八年级下期末质量检测数学试卷(2020年最新)

合集下载

2020人教版八年级下册数学《期末检测试卷》(附答案解析)

2020人教版八年级下册数学《期末检测试卷》(附答案解析)

人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8B. x <8C. x≤8D. x >0且x≠82.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 34.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( ) A. 42、42B. 43、42C. 43、43D. 44、435.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:下列结论错误的是( ) A. 当40h =时,t 约2.66秒 B. 随高度增加,下滑时间越来越短 C. 估计当80h cm =时,t 一定小于2.56秒 D. 高度每增加了10cm ,时间就会减少0.24秒 6.如果点A (﹣2,a )在函数y 12=-x +3的图象上,那么a 的值等于( ) A. ﹣7B. 3C. ﹣1D. 4Y的周长为( 7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD)A. 20B. 16C. 12D. 88.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差11.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A. 1B. 2C. 3D. 412.如图,点E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB( )=∠CFD 中,添加一个条件,使四边形DEBF 是平行四边形,可添加的条件是A. ①②③B. ①②④C. ①③④D. ②③④13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.三、解答题(本大题共7小题,共63分)20.计算:12 (27246)12 33+-⋅21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据;(1)计算甲车间样品合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.答案与解析一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8 B. x <8C. x≤8D. x >0且x≠8【答案】C 【解析】根据二次根式的性质,被开方数大于等于0可得: 80x -≥,解得: 8x ≤,故选C. 2.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 【答案】B 【解析】 【分析】直接利用二次根式的性质分别化简的得出答案. 【详解】A .(5-)2=5,正确,不合题意; B .ab a b =(a ≥0,b ≥0),故此选项错误,符合题意; C .23π-=()π﹣3,正确,不合题意;D .82233=,正确,不合题意. 故选B .【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 3【答案】C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD=22AB BD-=4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.4.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:42442+=43,x=18(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.5.在实验课上,小亮利用同一块木板测得小车从不同高度()h与下滑的时间()t的关系如下表:下列结论错误的是()A. 当40h=时,t约2.66秒B.随高度增加,下滑时间越来越短C. 估计当80h cm=时,t一定小于2.56秒D. 高度每增加了10cm,时间就会减少0.24秒【答案】D 【解析】【分析】一个用图表表示的函数,根据给出的信息,对四个选项逐一分析,即可解答.【详解】A选项:当h=40时,t约2.66秒;B选项:高度从10cm增加到50cm,而时间却从3.25减少到2.56;C选项:根据B中的估计,当h=80cm时,t一定小于2.56秒;D选项:错误,因为时间的减少是不均匀的;故选D.【点睛】考查了函数的概念,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).6.如果点A(﹣2,a)在函数y12=-x+3的图象上,那么a的值等于()A. ﹣7B. 3C. ﹣1D. 4 【答案】D【解析】【分析】把点A的坐标代入函数解析式,即可得a的值.【详解】根据题意,把点A的坐标代入函数解析式,得:a12=-⨯(﹣2)+3=4.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,是基础题型.7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCDY的周长为( )A. 20B. 16C. 12D. 8【答案】B【解析】【分析】首先证明:OE=12BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12 BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.【答案】A【解析】试题解析:当k>0,b>0时,函数y=kx+b的图象过第一、二、三象限;当k<0,b<0时,函数y=kx+b的图象过第一、二、四象限.由此可知选项A是正确的.故选A.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形【答案】D【解析】【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB=BC 时,它是菱形,故本选项不符合题意;B. 根据对角线互相垂直的平行四边形是菱形知:当AC ⊥BD 时,四边形ABCD 是菱形,故本选项不符合题意;C. 根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项不符合题意;D. 根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项符合题意; 故选D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差 【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 11.对于函数y=﹣2x+2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y 的值随x 的增大而增大,其中正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0, ∴一次函数中y 随x 的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x >1时,y <0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y 随x 的增大而减小,④不正确.故选B【点睛】本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.12.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴DEBF是平行四边形,故②正确;添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故③正确;添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D.点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案【答案】B【解析】【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2mn即四个直角三角形的面积和,从而不难求得(m+n)2.【详解】(m+n)2=m2+n2+2mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣2)=24.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.【答案】C【解析】【分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=12x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.【答案】8米.【解析】【分析】在Rt△ABC中,利用勾股定理即可求出BC的值.【详解】在Rt△ABC中,AB2=AC2+BC2.∵AB=10米,AC=6米,∴BC22=-=8米,即梯子的底端到墙的底端的距离为8米.AB AC故答案为8米.【点睛】本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.【答案】1【解析】这组数出现次数最多的是29;∴这组数的众数是29.∵共42人,∴中位数应是第21和第22人的平均数,位于最中间的数是28,28,∴这组数的中位数是28.∴该班中考英语口语考试成绩的众数比中位数多29﹣28=1分,故答案为1.【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.【答案】20【解析】【分析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得30030 90050k b k b=+⎧⎨=+⎩,解得,30600kb=⎧⎨=-⎩,则y=30x-600.当y=0时,30x-600=0,解得:x=20.故答案为20.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.【答案】13【解析】【分析】由AC ⊥BC ,AB =10,AD =BC=6,根据勾股定理求得AC 的长,得出OA 的长,然后再由勾股定理求得OB 即可.【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,OD=OB,OA=OC,∵AC ⊥BC ,∴=8,∴OC=4,∴∴【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.三、解答题(本大题共7小题,共63分)20.计算:【答案】6【解析】分析:先将二次根式化为最简,然后合并同类二次根式,根据二次根式的乘法进行运算即可.详解:原式1633⎛=⨯⨯⨯ ⎝⎭=⨯==6.点睛:考查二次根式混合运算,掌握运算顺序是解题的关键.21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠ABC 的度数.【答案】(1)见解析;(2)∠ABC =45°.【解析】【分析】(1)根据勾股定理作出边长为5的正方形即可得;(2)连接AC ,根据勾股定理逆定理可得△ABC 是以AC 、BC 为腰的等腰直角三角形,据此可得答案.【详解】(1)如图1所示:(2)如图2,连AC ,则22221251310BC AC AB ==+==+=,.∵2225510+=()()(),即BC 2+AC 2=AB 2,∴△ABC 为直角三角形,∠ACB =90°,∴∠ABC =∠CAB =45°.【点睛】本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别165.5~170.5 170.5~175.5 175.5~180.5 180.5~185.5 185.5~190.5 190.5~195.5频数甲车间 2 4 5 6 2 1乙车间 1 2 a b 2 0分析数据:车间平均数众数中位数方差甲车间180 185 180 43.1乙车间180 180 180 22.6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.【答案】(1)甲车间样品的合格率为55% (2)乙车间的合格产品数为750个;(3)乙车间生产的新产品更好,理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm 的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为56100%55%20+⨯=; (2)∵乙车间样品的合格产品数为()2012215-++=(个), ∴乙车间样品的合格率为15100%75%20⨯=, ∴乙车间的合格产品数为100075%750⨯=(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.【答案】(1) y=2x+1;(2)不;(3)0.25. 【解析】【分析】(1)用待定系数法求解函数解析式;(2)将点P 坐标代入即可判断;(3)求出函数与x 轴、y 轴的交点坐标,后根据三角形的面积公式即可求解.【详解】解答:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(-1,1)代入函数解析式,1≠-2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12 -,此函数与x轴、y轴围成的三角形的面积为:11110.25 224⨯⨯-==24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.【答案】见解析;【解析】【分析】连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?【答案】(1) y=0.8x+50;(2)见解析.【解析】分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.详解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=0.9x;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=0.8x+50;(2)当0.9x<0.8x+50时,解得:x<500;当0.9x=0.8x+50时,x=500;当0.9x>0.8x+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【答案】见解析【解析】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.【点评】此题考查了菱形的判定与性质以及全等三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.。

八年级数学第二学期期末试卷(2020年最新)

八年级数学第二学期期末试卷(2020年最新)

23.解:(1) l1 : y 的值随 x 的增大而增大;-----------------------------------------------1 分
l2 : y 的值随 x 的增大而减少.---------------------------------------------------1 分
15. 要 使 平 行 四 边 形 ABCD 为 正 方 形 , 须 再 添 加 一 定 的 条 件 , 添 加 的 条 件 可 以

