且曲线 c 在点 P 处切线倾斜角的取值范围是0,π 4,则点 P 横坐标的取值范围是________.分析设 P(x0 , y0) ,倾斜角为α,y′= 2x+2,则=tan α= 2x0+ 2∈ [0,1],解得x0∈-1,-12.答案- 1,- 122 .设f0(x)=sinx,f1(x)=f0′ (x),f2(x)=f1′(x) ,, fn(x)=f′ n-1(x),n∈ N*,则f2013(x)=________.分析f1(x) = f0 ′ (x) = cosx , f2(x) = f1 ′ (x) =-4 / 6sinx ,f3(x) =f2 ′(x) =-cosx ,f4(x) =f3 ′(x) =sinx ,,由规律知,这一系列函数式值的周期为4,故f2013(x)f1(x) = cosx.答案cosx3 .(2014 ?武汉中学月考) 已知曲线f(x) = xn+ 1(n ∈ N*)与直线 x= 1 交于点轴交点的横坐标为P,设曲线y= f(x)xn ,则log2013x1在点 P 处的切线与x+ log2013x2 ++log2013x2012 的值为________.分析 f ′ (x) = (n + 1)xn ,=f ′(1) = n+1,点 P(1,1) 处的切线方程为y- 1= (n + 1)(x - 1) ,令 y= 0,得 x = 1- 1n+ 1= nn+1,即 xn= nn+ 1,∴ x1 ?x2 ? ? x2012 = 12 × 23 × 34 × × 20112012 ×20122013 = 12013 ,则log2013x1+log2013x2++log2013x2012=log2013(x1x2x2012) =- 1.答案- 1二、解答题4 .设函数处的切线方程为f(x)=ax-bx,曲线7x- 4y- 12= 0.y= f(x) 在点(2 ,f(2))(1)求 f(x) 的分析式;(2)证明:曲线 y= f(x) 上任一点处的切线与直线x= 0和直线 y= x 所围成的三角形面积为定值,并求此定值.(1)解方程 7x-4y- 12=0 可化为 y= 74x-3,当 x= 2 时, y= 12. 又 f ′(x) = a+ bx2,于是 2a- b2=12, a+b4= 74,解得 a=1, b= 3. 故 f(x)=x-3x.(2)证明设P(x0,y0)为曲线上任一点,由 f ′ (x) = 1+ 3x2 知曲线在点 P(x0 ,y0) 处的切线方程为 y- y0= 1+ 3x20(x - x0) ,即 y- (x0 - 3x0) = 1+3x20(x - x0) .令 x=0,得 y=- 6x0,进而得切线与直线x= 0 交点坐标为0,- 6x0.令 y= x,得 y= x= 2x0,进而得切线与直线 y= x 的交点坐标为 (2x0,2x0) .因此点 P(x0 ,y0) 处的切线与直线x=0,y=x 所围成的三角形面积为12- 6x0|2x0| = 6.故曲线y= f(x) 上任一点处的切线与直线x= 0 和直线y = x 所围成的三角形面积为定值,此定值为 6.。
高考数学一轮复习第三章导数及其应用4导数的综合应用课件新人教A版2

-15考点1
考点2
考点3
当x变化时,g(x),g'(x)的变化情况如下表:
2
-∞,
3
x
g'(x)
+
0
单调递增↗
g(x)
2
,4
3
2
3
68
27
则函数 g(x)的极大值为 g
-
4
(4,+∞)
0
+
-m 单调递减↘ -16-m 单调递增↗
2
3
=
68
27
-m,极小值为 g(4)=-16-m.
∴要使 g(x)的图象与 x 轴有三个不同的交点,
则欲证
12 - 22
>2a,
只需证 2a(12 − 22 )>3x2-x1.
只需证 2a(12 − 22 )>2(x2-x1)+(x1+x2).
只需证 a(x1-x2)+
1 - 2
1 + 2
1
> .
2
因为 f'(x1)=0,f'(x2)=0,ax1=-ln x1,ax2=-ln x2,
(3)证明:由题设c>1,
设g(x)=1+(c-1)x-cx,
则g'(x)=c-1-cxln c,
ln
令 g'(x)=0,解得 x0=
-1
ln
ln
.
