实验探究弹力和弹簧伸长量的关系讲解
2.4 实验二 探究弹力和弹簧伸长量的关系(精讲)(解析版)

实验二探究弹力和弹簧伸长量的关系【考情分析】1.了解弹力与弹簧伸长量的定量关系。
2.会用列表法、图象法、函数法处理实验数据。
【重点知识梳理】【实验目的】1.探究弹力和弹簧伸长的定量关系。
2.学会利用列表法、图象法研究物理量之间的关系。
【实验原理】1.弹簧受力会发生形变,形变的大小与受到的外力有关.沿着弹簧的方向拉弹簧,当形变稳定时,弹簧产生的弹力与使它发生形变的拉力在数值上是相等的。
2.用悬挂法测量弹簧的弹力,运用的正是弹簧的弹力与挂在弹簧下面的钩码的重力相等。
3.弹簧的长度可用刻度尺直接测出,伸长量可以由拉长后的长度减去弹簧原来的长度进行计算.这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系.即寻求F=kx的关系。
【实验器材】弹簧、毫米刻度尺、铁架台、钩码若干、坐标纸。
【实验步骤】1.将弹簧的一端挂在铁架台上,让其自然下垂,用刻度尺测出弹簧自然伸长状态时的长度l0,即原长。
2.如图2-4-1所示,将已知质量的钩码挂在弹簧的下端,在平衡时测量弹簧的总长度并测出钩码的重力,填写在记录表格里。
3.改变所挂钩码的质量,重复前面的实验过程多次。
【实验数据的处理】1.以弹力F(大小等于所挂钩码的重力)为纵坐标,以弹簧的伸长量x为横坐标,用描点法作图.连接各点,得出弹力F随弹簧伸长量x变化的图线。
2.以弹簧的伸长量为自变量,写出曲线所代表的函数.首先尝试一次函数,如果不行则考虑二次函数。
3.得出弹力和弹簧伸长之间的定量关系,解释函数表达式中常数的物理意义。
【实验误差的来源】1.弹簧长度的测量误差。
2.描点画线的作图误差。
【注意事项】1.所挂钩码不要过重,以免弹簧被过分拉伸,超出它的弹性限度.要注意观察,适可而止。
2.每次所挂钩码的质量差尽量大一些,从而使坐标上描的点尽可能稀,这样作出的图线更精确。
3.测弹簧长度时,一定要在弹簧竖直悬挂且处于平衡状态时测量,以免增大误差。
4.描点画线时,所描的点不一定都落在一条曲线上,但应注意一定要使各点均匀分布在曲线的两侧.5.记录数据时要注意弹力及弹簧伸长量的对应关系及单位。
实验专题:探究弹簧弹力和弹簧伸长量的关系答案解析

