全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

合集下载

12.2三角形全等的判定(ASA,AAS,HL)练习题

12.2三角形全等的判定(ASA,AAS,HL)练习题

1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' . 2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( )①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''='A . 1个 B. 2个 C. 3个 D. 4个4.如图1,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。

(注:将你认为正确的结论填上)图1图26. 如图,已知∠A=∠C ,AF=CE ,DE ∥BF ,求证:△ABF ≌△CDE.BAE21F CD7.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 交CD 于F ,且AD=DF ,求证:AC= BF 。

BA EFCDC1.如图,CE ⊥AB ,DF ⊥AB ,垂足为E 、F ,AC ∥DB ,且AC=BD ,那么Rt △AEC ≌Rt △BFC 的理由是( ).A .SSSB. AASC. SASD. HL2.下列说法正确的个数有( ).①有一角和一边对应相等的的两个直角三角形全等; ②有两边对应相等的两个直角三角形全等; ③有两边和一角对应相等的两个直角三角形全等; ④有两角和一边对应相等的两个直角三角形全等. A .1个B. 2个C. 3个D. 4个3.过等腰△ABC 的顶点A 作底面的垂线,就得到两个全等三角形,其理由是 .4.如图,△ABC 中,∠C=︒90,AM 平分∠CAB ,CM=20cm ,那么M 到AB 的距离是( )cm.5.在△ABC 和△C B A '''中,如果AB=B A '',∠B=∠B ',AC=C A '',那么这两个三角形( ). A .全等 B. 不一定全等 C. 不全等 D. 面积相等,但不全等6.如图,∠B=∠D=︒90,要证明△ABC 与△ADC 全等,还需要补充的条件是 .7.如图,在△ABC 中,∠ACB=︒90,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,求证:DE=AD+BE.8.如图,△ABC 中,∠C=90°,AB=2AC ,M 是AB 的中点,点N 在BC 上,MN ⊥AB 。

最新北师大版七年级下册三角形全等的证明试题以及答案(SSS、AAS、ASA、SAS、HL)(各10题)

最新北师大版七年级下册三角形全等的证明试题以及答案(SSS、AAS、ASA、SAS、HL)(各10题)

最新七年级下册三角形全等的证明试题1、如图,DE=DF ,BF=CD ,BC=BF+CE ,证明∠EDF=90°-A 21。

2、如图,AB=CQ ,AP=AQ ,BE=AC+PE ,证明∠QAC 与∠APE 互补。

3、如图,AB=CD,AC=BD,BE=CE,证明AE=DE。

4、如图,AE=CF,AD=BC,DF=BE,证明AE∥CF。

5、如图,AB=AD,AC=AE,BD+DC=DE,证明∠1=∠EDC。

6、如图,AB=BD,AC=BE,BC=DE,∠D=90°,证明AC⊥BE。

7、如图,O是BD的中点,OE=OF,DE=BF,证明AD∥BC。

8、如图,O是EF、BD的公共中点,AD=BC,AF=EC,证明AV=CD。

9、如图,AC=BF,AD=DF,BD=DC,证明∠B=∠C。

10、如图DF=DE,AC=BC,AF=BE,证明∠A=∠B。

11、如图,F是CD的中点,A点到C点与A点到D点到距离相等,AB=AE,∠BAF=∠EAF,证明∠B=∠E。

1、如图,AC∥DF,且AC=DF,∠C=∠F,说明BC和EF关系。

2、如图,AB=AC,∠BAC=∠DAE,∠ABD=∠2,证明∠3=∠1+∠2.3、如图,AB=AC,∠BAC=∠DAE,∠ADB=∠AEC,证明∠ADE=∠ACB。

4、如图,E在△ABC的边AC上,且∠AEB=∠ABC.求证:(1)∠ABE=∠C;(2)求∠BAE的平分线AF交BE于点F,FD∥BC交AC于点D,设AB=8,AC=10,求DC的长。

5、如图,MQ、NR是△PMN的高线,且MQ=NQ,证明PM=HN。

6、如图,BD⊥AC,CE⊥AB,AB=AC,证明∠B=∠C。

7、如图,BC=CD,∠BCE=∠ACD,∠B=∠D,证明AB=ED。

8、如图,AB∥CF,AD=CF,说明E是AC、DF的公共中点。

9、如图,BD⊥DE,CE⊥DE,AB⊥AC,且AB=AC,说明BD、CE和DE 关系。

三角形全等例题+练习(常用方法)