当 x<x0 时,g'(x)>0,g(x)单调递增;
当 x>x0 时,g'(x)<0,g(x)单调递减.
由(2)知 1<
-1
ln
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20143-20154学年度南昌市新课标高三第一轮复习训练题数学(四)(导数及其应用)命题人:刘婷 学校:江西师大附中 审题人:朱涤非 学校:江西师大附中一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.30(),()6f x x f x '==,则0x =BC .D .1±2.设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为[0,]4π,则点P 横坐标的取值范围为A .1[1,]2--B .[-1,0]C .[0,1] D.1[,1]23.函数321()5(0)3f x ax x a =-+>在(0,2)上不单调,则a 的取值范围是A .01a <<B .102a << C.112a << D .1a >4.(理)⎰-1021dx x 的值是A .8πB .4πC .2πD .π(文) 若c bx ax x f ++=24)(满足2)1(='f ,则=-')1(fA .4-B .2-C .2D .45.已知向量,a b 满足||2||0a b =≠,且关于x 的函数3211()||()32f x x a x a b x =++⋅在R 上单调递增,则,a b 的夹角的取值范围是 A.[0,)3πB.[0,]3πC.(,]3ππD.2(,]33ππ6.(理)由直线1,2,2x x ==曲线1y x=-及x 轴所围图形的面积为 A .2ln 2 B .2ln 2- C .1ln 22 D .154(文)设函数()142cos 3sin 323-++=x x x x f θθ,其中⎥⎦⎤⎢⎣⎡π∈θ650,,则导数()1-'f 的取值范围A .[]63,B .[]343+,C .[]634,-D .[]3434+-,7.已知函数))((R x x f ∈满足1)1(=f ,且)(x f 的导函数21)('<x f ,则212)(+<x x f 的解集为A. {|11}x x -<<B. {|1}x x <-C. {|1x x <-或1}x >D. {}1>x x8.设函数()f x 在R 上可导,其导函数为()f x ',且函数(2)()y x f x '=-的图像如图所示,则下列结论中一定成立的是A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(1)f 和极小值(2)fC .函数()f x 有极大值(1)f 和极小值(1)f -D .函数()f x 有极大值(1)f -和极小值(2)f9.若函数321(02)3x y x x =-+<<图象上任意点处切线的斜率为k ,则k 的最小值是 A .1 B .12C .0D .1-10.已知βα,是三次函数bx ax x x f 22131)(23++=的两个极值点,且)2,1(),1,0(∈∈βα,则2-b 的取值范围是号1 2 3 4 5 6 7 8 9 10答案二、填空题:本大题共5小题;每小题5分,共25分,把答案填在题中的横线上。
11.函数x x f ln )(=的图像在点1=x 处的切线方程是 . 12.若θ为曲线3232y x x ax =+++的切线的倾斜角,且所有θ组成的集合为[,)42ππ,则实数a 的值为______.13.已知函数11()sin 24f x x x x =-的图象在点00(,())A x f x 处的切线斜率为12,则0tan 2x 的值为________.14.函数x e x x f )3()(-=的单调递增区间是15.设56)1()1()(x x x f -+=,则函数()f x '中3x 的系数是 .三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或推演步骤。
16.已知函数3211()(,)32a f x x x bx a ab +=-++∈R ,且其导函数()f x '的图像过原点. (1)当1a =时,求函数()f x 的图像在3x =处的切线方程; (2)若存在0x <,使得()9f x '=-,求a 的最大值.17.二次函数()f x 满足(0)(1)0f f ==,且最小值是14-. (1)求()f x 的解析式;(2)实数0a ≠,函数22()()(1)g x xf x a x a x =++-,若()g x 在区间(3,2)-上单调递减,求实数a 的取值范围.18.已知函数2()(33)xf x x x e =-+⋅定义域为[]t ,2-(2t >-).(1)试确定t 的取值范围,使得函数)(x f 在[]t ,2-上为单调函数; (2)当14t <<时,求满足()()201320-='t ex f x 的0x 的个数.19.