.(填上一组符合题目要求的条件即可)
二、选择题(本大题共 4 题,每题 2 分,满分 8 分)
16. 下 列 直 线 中 , 经 过 第 一 、 二 、 三 象 限 的 是 …………………………………… ( )
(C) 明天肯定下雨;
(D)明天降水的可能性比较大.
18. 在 □ ABCD 中 , 对 角 线 AC, BD 交 于 点 O , 下 列 式 子 中 一 定 成 立 的 是 …
()
(A) AC BD ; (B) OA OC ; (C) AC BD ; (D) AO OD
19. 正 方 形 、 矩 形 、 菱 形 都 具 有 的 特 征 是 ……………………………………… ()
( 2) 设 直 线 l1 , l2 的 函 数 表 达 式 分 别 为 y a1x b1 (a1 0), y a2 x b2 (a2 0) ,
由题意得
a1 b1
b1 1
1

3aa2 2b2b210
解得
a1 b1
2

1
a2 b2
3 2
1 2
-----------
4

直线
l1

2020年人教版八年级下学期数学期末测试卷 (含答案)

2020年人教版八年级下学期数学期末测试卷 (含答案)

人教版八年级下册数学期末测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 12 小题,每题 3 分,共计36分)1. 下列计算正确的是()=1 B.√4−√3=1 C.√6÷√3=2 D.√4=±2A.√2√22. 函数y=√x−3中,自变量x的取值范围是()A.x<0B.x≥0C.x≥3D.x<33. 关于一次函数y=−2x+3,下列结论正确的是()A.图象过点(1, −1)B.图象经过一、二、三象限时,y<0C.y随x的增大而增大D.当x>324. 下列说法不正确的有()①三内角之比是1:2:3的三角形是直角三角形;②三内角之比为3:4:5的三角形是直角三角形;③三边之比是3:4:5的三角形是直角三角形;④三边a,b,c满足关系式a2−b2=c2的三角形是直角三角形.A.1个B.2个C.3个D.4个5. 如图,菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.486. 已知一次函数y=kx−m−2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<07. 已知△ABC的三边之长分别为a,1,3,则化简|9−2a|−√9−12a+4a2的结果是( )A.12−4aB.4a−12C.12D.−128. 某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:则这十一双运动鞋尺码的众数和中位数分别为()A.40,41B.41,41C.41,42D.42,439. 某班同学在探究弹簧长度跟外力的关系变化时,实验记录得到的数据如表:则y关于x的函数图象是()A. B.C. D.10. 下列命题中:①对角线互相平分的四边形是平行四边形;②对角线相等的四边形是矩形;③一组对角相等,一组对边平行的四边形是平行四边形;④对角线平分一组对角的平行四边形是菱形;⑤对角线相等且互相垂直的四边形是正方形.其中正确的命题有()个A.1B.2C.3D.411. 如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(m, n),且2m+n=6,则直线AB的解析式是()A.y=−2x−3B.y=−2x−6C.y=−2x+3D.y=−2x+612. 如图,已知在△ABC中,∠BAC=90∘,D,E,F分别是△ABC三边的中点,AB=4√5,AC=2√5,则下列判断中不正确的是()A.AE=DFB.S△ADE=10C.四边形ADEF是矩形D.CE=5卷II(非选择题)二、填空题(本题共计 6 小题,每题 3 分,共计18分)=________.13. 计算:2√8÷√1214. 如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影拼成一个正方形,那么新正方形的边长是________.,a⋆b=ab−b2.15. 规定a#b=√a⋅√b+√ab(1)3#5=________;(2)2⋆(√3−1)=________.16. 如图所示,在格点图中,以格点A、B、C、D、E、F为顶点,你能画出________个平行四边形.并在图中画出来________.17.如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则▱ABCD的面积是________,DC边上的高AF的长是________.的图象相交于A,C两点,AB⊥x 18.如图,正比例函数y=x与反比例函数y=1x轴于B,CD⊥x轴于D,则四边形ABCD的面积为________.三、解答题(本题共计 8 小题,共计66分)19.(6分) 计算下列各小题.(1)√27√3−√8×√23(2)√12−√6÷√2+(1−√3)2.20.(6分) 若a,b,c满足的关系是√2a−5b+5+c+√3a−3b−c=√5−a+b+√a−b−5.求:(1)a,b,c的值;(2)√a−b⋅√c的值.x+2与x轴交于点A,与y轴交于点B,直线l2:y=−2x+ 21.(8分) 已知直线l1:y=12b经过点B且与x轴交于点C.(1)b=________;(答案直接填写在答题卡的横线上)(2)画出直线l2的图象;(3)求△ABC的面积.22.(8分) 甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?23.(8分) 已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=√5.(1)求平行四边形ABCD的面积S;平行四边形ABCD(2)求对角线BD的长.24.(8分) 如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行。