三角形全等例题+练习(常用方法)

B
DE C
7
典型例题 5.翻折法 若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形.
例 5.如图(8)已知:在△ABC 中,∠A=45º, AD⊥BC,若 BD=3,DC=2, 求:△ABC 的面积.
A
E
F
B DC
G
针对练习 1:如图2所示,已知 ABC 中, AC BC , ACB 90 , BD 平分 ABC , 求证: AB BC CD 。

0
60

C

400
,P,Q
分别在
BC,CA
上,并且
AP
、BQ 分别是 BAC , ABC 的角平分线。求证:BQ+AQ=AB+BP
A
B Q
P
C
截长补短 4、如图,在四边形 ABCD 中,BC>BA,AD=CD,BD 平分 ABC , 求证: A C 1800
A D
B
C
截长补短 5、如图在△ABC 中,AB>AC,∠1=∠2,P 为 AD 上任意一点,求证;AB-AC>PB-PC
∠MBN 60 ,∠MBN 绕 B 点旋转,它的两边分别交 AD,DC (或它们的延长线)于
E,F . 当∠MBN 绕 B 点旋转到 AE CF 时(如图 1),易证 AE CF EF . 当∠MBN 绕 B 点旋转到 AE CF 时,在图 2 和图 3 这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,线段 AE,CF , EF 又有怎样的数量关系?请写出你的 猜想,不需证明.
A
B
EM
A
B
EM
A B
CF

SAS,ASA,AAS习题全等三角形练习题

SAS,ASA,AAS习题全等三角形练习题

全等三角形练习题第1课时边角边(SAS)一、选择题1. 如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2. 能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. A C=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3. 如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )A. AB∥CDB. AD∥BCC. ∠A=∠CD. ∠ABC=∠CDA4.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.AC=DC,∠A=∠D二、填空题5. 如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是 .6. 如图,AC与BD相交于点O,若AO=BO,AC=BD,∠DBA=30°,∠DAB=50°,则∠CBO= 度.第1题第9题图第3题图第4题图第5题图第10题图第11题图7.(2011黑龙江鸡西)如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥DE ,BF =CE ,请添加一个适当的条件: ,使得AC =DF .8.(2009·怀化中考)如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).9.(2005•天津)如图,OA=OB ,OC=OD ,∠O=60°,∠C=25°,则∠BED= 度.10. 如图,若AO=DO ,只需补充 就可以根据SAS 判定△AOB ≌△DOC.三、解答题11. 如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .12. 已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .13. 如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .ACE B 0第13题图第14题图第12题图D14. 如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.15、如图,点A、B、C、D在同一条直线上,AB=DC,AE//DF,16、如图,在ABC∆中,AB BC=,90ABC∠=。