实验专题:探究弹簧弹力和弹簧伸长量的关系答案解析答案解析1.【答案】(1)C(2)等于【解析】(1)因为弹簧是被放在水平桌面上测得的原长,然后把弹簧竖直悬挂起来后,由于重力的作用,弹簧的长度会增大,所以图线应出现x轴上有截距,C正确,A、B、D错误.(2)如果将指针固定在A点的下方P处,在正确测出弹簧原长的情况下,再作出x随F变化的图象,则在图象上x的变化量不变,得出弹簧的劲度系数与实际值相等.2.【解析】(1)F-L图线如图所示:(2)弹簧的原长L0即弹力为零时弹簧的长度,由图象可知,L0=5×10-2m=5 cm.劲度系数为图象直线部分的斜率,k=20 N/m.(3)记录数据的表格如下表(4)优点:可以避免弹簧自身重力对实验的影响.缺点:弹簧与桌面及绳子与滑轮间存在的摩擦会造成实验误差.3.【解析】(1)在做实验的时候一般步骤为先组装器材,然后进行实验,最后数据处理,故顺序为CBDAEF.(2)①根据描点法,图象如图所示②、③根据图象,该直线为过原点的一条直线,即弹力与伸长量成正比,即F=kx=0.43x.式中的常数表示弹簧的劲度系数,即表示使弹簧伸长或者压缩1 cm所需的外力大小为0.43 N.4.【答案】(1)如图所示30F弹=30Δx(2)B(3)A【解析】(1)如图所示,直线的斜率的倒数表示弹簧的劲度系数,即k=,代入数据得kA =N/m≈30 N/m,所以弹簧的弹力大小F弹跟弹簧伸长量Δx的函数关系是F弹=30Δx.5.【解析】(1)描点作图,如图所示:(2)图象的斜率表示劲度系数,故有:k==N/m=50 N/m(3)图线与L轴的交点坐标表示弹簧不挂钩码时的长度,其数值大于弹簧原长,因为弹簧自身重力的影响.6.【答案】(1)6.93(2)A(3)弹簧受到的拉力超过了其弹性限度【解析】(1)弹簧伸长后的总长度为14.66 cm,则伸长量Δl=14.66 cm-7.73 cm=6.93 cm.(2)逐一增挂钩码,便于有规律地描点作图,也可避免因随意增加钩码过多超过弹簧的弹性限度而损坏弹簧.(3)AB段明显偏离直线OA,伸长量Δl不再与弹力F成正比,是超出弹簧的弹性限度造成的.7.【解析】(1)根据题意知,刻度尺的最小刻度为1毫米.读数时,应估读到毫米的十分位,故l5、l6记录有误.(2)按(1)中的读数规则,得l3=6.85 cm,l7=14.05 cm.(3)根据题中求差方法,可知d4=l7-l3=7.20 cm(4)根据l4-l0=4Δl=d1,l5-l1=4Δl=d2,l6-l2=4Δl=d3,l7-l3=4Δl=d4,有Δl==1.75 cm.(5)根据胡克定律F=kx得mg=kΔl,k==N/m=28 N/m8.【答案】(1)450(2)10【解析】(1)当F=0时,弹簧的长度即为原长,由胡克定律可知图象的斜率表示劲度系数大小.(2)弹簧秤的示数为3 N,则伸长量为3/50=0.06 m,则长度为10 cm.9.【解析】(1)描点作出图象,如下图所示.(2)图象跟坐标轴交点的物理意义表示弹簧原长.由图象可知,弹簧的劲度系数应等于直线的斜率,即k==200 N/m.10.【答案】(1)竖直(2)稳定L3 1 mm(3)Lx(4)4.910【解析】(1)为保证弹簧的形变只由砝码和砝码盘的重力产生,所以弹簧轴线和刻度尺均应在竖直方向.(2)弹簧静止稳定时,记录原长L0;表中的数据L3与其他数据有效位数不同,所以数据L3不规范,标准数据应读至cm位的后两位,最后一位应为估读值,精确至0.1 mm,所以刻度尺的最小分度为1 mm.(3)由题图知所挂砝码质量为0时,x为0,所以x=L-Lx(L为弹簧长度).(4)由胡克定律F=kΔx知,mg=k(L-Lx),即mg=kx,所以图线斜率即为弹簧的劲度系数k==N/m=4.9 N/m同理,砝码盘质量m==kg=0.01 kg=10 g11.【解析】(1)根据表格中的各组数据在坐标纸上标出相应的点,然后用平滑曲线连接这些点,作出的图象如图所示.(2)根据作出的图线可知,钩码质量在0~500 g范围内图线是直线,表明弹力大小与弹簧伸长量关系满足胡克定律.在这个范围内的曲线上找到相距较远的两点,利用这两点的坐标值计算弹簧的劲度系数k==N/m=25.00 N/m.12.【解析】(1)本题考查探究弹簧弹力与形变关系的实验,意在考查考生对实验步骤的识记、实验数据的处理方法、分析归纳能力.根据实验先后顺序可知,实验步骤排列为CBDAEF.(2)②由图象可得k==0.43 N/cm,所以F=0.43x(N).13.【答案】(1)10(2)200(3)b【解析】(1)当F=0时,弹簧长度为原长,由题图得,原长为10 cm.(2)由公式F=kx得k===N/m=200 N/m(3)当弹簧长度小于原长时,处于压缩状态,故是图线b14.【答案】(1)弹簧测力计刻度尺(2)kFL(3)控制变量法(4)12.5【解析】(1)用弹簧测力计测量力的大小,用刻度尺测量长度.(2)由题目所给数据分析可知:当力一定时,伸长量和长度成正比;当长度一定时,伸长量和力成正比,故有x=kFL(取一组数据验证,式中的k不为零).(3)研究伸长量与拉力、长度的关系时,可以先控制其中一个量不变,如长度不变,再研究伸长量和拉力的关系,这种方法称为控制变量法.这是物理实验中的一个重要研究方法.(4)代入表中数据把式中的k求出,得k=0.000 8 N-1,再代入已知数据,L=20 cm,x=0.2 cm,可求得最大拉力F=12.5 N.15.【答案】CBDAEFG【解析】根据实验的实验操作过程应先安装仪器,再挂钩码然后记录数据,分析数据,最后整理即可,排列先后顺序为CBDAEFG.。
实验一 探究弹簧伸长量与弹力的关系讲解