2020年绍兴市初二下期末质量检测数学试题含解析

2020年绍兴市初二下期末质量检测数学试题含解析

2020年绍兴市初二下期末质量检测数学试题一、选择题(每题只有一个答案正确)1.以下列长度的三条线段为边,能组成直角三角形的是( )A .6,7,8B .2,3,4C .3,4,6D .6,8,102.一组数据5,8,8,12,12,12,44的众数是( )A .5B .8C .12D .443.直角三角形有两边的长分别是3、4,则剩下一边的长是( )A .5B .7C .2D .7或54.下列二次根式化简后能与3合并成一项的是( )A .18B .0.3C .30D .3005.在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是( )A .84分B .87.6分C .88分D .88.5分6.如图,直线y=-x+2与x 轴交于点A ,则点A 的坐标是( )A .(2,0)B .(0,2)C .(1,1)D .(2,2)7.将正方形AOCB 和111ACC B 按如图所示方式放置,点(0,1)A 和点1A 在直线1y x =+上点C ,1C 在x 轴上,若平移直线1y x =+使之经过点1B ,则直线1y x =+向右平移的距离为( ).A .4B .3C .2D .18.如图,11△OA B 与OAB 的形状相同,大小不同,11△OA B 是由OAB 的各顶点变化得到的,则各顶点变化情况是( )A .横坐标和纵坐标都乘以2B .横坐标和纵坐标都加2C .横坐标和纵坐标都除以2D .横坐标和纵坐标都减29.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .10.如图,在中,已知是边上的高线,平分,交于点,,,则的面积等于( )A .B .C .D .二、填空题 11.已知函数y 2mx 5m 3=--,当m = _______ 时,直线过原点;m 为 _______ 数时,函数y 随x 的增大而增大 .12.如图,D 是ABC ∆中BC 边中点,60EDF ∠=,CE AB ⊥于E ,BF AC ⊥于F ,若4EF =,则BC =__________.13.已知方程ax 2+7x ﹣2=0的一个根是﹣2,则a 的值是_____.14.菱形的两条对角线长分别为10cm 和24cm ,则该菱形的面积是_________;15.如图,以ABC △的三边为边向外作正方形,其面积分别为123,.S S S ,且139,25S S ==,当2S =__________时.90ACB ∠=.16.在平行四边形ABCD 中,AE 平分BAD ∠交边BC 于E ,DF 平分ADC ∠交边BC 于F .若13AD =,5EF =,则AB =_________.17.在平行四边形ABCD 中,AB AC ⊥,若4AB =,6AC =,则BD 的长是__________.三、解答题18.如图,在凸四边形ABCD 中,AB BC CD ==,240ABC BCD ∠+∠=.(1)利用尺规,以CD 为边在四边形内部作等边CDE ∆(保留作图痕迹,不需要写作法).(2)连接AE ,判断四边形ABCE 的形状,并说明理由.19.(6分)已知:ABC △中,AB=AC ,点 D 、E 分别是线段 CB 、AC 延长线上的点,满足 ∠ADE = ∠ABC . (1)求证: AC ⋅ CE = BD ⋅ DC ;(2)若点 D 在线段 AC 的垂直平分线上,求证:BC AB CD AE=20.(6分)按要求作答(1)解方程2320x x --+=;(2)计算)(1515114172. 21.(6分)如图,直线l 1:y 1=−34x+m 与y 轴交于点A (0,6),直线l 2:y 2=kx+1分别与x 轴交于点B (-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .(1)求两直线交点D 的坐标;(2)求△ABD 的面积;(3)根据图象直接写出y1>y2时自变量x的取值范围.22.(8分)如图,已知BC∥EF,BC=EF,AF=DC.试证明:AB=DE.23.(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如右表格(部分信息未给出):根据以上信息解答下列问题:选项频数频率A 10 mB n0.2C 5 0.1D p0.4E 5 0.1(1)这次被调查的学生有多少人?(2)求表中m,n的值;(3)若该中学有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?24.(10分)已知,如图,在平行四边形ABCD中,AC、BD相交于O点,点E、F分别为BO、DO的中点,连接AF,CE.(1)求证:四边形AECF是平行四边形;(2)如果E,F点分别在DB和BD的延长线上时,且满足BE=DF,上述结论仍然成立吗?请说明理由.25.(10分)如图,在平面直角坐标系中,函数(0)k y x x=>的图象经过点A (1,4)和点B ,过点A 作AC ⊥x 轴,垂足为点C ,过点B 作BD ⊥y 轴,垂足为点D ,连结AB 、BC 、DC 、DA ,点B 的横坐标为a (a >1)(1)求k 的值(2)若△ABD 的面积为4;①求点B 的坐标,②在平面内存在点E ,使得以点A 、B 、C 、E 为顶点的四边形是平行四边形,直接写出符合条件的所有点E 的坐标.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、∵62+72≠82,∴不能构成直角三角形,故本选项错误;B 、∵22+32≠42,∴不能构成直角三角形,故本选项错误;C 、∵32+42≠62,∴不能构成直角三角形,故本选项错误;D 、∵62+82=102,∴能构成直角三角形,故本选项正确.故选:D .【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.2.C【解析】【分析】根据题目中的数据可以得到这组数据的众数,从而可以解答本题.【详解】解:∵一组数据5,8,8,12,12,12,44,∴这组数据的众数是12,故选C.【点睛】本题考查众数,解答本题的关键是明确题意,会求一组数据的众数.3.D【解析】【分析】分两种情况讨论,3,4都是直角边长,或者4为斜边长,利用勾股定理解出剩下一边的长即可.【详解】①若3,4都是直角边长,则斜边5=,②若4为斜边长,则剩下一条直角边=,或1.故选D.【点睛】本题考查勾股定理,当无法确定直角边与斜边时,分类讨论是解题的关键.4.D【解析】【分析】先把各二次根式化为最简二次根式,然后根据同类二次根式的定义分别进行判断.【详解】A,所以AB,所以B10C CD D 合并.故选D .【点睛】本题考查了同类二次根式:把各二次根式化为最简二次根式后,若被开方数相同,那么这些二次根式叫同类二次根式.5.B【解析】【分析】根据加权平均数的计算方法进行计算即可得出答案.故选B.【详解】 解:84488392387.6433⨯+⨯+⨯=++(分). 【点睛】本题考查了加权平均数.理解“权”的含义是解题的关键.6.A【解析】【分析】一次函数y =kx +b (k≠0,且k ,b 为常数)的图象是一条直线.令y=0,即可得到图象与x 轴的交点.【详解】解:直线2y x =-+中,令0y =.则02x =-+.解得2x =.∴(2,0)A .故选:A .【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数y =kx +b (k≠0,且k ,b 为常数)与x 轴的交点坐标是(−b k,0),与y 轴的交点坐标是(0,b ). 7.C【解析】已知点()0,1A 和正方形AOCB ,即可得C (1,0),代入1y x =+可得y=2,所以1A (1,2),又因正方形111ACC B ,可得1B (3,2),设平移后的直线设为0()1y x x =-+,将B 代入可求得02x =,即直线1y x =+向右平移的距离为2.故选C.8.A【解析】【分析】根据题意得:△OA1B1∽△OAB,然后由相似三角形的对应边成比例,求得答案.【详解】根据题意得:△O A1B1∽△OAB,∵O(0,0),A(2,1),B(1,3),B1点的坐标为(2,6),A1(4,2)∴横坐标和纵坐标都乘以2.故选A.【点睛】此题考查坐标与图形性质,相似三角形的性质,解题关键在于利用相似三角形的对应边成比例9.D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.10.A【解析】【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【详解】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,故选:A【点睛】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.二、填空题11.35- m>0 【解析】分析:(1)根据正比例函数的性质可得出m 的值;(2)根据一次函数的性质列出关于m 的不等式,求出m 的取值范围即可.详解:直线y 2mx 5m 3=--过原点,则0,0x y == ;即--=5m 30,解得:35m =-; 函数y 随x 的增大而增大 ,说明0k > ,即>2m 0 ,解得:0m >; 故分别应填:35;m>0 . 点睛:本题考查的是一次函数的图象与系数的关系,熟知一次函数的定义及增减性是解答此题的关键. 12.1【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半得出ED =12BC ,FD =12BC ,那么ED =FD ,又∠EDF =60°,根据有一个角是60°的等腰三角形是等边三角形判定△EDF 是等边三角形,从而得出ED =FD =EF =4,进而求出BC .【详解】解:∵D 是△ABC 中BC 边中点,CE ⊥AB 于E ,BF ⊥AC 于F ,∴ED =12BC ,FD =12BC , ∴ED =FD ,又∠EDF =60°,∴△EDF 是等边三角形,∴ED =FD =EF =4,∴BC =2ED =1.故答案为1.【点睛】本题考查了直角三角形斜边上的中线的性质,等边三角形的判定与性质,判定△EDF 是等边三角形是解题的关键.13.1【解析】【分析】根据一元二次方程的解的定义,将x =﹣2代入已知方程,通过一元一次方程来求a 的值.【详解】解:根据题意知,x =﹣2满足方程ax 2+7x ﹣2=0,则1a ﹣11﹣2=0,即1a ﹣16=0,解得,a=1.故答案是:1.【点睛】考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.14.110cm1.【解析】试题解析:S=12×10×14=110cm1.考点:菱形的性质.15.16【解析】【分析】先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.【详解】解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3−S1=16.故答案为:16.【点睛】此题主要考查了正方形的面积公式及勾股定理的应用,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.16.4或9【解析】【分析】首先根据题意画出图形,可知有两种形式,第一种为AE 与DF未相交,直接交于BC,第二种为AE与DF相交之后再交于BC.此时根据角平分线的定义和平行四边形的性质找到线段直接的关系.【详解】(1)如图:∵AE平分∠BAD∴∠BAE=∠DAE又∵AD∥BC∴∠DAE=∠BEA即∠BEA=∠BEA∴AB=BE同理可得:DC=FC又∵AB=DC∴BE=CF∵BC=AD=13,EF=5∴BE=FC=(BC-EF)÷2=(13-5)÷2=4 即AB=BE=4(2)∵AE平分∠BAD∴∠BAE=∠DAE又∵AD∥BC∴∠DAE=∠BEA即∠BEA=∠BEA∴AB=BE同理可得:DC=FC又∵AB=DC∴BE=CF则BE-EF=CE-EF即BF=CE而BC=AD=13,EF=5∴BF=CE=(BC-EF)÷2=(13-5)÷2=4∴BE=BF+EF=4+5=9故AB=BE=9综上所述:AB=4或9【点睛】本题解题关键在于,根据题意画出图形,务必考虑多种情况,不要出现漏解的情况.运用到的知识点有:角平分线的定义与平行四边形的性质.17.10【解析】【分析】根据平行四边形对角线的性质可得BD=2BO,AO=3,继而根据勾股定理求出BO的长即可求得答案. 【详解】∵四边形ABCD是平行四边形,∴BD=2BO,AO=11622AC=⨯=3,∵AB⊥AC,∴∠BAO=90°,∴BO=222243AB AO+=+=5,∴BD=10,故答案为:10.【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的对角线互相平分是解题的关键.三、解答题18.(1)见解析;(2)四边形ABCE是菱形,理由见解析.【解析】【分析】(1)分别以点C、D为圆心,CD长为半径画弧,在四边形ABCD内部交于点E,连接CE、DE即可得;(2)先证AB∥CE,结合AB=CE可得四边形ABCE是平行四边形,然后由AB=BC可得四边形ABCE是菱形.【详解】解:(1)如图所示,△CDE即为所求:(2)四边形ABCE是菱形,理由:∵△CDE是等边三角形,∴∠ECD=60°,CD=DE=CE,∵∠ABC+∠BCD=240°,∴∠ABC+∠BCE=180°,∴AB∥CE,又∵AB=BC=CD,∴AB=CE,∴四边形ABCE是平行四边形,∵AB=BC,∴四边形ABCE是菱形.【点睛】本题主要考查作图,等边三角形的性质和菱形的判定,解题的关键是掌握等边三角形和菱形的判定及性质.19.见解析【解析】【分析】()1证明ABD DCE∽,根据相似三角形的性质即可证明.()2证明ABC EAD∽,根据相似三角形的性质即可证明.【详解】()1ABC△中,AB=AC,∠=∠,ABC ACB∠+∠=180,∠+∠=ACB DCEABC ABD180,∴∠=∠,ABD DCE∠=∠+∠∠=∠+∠,,ABC BAD ADB ADE ADB CDE∠=∠.ADE ABC,BAD CDE ∠=∠ABD DCE ∴∽,AB BD DC CE∴= ,AB CE BD DC ∴⋅=⋅,AB AC =.AC CE BD DC ∴⋅=⋅()2点D 在线段AC 的垂直平分线上,,DA DC ∴=,DAC ACB ∴∠=∠,,DAC DAE BAC ACB EDC E ∠=∠+∠∠=∠+∠,BAD CDE ∠=∠,BAC E ∴∠=∠,ABC EAD ∴∽,BC AB AD AE= ,DA DC =.BC AB CD AE∴= 【点睛】考查相似三角形的判定与性质以及线段的垂直平分线的性质,掌握相似三角形的判定与性质是解题的关键.20. (1) 123322x x =-= (2) 3 【解析】【分析】(1)本题是一元二次方程,解答该方程可选择直接用公式法解答.(2)本题为实数的运算,首先把两个乘法先运算出来,第一个乘法式可以由平方差公式计算,第二个乘法可先把根式化为最简根式再进行约分,最后加减时,注意合并同类根式.【详解】(1)解:原方程中a=-1,b=-3,c=2首先用根的判别式24b ac =-△判断该二元一次方程是否有解得:224(3)4(1)2170b ac =-=--⨯-⨯=>,所以该方程有解由公式x =可得:x =即解得12x x ==(2)原式=211-511=-3=故答案为(1) 12x x ==(2) 3 【点睛】 本题考察了一元二次方程的解法和实数的混合运算,需要注意的是一元二次方程解答直接首先用根的判别式判断是否有解,在实数运算过程中,先算乘除与乘方后算加减,有括号的先算括号里面的.涉及到根式运算时,务必要化简根式与合并同类根式21.(1)D 点坐标为(4,3)(1)15;(3)x <4【解析】试题分析:(1)先得到两函数的解析式,组成方程组解求出D 的坐标;(1)由y 1=12x+1可知,C 点坐标为(0,1),分别求出△ABC 和△ACD 的面积,相加即可.(3)由图可直接得出y 1>y 1时自变量x 的取值范围.试题解析:(1)将A (0,6)代入y 1=−34x+m 得,m=6;将B (-1,0)代入y 1=kx+1得,k=12组成方程组得364{112x x -++解得4{3x y == 故D 点坐标为(4,3); (1)由y 1=12x+1可知,C 点坐标为(0,1),S △ABD =S △ABC +S △ACD =12×5×1+12×5×4=15; (3)由图可知,在D 点左侧时,y 1>y 1,即x <4时,出y 1>y 1.22.证明见解析【解析】【分析】首先根据平行线的性质可得∠BCA=∠EFD,再根据AF=DC可得AC=DF,然后可以证明△ABC≌△DEF,再根据全等三角形的性质可得AB=DE.【详解】∵BC∥EF (已知),∴∠BCA=∠EFD(两直线平行,内错角相等)∵AF=DC(已知),∴AF+FC=DC+FC,即AC=DF.在△ABC和△DEF中,∵()()()BC EFBCA EFDAC DF⎧=⎪∠=∠⎨⎪=⎩已知已证已证,∴△ABC≌△DEF(SAS),∴AB=DE(全等三角形的对应边相等).【点睛】全等三角形的判定与性质,以及平行线的性质,关键是掌握证明三角形全等的判定方法:SSS、ASA、SAS、AAS.23.(1)50人;(2)0.2、10;(3)400人【解析】【分析】(1)由C选项的频数及其频率可得总人数;(2)根据频率=频数÷总人数可分别求得m、n的值;(3)用总人数乘以样本中C、D选项的频率和即可得.【详解】(1)被调查的总人数为5÷0.1=50人;(2)m=10÷50=0.2、n=50×0.2=10;(3)估计全校学生中利用手机购物或玩游戏的共有800×(0.1+0.4)=400人.【点睛】考查频数分布表,解题的关键是掌握频率=频数÷总人数及样本估计总体思想的运用.24.见解析【解析】(1)根据平行四边形的性质可得AO=CO,BO=DO,再由条件点E、F分别为BO、DO的中点,可得EO=OF,进而可判定四边形AECF是平行四边形;(2)由等式的性质可得EO=FO,再加上条件AO=CO可判定四边形AECF是平行四边形.(1)证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵点E、F分别为BO、DO的中点,∴EO=OF,∵AO=CO,∴四边形AECF是平行四边形;(2)解:结论仍然成立,理由:∵BE=DF,BO=DO,∴EO=FO,∵AO=CO,∴四边形AECF是平行四边形.25.(1)1;(2)①(3,43),②(3,163);(3,83);(3,-83)【解析】【分析】(1)由点A的坐标,利用反比例函数图象上点的坐标特征可求出k值;(2)①设AC,BD交于点M,利用反比例函数图象上点的坐标特征可得出点B的坐标,结合AC⊥x轴,BD⊥y轴可得出BD,AM的长,利用三角形的面积公式结合△ABD的面积为1可求出a的值,进而可得出点B的坐标;②设点E的坐标为(m,n),分AB为对角线、AC为对角线以及BC为对角线三种情况考虑,利用平行四边形的性质(对角线互相平分)可得出关于m,n的二元一次方程组,解之即可得出点E的坐标.【详解】解:(1)∵函数y=kx(x>0)的图象经过点A(1,1),∴k=1×1=1.(2)①设AC,BD交于点M,如图1所示.∵点B的横坐标为a(a>1),点B在y=4x的图象上,∴点B的坐标为(a,4a ).∵AC⊥x轴,BD⊥y轴,∴BD=a,AM=AC-CM=1-4a.∵△ABD的面积为1,∴12BD•AM=1,即a(1-4a)=8,∴a=3,∴点B的坐标为(3,43)②存在,设点E的坐标为(m,n).分三种情况考虑,如图2所示.(i)当AB为对角线时,∵A(1,1),B(3,43),C(1,0),∴1+134043mn=+⎧⎪⎨+=+⎪⎩,解得:3163mn=⎧⎪⎨=⎪⎩,∴点E1的坐标为(3,163);(ii)当AC为对角线时,∵A(1,1),B(3,43),C(1,0),∴3+114403mn=+⎧⎪⎨+=+⎪⎩,解得:-183mn=⎧⎪⎨=⎪⎩,∴点E2的坐标为(3,83);(iii)当BC为对角线时,∵A(1,1),B(3,43),C(1,0),∴1+314403mn=+⎧⎪⎨+=+⎪⎩,解得:38-3mn=⎧⎪⎨=⎪⎩,∴点E2的坐标为(3,-83).综上所述:点E的坐标为(3,163);(3,83);(3,-83).【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;(2)①利用三角形的面积公式结合△ABD 的面积为1,求出a的值;②分AB为对角线、AC为对角线以及BC为对角线三种情况,利用平行四边形的对角线互相平分求出点E的坐标.。