初二数学下册,全等三角形判定专题

初二数学下册,全等三角形判定专题

全等三角形判定专题1.边边边(SSS)(1)基本事实:三边分别相等的两个三角形全等,简写成“__________”或“SSS”.(2)这个基本事实告诉我们:当三角形的三边确定后,其形状、大小也随之确定.这也是三角形具有稳定性的原因.2.边角边(SAS)(1)基本事实:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“__________”.(2)此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【注意】(1)此方法是证明两个三角形全等最常用的方法之一,应用时,可以从图形上直接观察到三个对应元素必须符合“两边夹角”,即“SAS”,不要误认为有两边一角就能判定两个三角形全等.(2)在书写时也要按照“边→角→边”的顺序排列条件,必须牢记“边边角”不能作为判定两个三角形全等的条件.3.角边角(ASA)(1)基本事实:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“__________”.(2)用“ASA”来判定两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边分别相等,证明时要加强对夹边的认识.4.判定两个三角形全等的基本事实:角角边(AAS)(1)基本事实:两角和其中一个角的对边分别相等的两个三角形全等,简写成“角角边”或“__________”.(2)这一结论很容易由“ASA”推得,将这一结论与“ASA”结合起来,即可得出:两个三角形如果具备两角和一条边对应相等,就可判定其全等.5.直角三角形全等的判定方法:斜边、直角边(HL)(1)基本事实:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“________”.(2)“HL”定理是直角三角形所独有的,对于一般三角形不成立.【归纳】判定两个三角形全等常用的思路方法如下:HL SASSSS AAS SAS ASA AAS ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎩一直角边一斜边—已知两边找夹角—找另一边—边为角的对边—找任一角—找夹角的另一边—已知一边一角边为角的邻边找夹边的另一角—找边的对角—找夹边—已知两角找任一角的对边— 题型归纳一、用边边边(SSS )证明三角形全等明确要证明全等的两个三角形,在书写两个三角形全等时,“≌”左边三角形的三边与“≌”右边三角形的三边的前后顺序要保持一致.【例1】如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可判定A .ABD △≌ACD △B .ABE △≌ACE △C .BDE △≌CDE △D .以上答案都不对二、用边角边(SAS )证明三角形全等此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【例2】如图,AB =AC ,添加下列条件,能用SAS 判断△ABE ≌△ACD 的是A .∠B =∠CB .∠AEB =∠ADCC .AE =ADD .BE =DC三、用角边角、角角边(ASA、AAS)证明三角形全等1.不能说“有两角和一边分别相等的两个三角形全等”,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.2.有三个角对应相等的两个三角形不一定全等.【例3】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是A.SSS B.SASC.SAA D.ASA【例4】如图,已知点B、C、F、E在同一直线上,∠A=∠D,BF=EC,AB∥DE,若∠1=80°,求∠BFD 的度数.四、用斜边、直角边(HL)证明直角三角形全等1.当证明两个直角三角形全等时,若不适合应用“HL”,也可考虑用“SAS”“ASA”或“AAS”来证明.2.在用一般方法证明时,因为两个直角三角形中已具备一对直角相等的条件,故只需找另外两个条件即可,在实际证明中可根据条件灵活选用不同的方法.【例5】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC五、全等三角形的判定和性质的综合寻找解决问题的思路方法可以从求证的结论出发,结合已知条件,逐步寻求解决问题所需要的条件.同时要注意对图形本身隐含条件的挖掘,如对顶角、公共角、公共边等.【例6】如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为A.50°B.30°C.80°D.100°【例7】如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.基础练习题1.如图,PB ⊥AB 于B ,PC ⊥AC 于C ,且PB =PC ,则△APB ≌△APC 的理由是A .SASB .ASAC .HLD .AAS2.如图,若∠ABC =∠DCB ,当添加下列条件时,仍不能判断△ABC ≌△DCB 的是A .∠A =∠DB .AB =DC C .∠ACB =∠DBCD .AC =BD3.如图,点C 在AOB 的OB 边上,用尺规作出了CN OA ∥,作图痕迹中,FG 是A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧D .以点E 为圆心,DM 为半径的弧4.下列条件中,能判定两个直角三角形全等的是 A .一锐角对应相等 B .两锐角对应相等 C .一条边对应相等D .两条直角边对应相等5.如图,小明设计了一种测零件内径AB 的卡钳,问:在卡钳的设计中,要使DC =AB ,则AO 、BO 、CO 、DO 应满足下列的条件是A .AO =COB .AO =CO 且BO =DOC .AC =BD D .BO =DO6.如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与△ABC 全等,这样的三角形最多可以画出A.2个B.4个C.6个D.8个7.如图,点F、G在正五边形ABCDE的边上,BF、CG交于点H,若CF=DG,则∠BHG=__________°.8.如图,D为△ABC内一点,且AD=BD,若∠ACD=∠DAB=45°,AC=5,则S△ABC=__________.9.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,试说明:△CDA≌△CEB.10.我们把两组邻边相等的四边形叫做“筝形”.如图所示四边形ABCD是一个筝形,其中AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证:OE=OF.11.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.12.如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF ≌Rt△DCE.13.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌ΔDEF;(2)若∠A=55°,∠B=88°,求∠F的度数.能力提升14.如图,D 、E 、F 分别为△ABC 边AC 、AB 、BC 上的点,∠A =∠1=∠C ,DE =DF .下面的结论一定成立的是A .AE =FCB .AE =DEC .AE +FC =ACD .AD +FC =AB15.如图:已知点E 在△ABC 的外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠2=∠3,AC =AE ,则有A .△ABD ≌△AFDB .△AFE ≌△ADC .△AEF ≌△DFCD .△ABC ≌△ADE16.如图,在四边形ABCD 中,AB CD =,AD CB =,OA OC =,OB OD =,则图中的全等三角形有A .2对B .3对C .4对D .5对17.如图,在ABC △和BDE △中,点C 在BD 边上,AC 边交BE 边于点F .若AC BD AB ED ==,,BC BE =,则ACB ∠等于A .EDB ∠B .BED ∠C .12AFB ∠D .2ABF ∠18.如图,在△ABC中,AC=3,中线AD=5,则边AB的取值范围是__________.19.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分别为E,D,AD=25,DE=17,则BE=__________.20.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,AF=6,求AD的长.21.(2018•安顺)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACDA.∠B=∠C B.AD=AE C.BD=CE D.BE=CD22.(2018•黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是A.甲和乙B.乙和丙C.甲和丙D.只有丙23.(2018•南京)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为A.a+c B.b+c C.a-b+c D.a+b-c24.(2018•临沂)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是A.32B.2 C.22D.1025.(2018•衢州)如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是__________(只需写一个,不添加辅助线).26.(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.27.(2018•衡阳)如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.参考答案1.C2.D3.D4.D5.B6.B7.108°8.2529.∵△ABC 、△CDE 均为等腰直角三角形,∠ACB =∠DCE =90°, ∴CE =CD ,BC =AC ,∴∠ACB -∠ACE =∠DCE -∠ACE ,∴∠ECB =∠DCA , 学科@网在△CDA 与△CEB 中,BC AC ECB DCA EC DC =⎧⎪∠=∠⎨⎪=⎩,∴△CDA ≌△CEB .10.∵在△ABD 和△CBD 中,AB =CB ,AD =CD ,BD =BD , ∴△ABD ≌△CBD (SSS ),∴∠ABD =∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE =OF .11.∵∠BAC =∠DAE ,∴∠BAD =∠CAE .∵在△ABD 与△ACE 中,==BAD CAE AB AC ABD ACE ⎧⎪=⎨⎪⎩∠∠∠∠,∴△ABD≌△ACE(ASA)∴BD=CE.∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°,∴∠F=∠ACB=37°.14.C15.D16.C17.C19.820.621.D22.B23.D24.B25.AB=ED26.∵DA=BE,∴DE=AB,在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS ), ∴∠C =∠F .27.(1)在△AEB 和△DEC 中,=AE DE AEB DEC BE EC =⎧⎪⎨⎪=⎩∠∠,∴△AEB ≌△DEC (SAS ).(2)∵△AEB ≌△DEC ,∴AB =CD , ∵AB =5,∴CD =5.。