设函数2()ln (1)(0,2a f x x x a x a a =+-+>为常数). (1)讨论()f x 的单调性;(2)若1a =,证明:当1x >时,212()21x f x x x <--+20.已知函数)()(b ax e x f x+=,曲线)(x f y =经过点)2 , 0(P ,且在点P 处的切线为l :24+=x y .(1)求证:曲线)(x f y =和直线 l 只有一个公共点;(2)是否存在常数k ,使得]1 , 2[--∈x ,)24()(+≥x k x f 恒成立?若存在,求常数k 的取值范围;若不存在,说明理由.21.设函数1()ln ()f x x a x a R x=--∈. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,假设过点1122(,()),(,())A x f x B x f x 的直线的斜率 为k .问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.2014-2015学年度南昌市新课标高三第一轮复习训练题数学(四)参考答案一.选择题:本大题共10小题,每小题5分,共50分题号 1 2 3 45 67 8 9 10答案CADBBADCDA二.填空题:本大题共5小题;每小题5分,共25分11.1-=x y ; 12.4a =; 13 14.()+∞,2; 15.40. 三.解答题:本大题共6小题,共75分16.解:3211()32a f x x x bx a +=-++,2()(1)f x x a x b '=-++ 由(0)0f '=得 0b =,()(1)f x x x a '=--.(1) 当1a =时, 321()13f x x x =-+,()(2)f x x x '=-,(3)1f =,(3)3f '=所以函数()f x 的图像在3x =处的切线方程为13(3)y x -=-,即380x y --= (2) 存在0x <,使得()(1)9f x x x a '=--=-,991()()6a x x x x --=--=-+-≥=,7a ≤-, 当且仅当3x =-时,7.a =-所以a 的最大值为.17.解:(1)由二次函数()f x 满足(0)(1)0f f ==.设()(1)(0)f x mx x m =-≠,则221()()24m f x mx mx m x =-=--. 又()f x 的最小值是14-,故144m -=-.解得1m =.∴2()f x x x =-; (2)2232222322()()(1)g x xf x a x a x x x ax x a x x ax a x =++-=-++-=+-.∴22()32(3)()g x x ax a x a x a '=+-=-+.由'()0g x =,得3a x =,或x a =-,又0a ≠,故3aa ≠-. 当3a a >-,即0a >时,由'()0g x <,得3a a x -<<. ∴()g x 的减区间是(,)3aa -,又()g x 在区间(3,2)-上单调递减,∴323a a -≤-⎧⎪⎨≥⎪⎩,解得36a a ≥⎧⎨≥⎩,故6a ≥(满足0a >);当3a a <-,即0a <时,由'()0g x <,得3ax a <<-. ∴()g x 的减区间是(,)3aa -,又()g x 在区间(3,2)-上单调递减,∴332aa ⎧≤-⎪⎨⎪-≥⎩,解得92a a ≤-⎧⎨≤-⎩,故9a ≤-(满足0a <).综上所述得9a ≤-,或6a ≥.∴实数a 的取值范围为(,9][6,)-∞-+∞. 另解:22()32g x x ax a '=+-,∵0a ≠,∴ 2(0)0g a '=-< ∵()g x 在区间(3,2)-上单调递减,∴22(3)02760(2)01240g a a g a a '-≤⎧--≤⎧⇒⎨⎨'≤+-≤⎩⎩,解得9a ≤-,或6a ≥. ∴实数a 的取值范围为(,9][6,)-∞-+∞.18.解:(1)解:因为2()(33)(23)(1)x x xf x x x e x e x x e '=-+⋅+-⋅=-⋅ 由()010f x x x '>⇒><或;由()001f x x '<⇒<<, 所以()f x 在(,0),(1,)-∞+∞上递增,在(0,1)上递减, 欲)(x f 在[]t ,2-上为单调函数,则20t -<≤(2)因为02000()x f x x x e '=-,所以020()2(1)3x f x t e '=-即为22002(1)3x x t -=-, 令222()(1)3g x x x t =---,从而问题转化为求方程222()(1)3g x x x t =---=0在(2,)t -上的解的个数,因为222(2)6(1)(2)(4)33g t t t -=--=-+-,221()(1)(1)(2)(1)33g t t t t t t =---=+-,所以当14t <<时,(2)0()0g g t ->>且,但由于22(0)(1)03g t =--<,所以()0g x =在(2,)t -上有两解.