2020-2021学年度第二学期期末学业水平质量检测八年级数学试卷附答案共三套

2020-2021学年度第二学期期末学业水平质量检测八年级数学试卷附答案共三套
2 神庙、蒙娜丽莎或断臂维纳斯等都包含有黄金分割比,它能给人们带来视觉上的美感.如图,矩形 ABCD 就 是一个“黄金矩形”,其对角线 AC 与边 AD 的夹角近似为 32 , F 为 BC 上的一点, DF 与 AC 的交点为 O . 现 将 矩 形 一 边 DC 沿 直 线 DF 折 叠 , 使 点 C 落 在 点 E 上 , 且 满 足 DE 与 AC 垂 直 , 则 DOC ___________ .
C. 4040a
D. 4042a
9.如图,将长为 2,宽为 1 的四个矩形如图所示摆放在坐标系中,若正比例函数 y kx 的图像恰好将所组
成的图形分为面积相等的两部分,则 k 的值等于( )
A.1
B. 3
C. 2
D. 4
2
3
3
10.如图,直线 y x 4 分别交 x 轴、 y 轴于 A 、 B 两点, C 为 OB 中点( O 为坐标原点), D 点在第四
①试求点 N 的纵坐标 y 关于横坐标 x 的函数关系式; ②直接写出 N 点的运动轨迹长度为__________.
一、选择题
参考答案
1
2
3
4
5
6
7
8
9
10
A
B
C
B
C
C
A
B
D
B
(第 10 题思路:取 AB 中点 E ,连接 BD 、CE 、 DE ,作 OM OD 交 DA 延长线于 M ,则 ODM 为
(2)由(1)知, DE BE 且 DE BF ,
∵ M 为 DE 中点, N 为 BF 中点,
∴ DM 1 DE , FN 1 BF ,即 DM FN
2