全等三角形全套练习题

全等三角形全套练习题

全等三角形一、全等三角形1、定义:能够完全重合的两个三角形叫做全等三角形。

特征:形状相同、大小相等、完全重合。

一个三角形经过平移、翻折、旋转可以得到它的全等形。

平移、翻折、旋转前后的图形全等。

2、全等三角形的表示:“全等”用“≌”表示,“∽”表示两图形的形状相同,“=”表示大小相等,读作“全等于”。

注意:记两三角形全等时,通常把表示对应顶点的字母写在对应位置上。

全等三角形的对应元素:对应顶点,对应边,对应角3、全等三角形的性质(1)全等三角形的对应边相等、对应角相等。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

4、全等三角形的判定(1)边边边:三边对应相等的两个三角形全等(可简写成“SSS”)(2)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)(3(4(551、2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意的问题(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”。

FE DCBA1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .3.如图,点B ,E ,C ,F 在一条直线上,AB=DE ,AC=DF ,BE=CF .求证∠A=∠D .4.已知,如图,AB=AD ,DC=CB .求证:∠B=∠D.5.如图,AD =BC ,AB =DC ,DE =BF. 求证:BE =DF.ADCB1.如图,AC 和BD 相交于点O ,OA=OC ,OB=OD .求证DC ∥AB .2.如图,△ABC ≌△,AD ,分别是△ABC ,△的对应边上的中线,AD 与有什么A B C '''A D ''A B C '''A D ''关系?证明你的结论.3.如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.4.已知:如图,AD ∥BC ,AD=CB ,求证:△ADC ≌△CBA .5.已知:如图AD ∥BC ,AD=CB ,AE=CF 。