即,满足020()2(1)3x f x t e '=-的0x 的个数为2 19.解:(1)()f x 的定义域为(0,)+∞,21(1)1(1)(1)()(1)ax a x ax x f x ax a x x x-++--'=+-+==.当01a <<时,由()0f x '>解得01x <<或1x a >,由()0f x '<解得11x a<<,所以函数()f x 在(0,1),1(,)a +∞上单调递增,在1(1)a,上单调递减.当1a =时,()0f x '≥对0x >恒成立,所以函数()f x 在(0,)+∞上单调递增.当1a >时,由()0f x '>解得1x >或10x a <<,由()0f x '<解得11x a<<.所以函数()f x 在1(0)a ,,(1,)+∞上单调递增,在1(,1)a上单调递减.(2)证明:当1a =时,原不等式等价于2ln 201xx x x -+<+. 因为1x >12x +=,因此221ln 2ln 2112x x x x x x x x x +-+-++++. 令21()ln 212x x g x x x x +=-+++,则322352122()(1)x x x g x x x --++'=+. 令3235()2122h x x x x =--++,当1x >时,295()4022h x x x '=--+<,所以()h x 在(1,)+∞上单调递减,从而()(1)0h x h <=,即()0g x '<, 所以()g x 在(1,)+∞上单调递减,则()(1)0g x g <=,所以当1x >时,212()21xf x x x <-+20.解:(1)()()x f x e ax a b '=++依题意,⎩⎨⎧==4)0(2)0(/f f 即⎪⎩⎪⎨⎧=++⨯=+⨯4)0(2)0(00b a a e b a e ,解得2==b a记)12(2)1(2)24()()(+-+=+-+=x x e x b ax e x g x x ,则()2(2)4x g x e x '=+- 当0=x 时,()0g x '=;当0>x 时,()0g x '>;当0<x 时,()0g x '<, 所以0)0()(=≥g x g ,等号当且仅当0=x 时成立,即24)(+≥x x f , 等号当且仅当0=x 时成立,曲线)(x f y =和直线 l 只有一个公共点 (2)]1 , 2[--∈x 时,024<+x ,所以)24()(+≥x k x f 恒成立当且仅当12)1(24)(++=+≥x x e x x f k x记12)1()(++=x x e x h x ,]1 , 2[--∈x ,22(23)()(21)x e x x h x x +'=+,由()0h x '=得0=x (舍去),23-=x当232-<≤-x 时,()0h x '>;当123-≤<-x 时,()0h x '< ,所以12)1()(++=x x e x h x 在区间]1 , 2[--上的最大值为2341)23(-=-e h ,常数k 的取值范围为321[,)4e -+∞ .21.解:(1)()f x 的定义域为(0,)+∞,2211()1a x ax f x x x x-+'=+-=.令2()1g x x ax =-+,其判别式24a ∆=-.①当||2a ≤时,0∆≤,()0f x '≥.故()f x 在(0,)+∞上单调递增.②当2a <-时,0∆>,()0g x =的两根都小于0.在(0,)+∞上,()0f x '>. 故()f x 在(0,)+∞上单调递增.③当2a >时,0∆>,()0g x =的两根为12x x ==. 当10x x <<时,()0f x '>;当12x x x <<时,()0f x '<;当2x x >时,()0f x '>. 故()f x 分别在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 上单调递减. (2)由(1)知,2a >.因为1212121212()()()(ln ln )x x f x f x x x a x x x x --=-+--,所以1212121212()()ln ln 11f x f x x x k a x x x x x x --==+-⋅--. 又由(1)知,121x x =,于是1212ln ln 2x x k a x x -=-⋅-.若存在a ,使得2k a =-,则1212ln ln 1x x x x -=-.即1212ln ln x x x x -=-.亦即222212ln 0(1).(*)x x x x --=>再由(1)知,函数1()2ln h t t t t=--在(0,)+∞上单调递增,而21x >,所以222112ln 12ln101x x x -->--=.这与(*)式矛盾.故不存在a ,使得2k a =-.。