2

广东省佛山市2020年初二下期末教学质量检测数学试题含解析

广东省佛山市2020年初二下期末教学质量检测数学试题含解析

广东省佛山市2020年初二下期末教学质量检测数学试题一、选择题(每题只有一个答案正确) 1.9的平方根是( ) A .3B .3±C .3-D .3±2.如图,线段AB 经过平移得到线段A B '',其中点A ,B 的对应点分别为点A ',B ′,这四个点都在格点上.若线段AB 上有一个点(P a ,)b ,则点P 在A B ''上的对应点P '的坐标为( )A .(2,3)a b -+B .(2,3)a b --C .(2,3)a b ++D .(2,3)a b +-3.一次函数y =﹣2x+3的图象不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列命题的逆命题,是假命题的是( ) A .两直线平行,内错角相等 B .全等三角形的对应边相等C .对顶角相等D .有一个角为90度的三角形是直角三角形5.如图所示,一场台风过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2,则树高为( )米.A .1+5B .1+3C .25-1D .36.如图,在菱形 ABCD 中,对角线 AC ,BD 交于点 O ,AO =3,∠ABC =60°,则菱形 ABCD 的面积是( )A .18B .18C .36D .367.两次小测验中,李红分别得了64分(满分80分)和82分(满分100分),如果都按满分100分计算,李红两次成绩的平均分为( )A .73B .81C .64.8D .808.方程①3x=1;②x 2=7;③x+y =1;④xy =1.其中为一元二次方程的序号是( ) A .①B .②C .③D .④9.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( ) A .3,4,5 B .1,2,3 C .6,7,8D .2,3,410.关于函数3y x =-+的图象,下列结论错误的是( ) A .图象经过一、二、四象限 B .与y 轴的交点坐标为()3,0 C .y 随x 的增大而减小D .图象与两坐标轴相交所形成的直角三角形的面积为92二、填空题11.(2011贵州安顺,17,4分)已知:如图,O 为坐标原点,四边形OABC 为矩形,A(10,0),C(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为 .12.已知边长为4cm 的正方形ABCD 中,点P ,Q 同时从点A 出发,以相同的速度分别沿A →B →C 和A →D →C 的路线运动,则当PQ 52=cm 时,点C 到PQ 的距离为______. 13.化简二次根式27的结果是______. 14.分解因式:2m 2-8=_______________. 15.已知y=x m-2+3是一次函数,则m=________ .16.如图,直线y =x ﹣4与x 轴交于点A ,以OA 为斜边在x 轴上方作等腰Rt △OAB ,并将Rt △AOB 沿x 轴向右平移,当点B 落在直线y =x ﹣4上时,Rt △OAB 扫过的面积是__.17.数据1,4,5,6,4,5,4的众数是___.三、解答题18.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)19.(6分)在平面直角坐标系中,过点C(1,3)、D(3,1)分别作x轴的垂线,垂足分别为A、B.(1)求直线CD和直线OD的解析式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交直线CD于点N,是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中,设平移距离为2t,△AOC与△OBD重叠部分的面积记为s,试求s与t的函数关系式.20.(6分)某学校开展课外体育活动,决定开设A:篮球、B:羽毛球、C:跑步、D:乒乓球这四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生2500人,请根据样本估计全校最喜欢跑步的学生人数约是多少?21.(6分)如图,出租车是人们出行的一种便利交通工具,折线ABC是在我市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.(1)根据图象,当x≥3时y为x的一次函数,请写出函数关系式;(2)某人乘坐13km,应付多少钱?(3)若某人付车费42元,出租车行驶了多少千米?22.(8分)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.23.(8分)(1)如图,已知矩形ABCD 中,点E 是边BC 上的一动点(不与点B 、C 重合),过点E 作EF BD ⊥于点F ,EG AC ⊥于点G ,CH BD ⊥于点H ,猜想线段,,CH EF EG 三者之间具有怎样的数量关系,并证明你的猜想;(2)如图,若点E 在矩形ABCD 的边BC 的延长线上,过点E 作EF BD ⊥于点F ,EG AC ⊥交AC 的延长线于点G ,CH BD ⊥于点H ,则线段,,CH EF EG 三者之间具有怎样的数量关系,直接写出你的结论;(3)如图,BD 是正方形ABCD 的对角线,L 在BD 上,且BL BC =,连接CL ,点E 是CL 上任一点,EF BD ⊥与点F ,EG BC ⊥于点G ,猜想线段,,BD EF EG 之间具有怎样的数量关系,直接写出你的猜想.24.(10分)先化简,再求值:当m =10时,求21111m m m m++---的值. 25.(10分)如图,两块大小不等的等腰直角三角形按图1放置,点C 为直角顶点,点E 在AC 上,将DCE ∆绕点C 顺时针旋转α角度()0180α︒<<︒,连接AE 、BD .=,则当α=︒时,四边形ACDE是平行四边形;(1)若ED AC⊥于点F,延长FC交BD于点G,求证:G是BD的中点;(2)图2,若CF AE⊥.(3)图3,若点M是AE的中点,连接MC并延长交BD于点N,求证:MN BD参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据开平方的意义,可得一个数的平方根.【详解】解:9的平方根是±3,故选:B.【点睛】本题考查了平方根,乘方运算是解题关键,注意平方根是两个互为相反的数.2.A【解析】【分析】根据点A、B平移后横纵坐标的变化可得线段AB向左平移2个单位,向上平移了3个单位,然后再确定a、b的值,进而可得答案.【详解】由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a−2,b+3)故选A.【点睛】此题主要考查了坐标与图形的变化−−平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.3.C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.4.C【解析】【分析】根据平行线的判定与性质,可判断A;根据全等三角形的判断与性质,可判断B;根据对顶角性质,可判断C;根据直角三角形的判断与性质,可判断D.【详解】A“两直线平行,内错角相等”的逆命题是“内错角相等,两直线平行”是真命题,故A不符合题意;B“全等三角形的对应边相等”的逆命题是“三边对应相等的两个三角形全等”是真命题,故B不符合题意;C“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,故C符合题意;D“有一个角为90度的三角形是直角三角形”的逆命题是“直角三角形中有一个角是90度”是真命题,故D不符合题意;故选C【点睛】本题考查了命题与定理,熟练掌握相关性质定理是解答本题的关键.5.A【解析】【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【详解】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=5,∴树高为:(1+5)m.故选:A.【点睛】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.6.B【解析】【分析】由菱形的性质可求AC,BD的长,由菱形的面积公式可求解.【详解】∵四边形ABCD是菱形∴AO=CO=3,BO=DO=3,AC⊥BD∴AC=6,BD=6∴菱形ABCD的面积=故选B.【点睛】本题考查了菱形的性质,熟练运用菱形面积公式是本题的关键.7.B【解析】【分析】李红得分和竞赛试卷的满分100的比值一定,所以李红应的分和竞赛试卷的满分是100分成正比例,由此列式解答即可.【详解】解:设李红应得 x分,则,1x=6400,x=1.∴李红两次成绩的平均分为:,故选B.【点睛】本题考查了比例在日常生活中的应用,要正确判断哪两种量成正比例.8.B【解析】【分析】本题根据一元二次方程的定义解答.【详解】解:其中①为分式方程,②为一元二次方程,③为二元一次方程,④为二元二次方程,故选B.【点睛】本题主要考查一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.9.B【解析】试题解析:A.32+4)2≠52,故该选项错误;B.12+22=32,故该选项正确;C.62+72≠82,故该选项错误;D.22+32≠42,故该选项错误.故选B.考点:勾股定理.10.B【解析】【分析】由系数k和b的正负可判断A;令x=0,可求得与y轴的交点坐标,可判断B;根据系数k的正负可判断C;根据与x轴、与y轴交点坐标可求得三角形的面积,可判断D;可得出答案.【详解】=-+中,k=-1<0,b=3>0,解:∵一次函数y x3∴图象经过一、二、四象限,故A正确,不符合题意;在y x3=-+中令x=0,可得y=3,∴直线与y轴的交点坐标为(0,3),故B错误,符合题意;∵一次函数y x3=-+中,k=-1<0,∴y随x的增大而减小,故C正确,不符合题意;∵直线与x轴的交点坐标为(3,0),与y轴的交点坐标为(0,3),∴图象与坐标轴所围成的三角形面积为:12×3×3=92,故D正确,不符合题意.故选:B.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性、与坐标轴的交点坐标的求法是解题的关键.二、填空题11.P(5,5)或(4,5)或(8,5)【解析】试题解析:由题意,当△ODP是腰长为4的等腰三角形时,有三种情况:(5)如图所示,PD=OD=4,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=5.在Rt△PDE中,由勾股定理得:2222543PD PE-=-=,∴OE=OD-DE=4-5=4,∴此时点P坐标为(4,5);(4)如图所示,OP=OD=4.过点P作PE⊥x轴于点E,则PE=5.在Rt △POE 中,由勾股定理得: OE=2222543OP PE -=-=, ∴此时点P 坐标为(5,5);(5)如图所示,PD=OD=4,点P 在点D 的右侧. 过点P 作PE ⊥x 轴于点E ,则PE=5.在Rt △PDE 中,由勾股定理得: 2222543PD PE -=-=, ∴OE=OD+DE=4+5=8, ∴此时点P 坐标为(8,5).综上所述,点P 的坐标为:(4,5)或(5,5)或(8,5).考点:5.矩形的性质;4.坐标与图形性质;5.等腰三角形的性质;5.勾股定理. 12.524或1124. 【解析】 【分析】如图1,当P 在AB 上,Q 在AD 上时,根据题意得到AQ AP =,连接AC ,根据正方形的性质得到DAB 90∠=,AC BD ⊥,求得AC 2AB 42==APQ 是等腰直角三角形,得到AQP QAM 45∠∠==,根据等腰直角三角形的性质即可得到结论,如图2,当P 在BC 上,Q 在DC 上时,则CQ CP =,同理,52CM =. 【详解】∵点P ,Q 同时从点A 出发,以相同的速度分别沿A→B→C 和A→D→C 的路线运动, ∴如图1,当P 在AB 上,Q 在AD 上时,则AQ=AP ,连接AC ,∵四边形ABCD是正方形,∴∠DAB=90°,AC⊥BD,∴AC2=AB=42.