全等三角形的判定ASA、AAS-练习题

全等三角形的判定ASA、AAS-练习题

14.4(2)全等三角形的判定ASA、AAS一、探究现在,我们讨论:如果两个三角形有两个角、一条边分别对应相等,那么这两个三角形能全等吗?这时同样应有两种不同的情况:如图所示,一种情况是两个角及这两角的夹边;另一种情况是两个角及其中一角的对边.ASA AAS二、检测反馈,学以致用1.如图,已知AO=DO,∠AOB与∠DOC是对顶角,还需补充条件______________=_______________,就可根据“ASA”说明△AOB≌△DOC;或者补充条件_______________=_______________,就可根据“AAS”,说明△AOB≌△DOC。

(若把“AO=DO”去掉,答案又会有怎样的变化呢?)2. 如图,OP是∠MON的角平分线,C是OP上一点,CA⊥OM,CB⊥ON,垂足分别为A、B,△AOC≌△BOC吗?为什么?3、如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.三、巩固练习1、如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为______cm.第1题2、已知:如图 , ∠1=∠2 , ∠3=∠4求证:AC=AB.3.如图,AB⊥BC,AD⊥DC,∠BAC=∠CAD.试说明:AB=AD .4、已知:如图 , FB=CE , AB∥ED , AC∥FD.F、C在直线 BE上.求证:AB=DE , AC=DF.5、如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,试说明:AB=AC+AD6、已知:如图,AB=DC,∠A=∠D.试说明:∠1=∠2.7.如图,ΔABC中,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G.⑴图中有全等三角形吗?请找出来,并证明你的结论.⑵若连结DE,则DE与AB有什么关系?并说明理由.。

全等三角形的判定精选练习题分SSSSASAASASAHL分专题

全等三角形的判定精选练习题分SSSSASAASASAHL分专题

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是()A。

120°B.125°C。

127° D。

104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BAD B。

∠CAB=∠DBA C.OB=OC D。

∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论。

5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3 B。

4 C.5 D。

6CBA 2、如图2,AB=AC ,AD=A E,欲证△A BD ≌△A CE ,可补充条件( ) A 。

∠1=∠2B .∠B=∠C C.∠D=∠ED 。

∠BAE=∠C AD 3、如图3,AD=B C,要得到△AB D和△CD B全等,可以添加的条件是( )A .AB∥CD B。

AD ∥B CC .∠A=∠C D.∠ABC =∠CDA4、如图4,AB 与CD 交于点O ,O A=OC ,OD =OB ,∠A OD =________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,A D平分∠BAC ,请补充完整过程说明△A BD≌△ACD 的理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的判定(SSS )1、如图1,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是()A.120°B.125°C.127°D.104°2、如图2,线段AD 与BC 交于点O ,且AC=BD ,AD=BC , 则下面的结论中不正确的是( ) A.△ABC ≌△BAD B.∠CAB=∠DBA C.OB=OC D.∠C=∠D3、在△ABC 和△A 1B 1C 1中,已知AB=A 1B 1,BC=B 1C 1,则补充条件____________,可得到△ABC ≌△A 1B 1C 1.4、如图3,AB=CD ,BF=DE ,E 、F 是AC 上两点,且AE=CF .欲证∠B=∠D ,可先运用等式的性质证明AF=________,再用“SSS ”证明______≌_______得到结论.5、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .6、如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF.请推导下列结论:⑴∠D=∠B ;⑵AE ∥CF .7、已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD.⑴请你添加一个条件,使△DEC ≌△BFA ;⑵在⑴的基础上,求证:DE ∥BF.全等三角形的判定(SAS)1、如图1,AB ∥CD ,AB=CD ,BE=DF ,则图中有多少对全等三角形( )A.3B.4C.5D.6C BAA.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________, 根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( )6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明.①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.【典型例题】例1.如图,AB∥CD,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD.例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?A BDCE O 123AFDOBEC【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',CC '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( )①A A '∠=∠B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''='③A A '∠=∠B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM≌△CDN 的是( )A . NM ∠=∠B. AB=CD C . AM=CN D. AM∥CN5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN≌△ABM ④CD=DN其中正确的结论是_________ _________。

(注:将你认为正确的结论填上)1 2ABCD MNEF ABCDO图2图36.如图3所示,在△ABC 和△DCB 中,AB =DC ,要使△ABO ≌DCO ,请你补充条件________________(只填写一个你认为合适的条件).7. 如图,已知∠A=∠C,AF=CE ,DE∥BF,求证:△ABF≌△CDE.BAE21F CD8.如图,CD⊥AB,BE⊥AC,垂足分别为D 、E ,BE 交CD 于F ,且AD=DF ,求证:AC= BF 。