∵AQ=AP,∴△APQ是等腰直角三角形,∴∠AQP=∠QAM=45°,∴AM⊥AC,∵PQ522=cm,∴AM12=PQ524=,∴CM=AC=AM1124=;如图2,当P在BC上,Q在DC上时,则CQ=CP,同理,CM52 =,综上所述:点C到PQ的距离为52或112,故答案为:524或1124.【点睛】本题考查了正方形的性质,等腰直角三角形的性质,正确的作出图形是解题的关键.13.33【解析】【分析】利用二次根式的性质化简.【详解】27939333⨯==故选为:33【点睛】考查了二次根式的化简,常用方法:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.14.2(m+2)(m-2)【解析】【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.【详解】2m2-8,=2(m2-4),=2(m+2)(m-2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.15.3【解析】【分析】一次函数自变量的最高次方为1,据此列式即可求出m.【详解】由题意得:m-2=1,∴m=3,故答案为3.【点睛】此题主要考查一次函数的定义,解题的关键是熟知一次函数的特点.16.1.【解析】【分析】根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.【详解】解:y=x-4,当y=0时,x-4=0,解得:x=4,即OA=4,过B作BC⊥OA于C,∵△OAB 是以OA 为斜边的等腰直角三角形, ∴BC=OC=AC=2, 即B 点的坐标是(2,2), 设平移的距离为a ,则B 点的对称点B ′的坐标为(a+2,2), 代入y=x-4得:2=(a+2)-4, 解得:a=4,即△OAB 平移的距离是4,∴Rt △OAB 扫过的面积为:4×2=1, 故答案为:1. 【点睛】本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B ′的坐标是解此题的关键. 17.1 【解析】 【分析】众数是出现次数最多的数,据此求解即可. 【详解】解:数据1出现了3次,最多, 所以众数为1, 故答案为:1. 【点睛】此题考查了众数的知识.众数是这组数据中出现次数最多的数. 三、解答题18.a.240,b.乙;理由见解析. 【解析】试题分析:(1)由表可知乙部门样本的优秀率为:12100%60%40⨯= ,则整个乙部门的优秀率也是60%,因此即可求解;(2)观察图表可得出结论. 试题解析:如图: 整理、描述数据按如下分数段整理 按如下分数段整理数据:成绩x 人数部门4049x≤≤5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤甲0 0 1 11 7 1乙 1 0 0 7 10 2a.估计乙部门生产技能优秀的员工人数为400×40=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.19.(1)直线OD的解析式为y=13x;(2)存在.满足条件的点M的横坐标34或214,理由见解析;(3)S=﹣16(t﹣1)2+13.【解析】【分析】(1)理由待定系数法即可解决问题;(2)如图,设M(m,13m),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,可得|-m+1-13m|=3,解方程即可;(3)如图,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.根据S=S△OFQ-S△OEP=12OF•FQ-12OE•PG计算即可;【详解】(1)设直线CD的解析式为y=kx+b,则有331k bk b+=⎧⎨+=⎩,解得-14kb=⎧⎨=⎩,∴直线CD的解析式为y=﹣x+1.设直线OD的解析式为y=mx,则有3m=1,m=13,∴直线OD的解析式为y=13 x.(2)存在.理由:如图,设M(m,13m),则N(m,﹣m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,∴|﹣m+1﹣13m|=3,解得m=34或214,∴满足条件的点M的横坐标34或214.(3)如图,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.2t,所以水平方向的平移距离为t(0≤t<2),则图中AF=t,F(1+t,0),Q(1+t,13+13t),C′(1+t,3﹣t).设直线O′C′的解析式为y=3x+b,将C′(1+t,3﹣t)代入得:b=﹣1t,∴直线O′C′的解析式为y=3x﹣1t.∴E(43t,0).联立y=3x﹣1t与y=13x,解得x=32t,∴P(32t,12t).过点P作PG⊥x轴于点G,则PG=12t.∴S=S△OFQ﹣S△OEP=12OF•FQ﹣12OE•PG=12(1+t)(13+13t)﹣12•43t•12t=﹣16(t﹣1)2+13.【点睛】本题考查一次函数综合题、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题关键是求出S的表达式,注意图形面积的计算方法.20.(1)40%,144;(2)详见解析;(3)250人【解析】【分析】(1)根据扇形统计图中的数据可以求得最喜欢A项目的人数所占的百分比,并求出其所在扇形统计图中对应的圆心角度数;(2)根据统计图中的数据可以求得选择A的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得全校最喜欢跑步的学生人数约是多少.【详解】解:(1)样本中最喜欢A项目的人数所占的百分比为:1﹣30%﹣10%﹣20%=40%,其所在扇形统计图中对应的圆心角度数是:360°×40%=144°,故答案为40%,144;(2)选择A的人有:45÷30%×40%=60(人),补全的条形统计图如右图所示;(3)2500×10%=250(人),答:全校最喜欢跑步的学生人数约是250人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(1)当x≥3时,y与x之间的函数关系式是y=x+;(2)乘车13km应付车费21元;(3)出租车行驶了28千米.【解析】试题分析:(1)由于x≥3时,直线过点(3,8)、(8,15),设解析式为设y=kx+b,利用待定系数法即可确定解析式;(2)把x=13代入解析式即可求得;(3)将y=42代入到(1)中所求的解析式,即可求出x.解:(1)当x≥3时,设解析式为设y=kx+b,∵一次函数的图象过B(3,7)、C(8,14),∴,解得,∴当x≥3时,y与x之间的函数关系式是y=x+;(2)当x=13时,y=×13+=21,答:乘车13km应付车费21元;(3)将y=42代入y=x+,得42=x+,解得x=28,即出租车行驶了28千米.22.见解析【解析】【分析】由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又由点E、F分别是▱ABCD边AD、BC的中点,可得DE=BF,继而证得四边形BFDE是平行四边形,即可证得结论.【详解】∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC ,∵点E 、F 分别是▱ABCD 边AD 、BC 的中点, ∴DE =12AD ,BF =12BC , ∴DE =BF ,∴四边形BFDE 是平行四边形, ∴BE =DF . 【点睛】本题主要考查平行四边形的判定与性质定理,掌握对边平行且相等的四边形是平行四边形,是解题的关键. 23.(1)CH EF EG =+,见解析;(2)CH EF EG =-或者 CH EG EF +=,见解析;(3)12BD EF EG =+. 【解析】 【分析】(1)过E 点作EN CH ⊥于N ,先得出四边形EFHN 是矩形,再证明四边形ABCD 是矩形,证明90EGC CNE NEC ACB ∠=∠=︒∠=∠,,求出EGC CNE ∆∆≌,即可; (2)过C 点作CO 垂直EF,可得矩形HCOF,因为HC=FO,只要证明EO=EG ,最后根据AAS 证明EOC CGE ∆∆≌. (3)连接AC 交BD 于O,过点E 作EH⊥AC,证明矩形FOHE,证明EG=CH,根据AAS 证明EHC CGE ∆∆≌. 【详解】(1)答:CH EF EG =+证明:如图1,过E 点作EN CH ⊥于N .,EF BD CH BD ⊥⊥,∴四边形EFHN 是矩形.//EF NH FH EN ∴=,. DBC NEC ∴∠=∠.四边形ABCD 是矩形,AC BD ∴=,且互相平分∴∠DBC=∠ACBNEC ACB ∴∠=∠ EG AC EN CH ⊥⊥,, 90EGC CNE ∴∠=∠=︒,又EC CE =,EGC CNE AAS ∴∆∆≌(). ∴EG=CNCH NH CN EF EG ∴=+=+;即CH EF EG =+;(2)CH EF EG =-或者CH EG EF +=;过C 点作CO 垂直EF,∵EF BD ⊥,CO⊥EF,CH BD ⊥ ∴矩形COHF ∴CE∥BD,CH=DO ∴∠DBC=∠OCE ∵矩形ABCD ∴∠DBC=∠ACB ∵∠ECG=∠ACB ∴∠ECG=∠OCE ∵CO⊥EF,EG AC ⊥ ∴∠G=∠COE ∵CE=CE∴EOC CGE ∆∆≌ ∴EO=EG∴CH EF EG =-或者CH EG EF +=; (3)12BD EF EG =+.连接AC 交BD 于O,过点E 作EH⊥AC,∵正方形ABCD∴FO⊥AC,1 2BD BO CO ==∵EH⊥AC∴矩形FEOH,∠EHC=90°∵EG⊥BC,EF=OH∴∠EGC=90°=∠EHC∴EH∥BD∴∠HEC=∠FLE∵BL=BC∴∠GCE=∠FLE∴∠GCE=∠HEC∵EC=EC∴EHC CGE ∆∆≌∴HC=GE∴12BD BO CO OH CH GE EF ===+=+ 【点睛】本题考查的是矩形的综合运用,熟练掌握全等三角形是解题的关键. 24.43. 【解析】【分析】首先将原式的分子与分母分解因式,进而化简求出答案. 【详解】21111m m m m ++---=()()11111m m m m m ++++-- =1111m m m ++-- =1+11m m +-=21mm+-,当m=10时,原式=10+210-1=43.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则25.(1)45α=︒时,四边形ACDE是平行四边形;(2)见解析;(3)见解析.【解析】【分析】(1)当AC∥DE时,因为AC=DE,推出四边形ACDE是平行四边形,利用平行四边形的性质即可解决问题.(2)如图2中,作DM⊥FM于M,BN⊥FM交FM的延长线于N.利用全等三角形的性质证明BN=DM,再证明△BNG≌△DMG(AAS)即可解决问题.(3)如图3中,延长CM到K,使得MK=CM,连接AK.KM.想办法证明△BCD≌△CAK(SAS),即可解决问题.【详解】(1)解:如图1-1中,连接AE.当AC∥DE时,∵AC=DE,∴四边形ACDE是平行四边形,∴∠ACE=∠CED,∵CE=CD,∠ECD=90°,∴∠CED=1°,∴α=∠ACE=1°.故答案为1.(2)证明:如图2中,作DM⊥FM于M,BN⊥FM交FM的延长线于N.∵CF⊥AE,DM⊥FM,∴∠CFE=∠CMD=∠ECD=90°,∴∠ECF+∠CEF=90°,∠ECF+∠DCM=90°,∴∠CEF=∠DCM,∵CE=CD,∴△CFE≌△DMC(AAS),∴DM=CF,同法可证:CF=BN,∴BN=DM,∵BN⊥FM,∴∠N=∠DMG=90°,∵∠BGN=∠DGM,∴△BNG≌△DMG(AAS),∴BG=DG,∴点G是BD的中点.(3)证明:如图3中,延长CM到K,使得MK=CM,连接AK.KM.∵AM-ME,CM=MK,∴四边形ACEK是平行四边形,∴AK=CE=CD,AK∥CE,∴∠KAC+∠ACE=180°,∵∠ACE+∠BCD=180°,∴∠BCD=∠KAC,∵CA=CB,CD=AK,∴△BCD≌△CAK(SAS),∵∠ACK=∠CBD,∵∠ACK+∠BCN=90°,∴∠CBD+∠BCN=90°,∴∠CNB=90°,∴CN⊥BD.【点睛】本题属于四边形综合题,考查了等腰直角三角形的性质,平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题。

人教版2020年八年级下数学期末考试卷(含答案)

人教版2020年八年级下数学期末考试卷(含答案)

人教版2020年八年级下数学期末考试卷(含答案)姓名:_____________。

总分:_____________一、选择题(每小题3分,共30分)1.要使式子有意义,则x的取值范围是()。

A。

x>0.B。

x≥-2.C。

x≥2.D。

x≤22.矩形具有而菱形不具有的性质是()。

A。

两组对边分别平行。

B。

对角线相等。

C。

对角线互相平分。

D。

两组对角分别相等3.下列计算正确的是()。

A。

4×2÷=4.B。

+=-15.C。

4-2×=2.D。

4÷2+=64.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()。

A。

1.B。

-1.C。

3.D。

-3y 3 px -2 15.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()。

工资(元)。

2 000.2 200.2 400.2 600人数(人)。

1 3 4 2A。

2400元、2400元。

B。

2400元、2300元。

C。

2200元、2200元。

D。

2200元、2300元6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()。

A。

AB∥DC,AD∥BC。

B。

AB=DC,AD=BCC。

AO=CO,BO=DO。

D。

AB∥DC,AD=BC7.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()。

A。

24.B。

16.C。

4.D。

28.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD长()。

A。

2.B。

3.C。

4.D。

19.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()。

10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()。

A。

xm。

D。

x>3二、填空题(每小题3分,共24分)11.计算。

福建省福州市2020年八年级第二学期期末学业质量监测数学试题含解析

福建省福州市2020年八年级第二学期期末学业质量监测数学试题含解析
所以,Rt△ACD≌Rt△AED,
所以,AC=AE.
∵E为AB中点,∴AC=AE= AB,
所以,∠B=30° .
∵DE为AB中线且DE⊥AB,
∴AD=BD=3cm,
∴DE= BD= ,
∴BE= cm.
故选A.
【点睛】
本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.
点睛:本题考查了翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.
13.1
【解析】
分析:根据平行四边形的性质和已知,可求出∠B,再进一步利用直角三角形的性质求解即可.
详解:∵AD∥BC,
∴∠A+∠B=180°,
试题解析:根据题意可知y=5x+1.
考点:列代数式.
12.1
【解析】
解:如图,过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90°.∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°.∵GB平分∠CGE,∴∠EGB=∠CGB.又∵BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP.∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP= ∠ABC=15°,由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形.∵BM=2 ,∴BN=NM=2 ,∴BE=1 .∵AE=8,∴Rt△ABE中,AB= =12,∴AD=12,∴DE=12﹣8=1.故答案为1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、如图,把直线 L 沿 x 轴正方向向右平移 2 个单位得到
姓名
班级
直线 L′,则直线 L/的解析式为(

A. y 2x 1
B. y 2x 4
C. y 2x 2
D. y 2x 2
7、如图是一张直角三角形的纸片,两直角边 AC=6 cm、BC=8 cm, 现将△ABC 折叠,使点 B 与点 A 重合,折痕为 DE,则 BE 的长为( )
式为