BAEFCD9.如图,AB ,CD 相交于点O ,且AO=BO ,试添加一个条件,使△AOC≌△BOD,并说明添加的条件是正确的。

(不少于两种方法)10.如图,已知:BE=CD ,∠B=∠C,求证:∠1=∠2。

11.如图,在Rt△ABC 中,AB=AC ,∠BAC=90º,多点A 的任一直线AN ,BD⊥AN 于D ,CE⊥AN 于E ,你能说说DE=BD-CE 的理由吗?A EDBC O12直角三角形全等HL【知识要点】斜边直角边公理:有斜边和直角边对应相等的两个直角三角形全等.【典型例题】例1 如图,B 、E 、F 、C 在同一直线上,AE⊥BC,DF⊥BC,AB=DC ,BE=CF ,试判断AB 与CD 的位置关系.例2已知 如图,AB⊥BD,CD⊥BD,AB=DC ,求证:AD∥BC.例3 公路上A 、B 两站(视为直线上的两点)相距26km ,C 、D 为两村庄(视为两个点),DA⊥AB 于点A ,CB⊥AB 于点B ,已知DA=16km ,BC=10km ,现要在公路AB 上建一个土特产收购站E ,使CD 两村庄到E站的距离相等,那么E 站应建在距A 站多远才合理?例4 如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,具有BF=AC ,FD=CD ,试探究BE 与AC 的位置关系.例5 如图,A 、E 、F 、B 四点共线,AC⊥CE、BD⊥DF、AE=BF 、AC=BD ,求证:△ACF≌△BDE.【经典练习】1.在Rt△ABC 和Rt△DEF 中,∠ACB=∠DFE= 90,AB=DE ,AC=DF ,那么Rt△ABC 与Rt△DEF(填全等或不全等)2.如图,点C 在∠DAB 的内部,CD⊥AD 于D ,CB⊥AB 于B ,CD=CB 那么Rt△ADC≌Rt△ABC 的理由是( )ABBA BDCE FB. ASAC. SASD. HL3.如图,CE⊥AB,DF⊥AB,垂足分别为E 、F ,AC∥DB,且AC=BD ,那么Rt△AEC≌Rt△BFC 的理由是().A .SSSB. AASC. SASD. HL4.下列说法正确的个数有( ).①有一角和一边对应相等的的两个直角三角形全等; ②有两边对应相等的两个直角三角形全等; ③有两边和一角对应相等的两个直角三角形全等; ④有两角和一边对应相等的两个直角三角形全等. A .1个B. 2个C. 3个D. 4个5.过等腰△ABC 的顶点A 作底面的垂线,就得到两个全等三角形,其理由是 .6.如图,△ABC 中,∠C=︒90,AM 平分∠CAB ,CM=20cm ,那么M 到AB 的距离是( )cm.7.在△ABC 和△C B A '''中,如果AB=B A '',∠B=∠B ',AC=C A '',那么这两个三角形( ).A .全等 B. 不一定全等 C. 不全等D. 面积相等,但不全等8.如图,∠B=∠D=︒90,要证明△ABC 与△ADC 全等,还需要补充的条件是 .9.如图,在△ABC 中,∠ACB=︒90,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,求证:DE=AD+BE.10.如图,已知AC ⊥BC ,AD ⊥BD ,AD=BC ,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,那么,CE=DF 吗?谈谈你的理由!BAAAN11.如图,已知AB=AC ,AB ⊥BD ,AC ⊥CD ,AD ,BC 相交于点E ,求证:(1)CE=BE ;(2)CB ⊥AD.提高题型:1.如图,△ABC 中,D 是BC 上一点,DE⊥AB,DF⊥AC,E 、F 分别为垂足,且AE=AF ,试说明:DE=DF ,AD 平分∠BAC.2.如图,在ABC 中,D 是BC 的中点,DE⊥AB,DF⊥AC,垂足分别是E 、F ,且DE=DF ,试说明AB=AC.3.如图,AB=CD ,DF⊥AC 于F ,BE⊥AC 于E ,DF=BE ,求证:AF=CE.4.如图,△ABC 中,∠C=90°,AB=2AC ,M 是AB 的中点,点N 在BC 上,MN⊥AB。

求证:AN 平分∠BAC。

ADBF EBA21NMC。

相关文档
最新文档