13、在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3, x ,
6,4;若这组数据的平均数是 5,则这组数据的中位数是
A
件.
14、如图,正方形 ABCD 的边长为 4,点 P 在 DC 边上且
B
DP=1,点 Q 是 AC 上一动点,则 DQ+PQ 的最小值
D E C F
为 .
100 答:大约有 880 名学生在寒假做家务时间在 40.5~100.5 小时间 ……8 分
20.(1)证明: E是CD的中点
CF AD
CE DE 又CF // AB CFE DAE, FCE ADE 在△CFE 与△DAE 中 CFE DAE FCE ADE CE DE CFE DAE( AAS) ……2 分 CF AD
(A)4 cm
(B)5 cm (C)6 cm (D)10 cm
A
D
B
C
E
( 第 8题 图)
8、如图, ABC 和 DCE 都是边长为 4 的等边三角形,点 B 、 C 、 E 在同一条直线
上,连接 BD ,则 BD 的长为(

(A) 3 (B) 2 3 (C) 3 3 (D) 4 3
二、细心填一填:本大题共 8 小题,每小题 4 分,共 32 分.
M2A1 为对角线作第三个正方形 A3A1B3M2,对角线 A1M2 和 A3B3 交于点 M3;……依此类推,
这样作的第 n 个正方形对角线交点 Mn 的坐标为
.
三、解答题(本大题共 9 小题,共 86 分.解答应写出必要的文字说明、证明过程或演 算步骤.)
17、 (8 分)计算: (2- 3 )(2+ 3 )+ 1 2010 2 0 - 1 1 2
25(14 分) 如图,等腰直角三角形 ABC 中,∠ACB=90°,CB=CA,直线 ED 经过点 C,过 A 作 AD⊥ED 于 D,过 B 作 BE⊥ED 于 E。 求证:△BEC≌△CDA
B A
E
C
D
八年期末数学答案 一、选择题 1-8:CCDDCBBD 二、填空题
9. 3
10.1
11. 5x +10
AB 2x 2x (3) DC nDF nx,GF DF x
CF (n 1)x BF BG GF (n 1)x 在△Rt△BCF 中 BC 2 BF 2 FC 2 y 2 (n 1) 2 x 2 (n 1) 2 x 4nx 2 y 2 nx AD y 2 nx 2 n ……4 分
依题意得: 9x 2 3 x 630 4 x 60
3 x 45 4
答:客车的速度为 60 千米/时,贷车的速度为 45 千米/时 ……5 分 (2)由图可知:设两车相遇的时间为 y 小时, 45y 60 y 630
(9 6) 60 180 E(6,180) y 6 ……8 分 意义:两车行驶 36 小时,在距离 C 处离 A 地产向 180 千米处相遇。 (或:客车在开 36 小时,在离 C 处 180 千米地方与贷车相遇) 24.(1)GF=DF 正确 证明:连接 EF 由折叠可知:△ABE △GBE EG AE.BG AB, EGB A 90
A.甲
B.乙
C.丙
D.丁
4、一组数据 4,5,6,7,7,8 的中位数和众数分别是(

A.7,7 B.7,6.5 C.5. 经过第一、二、四象限,则 k,b 的取值范围是 (

(A) k>0, b>0 (B) k>0,b<0
(C) k<0,b>0 (D) k<0,b<0
又 D是AB中点 BD AD CF BD ……4 分
又 D是AB中点 BD AD CF BD ……4 分 (2)四边形 BDCF 为矩形 证明:CF // AB.CF BD 四边形CDBF为 ……6 分 又 AC BC, AD BD CD AB 即 COB 90 四边形BDCF为矩形 ……8 分 21.解:(1) x 0得y 2x0 3 3
2
CD BC 2 BD 2 152 9 12 ……4 分 在 Rt△ADC 中,AC=20
AD AC 2 CD 2 202 122 16 AB AD BD 16 9 25 ……8 分 19.(1)100 ……2 分 (2)略 ……3 分 (3)40.5~60.5 ……5 分 (4)解: 30 15 10 1600 880
时间分组 0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5~100.5
频数
20
25
30
15
10
(1)抽取样本的容量是
.(2 分)
(2)根据表中数据补全图中的频数分布直方图.(1 分)
(3)样本的中位数所在时间段的范围是
.(2 分)
(4)若我学校共有学生 1600 人,那么大约有多少学生在寒假做家务的时间在 40.5~100.5 小时之间?(3 分)
AB BC CD AD , ABF DAE 90
又 E,F分别是边AB.BC的中点
AF 1 AB.BF 1 BC
2
2
AE BF
在△ABF 与△DAE 中
DA AB DAE ABF AE BF
DAE ABF ……3 分
ADE BAF
BAF DAG 90
ADG DAG 90
20、(8 分)如图.在△ABC 中,D 是 AB 的中点,E 是 CD 的中点,过点 C 作 CF∥AB 交
AE 的延长线于点 F,连接 BF.
(1)求证:DB=CF;
(2)如果 AC=BC.试判断四边行 BDCF 的形状. 并证明你
的结论.
A
C
F
E
D
B
21、(8 分)如图,直线 y=2x+3 与 x 轴相交于点 A,与 y 轴相 交于点 B.
(1)求 A,B 两点的坐标;
(2)过 B 点作直线 BP 与 x 轴相交于 P,且使 OP=2OA, 求 直线 BP 的解析式.
22、(10 分)如图,在正方形 ABCD 中,E、F 分别是边 AB、BC 的中点,连接 AF、DE 相交于点 G,连接 CG。
(1)、求证:AF⊥DE, (2)、求证:CG=CD。
15、如图将矩形 ABCD 沿直线 AE 折叠,顶点 D 恰好落在 BC 边上 F 处,已知 CE=3,AB=8,则 BF=___________。
16、如图,在平面直角坐标系中,边长为 1 的正方形 OA1B1C 的对角线 A1C 和 OB1 交
于点 M1;以 M1A1 为对角线作第二个正方形 A2A1B2M1,对角线 A1M1 和 A2B2 交于点 M2;以
又 E为AD中点 ED EA EG
在 RtEGF与RtEDF中 EG ED EF EF RtEGF EDF(H)
GF DF ……4 分 (2) DC 2DF 2x,GF DF x
AB DC 2x,FC FD x BG 2x BF 2x x 3x 在 Rt△ACF 中 BC 2 BF 2 FC 2 y 2 (3x) 2 x 2 8x 2 y 2 2x (负值 ) AD y 2 2x 2 ……4 分
12. y 2x 6
14.5
15.6
16. (1 1 , 1 ) 2n 2n
三、解答题
17.解: (2 3)(2 3) (1) 2010 ( 2 ) ( 1 ) 1 2
= 4 3 2 ……5 分
13.5
=0
……8 分
18.解:CD AB
CDB ADC 90
在 Rt△BC 中,BC=15,BD=9
DGA 90 ,即 AF DE ……5 分 (2 分)证明:延长 AF 交 DC 延长线于 M
F为BC中点 CF FB 又 DM // AB M FAB ……6 分 在△ABF 与△MCF 中 M FAB CFM BFA CF FB ABF MCF AB CM ……8 分 AB CD CM DGMRt GC 1 DM DC ……10 分
(1)求客、货两车的速度;(4 分)
(2)如图 2,两函数图象交于点 E,求 E 点坐标,并说明它所表示的实际意义.(6 分)
24、(12 分)如图,矩形 ABCD 中,E 是 AD 的中点,将△ABE 沿 BE 折叠后得到△ GBE,且点 G 在矩形 ABCD 内部.小明将 BG 延长交 DC 于点 F,认为 GF=DF,你同 意吗?说明理由.
直线BP1 : y x 3 ……5 分
②当点 P 在 x 轴负半轴上时,则 P2 (-3,0)
设直线 BP2 : y mx n
o 3
3k b
b
k b
1 3
直线BP2为 : y x 3
综上:直线 BP 的解析式为 y x 3 或 y x 3 ……8 分
22.证明:(1)四边形ABCD为正方形
B(0,3) ……1 分 y 0得,0 2x 3 x 3 2
A( 3 ,0) ……2 分 2
(2) A( 3 ,0) 2
OA 3 又OP 2OA 3 2
①当点 P 在 x 轴正半轴上时,则 P1 (3,0) 设直线 BP1 : y kx b
o 3
3k b
b
k b
1 3
2020 年最新
相关文档
最新文档