二、误差分析
偶然 误差
产生原因 测弹簧长 度的读数 不准
描点画图 不准
系统 弹簧自重
误差
减小方法
钩码静止 ,眼睛平视
点描小些 ,画图时点尽可能 在线上 ,不在线上的点尽可 能分布一线两侧 选轻质弹簧
典例剖析
实验操作的考查
【典例研习 1】
(1)在“探究弹力和弹簧伸长量的关系” 的实验中,以下说法正确的是( ) A.弹簧被拉伸时,可以超出它的弹性限度
解析:(1)本实验以一根弹簧为研究对象, 在弹性限度内通过增减钩码的数目 ,以改 变对弹簧的拉力,来探究弹力与弹簧伸长 量的关系,所以选项 B 正确,A、C、D 错误. (2)由于弹簧自重的影响,当不挂钩码时, 弹簧伸长量不为零.即在图象的横轴上出 现截距,选项 C 正确. 答案:(1)B (2)C
B.用悬挂钩码的方法给弹簧施加拉力,应 保证弹簧位于竖直位置且处于平衡状态 C.用直尺测得弹簧的长度即为弹簧的伸 长量 D.用几个不同的弹簧,分别测出几组拉力 与伸长量,得出拉力与伸长量之比相等
(2)某同学做“探究弹力和弹簧伸长量的 关系”的实验.他先把弹簧平放在桌面上 使其自然伸长,用直尺测出弹簧的原长 l0, 再把弹簧竖直悬挂起来,挂上钩码后测出 弹簧伸长后的长度 l,把 l-l0 作为弹簧的 伸长量 x,这样操作,由于弹簧自身重力的 影响,最后画出的图象可能是如图所示图 线中的( )
3.探究弹力和弹簧伸长量的关系 建立坐标系,以纵坐标表示弹力大小 F,以 横坐标表示弹簧的伸长量 x,在坐标系中描 出实验所测得的各组(x,F)对应的点,用平 滑的曲线连接起来,根据实验所得的图线, 就可探知弹力和弹簧伸长量的关系.
三、实验器材
铁架台、下端带挂钩的弹簧、钩码、刻度 尺、坐标纸.
2021届高考二轮复习实验精解训练 实验2:探究弹力和弹簧伸长量的关系(含解析)

2021届高考二轮复习实验精解训练实验2:探究弹力和弹簧伸长量的关系(含解析)1.某同学利用如图甲所示装置做“探究弹簧弹力大小与其形变量的关系”的实验。
(1)某次在弹簧下端挂上钩码后,弹簧下端处的指针在刻度尺上的指示情况如图乙所示,此时刻度尺的读数x=_______。
(2)根据实验数据在图丙的坐标纸上已描出了多次测量的弹簧所受弹力大小F跟弹簧长度x之间的函数关系点,请作出F x-图线。
(3)根据所作出的图线,可得该弹簧的劲度系数k=_______N/m。
(保留两位有效数字)2.“探究弹力和弹簧伸长量的关系,并测定弹簧的劲度系数”的实验装置如图1所示,所用的每个钩码的重力相当于对弹簧提供了向右恒定的拉力.实验时先测出不挂钩码时弹簧的自然L,再将5个钩码逐个挂在绳子的下端,测出每次相应的弹簧总长度L.(弹簧的弹力长度始终在弹性限度以内)(1)某同学通过以上实验测量得到6组数据,并把6组数据描点在坐标系图中,如图2所示,请在图2中作出F L-图线.(2)由此图线可得出该弹簧的原长为________cm,劲度系数为________N/m.(3)该同学实验时,把弹簧水平放置与弹簧竖直悬挂放置比较,优点在于:___________,缺点在于:______________.3.某同学用如图甲所示装置探究弹力和弹簧伸长量的关系,实验步骤如下:①测出不挂钩码时弹簧的自然长度;②将1个钩码挂在弹簧的下端,测出弹簧总长度L ; ③将2、3、4个钩码逐个挂在弹簧的下端,重复②。
(1)该同学测量后把数据描点在坐标图乙中,请你帮助该同学作出F L -图线。
(2)由此图线可得出该弹簧的原长0L =_______cm ,劲度系数k =______N/m 。
(结果保留一位小数)4.某同学做“探究弹簧弹力与形变量的关系”的实验。
步骤如下:(1)将弹簧悬挂在铁架台上,将刻度尺固定在弹簧一侧。
弹簧轴线和刻度尺都应在__________方向(填“水平”或“竖直”)。
实验二:探究弹力和弹簧伸长的关系实验报告

实验二探究弹力和弹簧伸长的关系【实验原理】弹簧受到拉力会伸长,平衡时弹簧产生的弹力和外力大小相等,弹簧的伸长越大;弹力也就越大。
【实验目的】1、探索弹力与弹簧伸长的定量关系2、学习通过对实验数据的数学分析(列表法和图像法),把握弹簧产生的弹力与弹簧伸长之间的变化规律【实验器材】:弹簧一根,相同质量的砝码若干,铁架台一个(用来悬挂弹簧)。
实验中除了上述器材外,需要的器材还有:。
【实验步骤】(1)将铁架台放在实验桌上,将弹簧悬挂在铁架台上。
弹簧竖直静止时,测出弹簧的原长l0,并填入实验记录中。
(2)依次在弹簧下挂上一个砝码、两个砝码、三个砝码……。
每次,在砝码处于静止状态时,测出弹簧的总长或伸长,并填入实验记录中。
(3)根据测得的数据,以力为纵坐标,以弹簧的伸长量为横坐标,根据表中所测数据在坐标纸上描点。
(4)作弹簧的F-Δl图像。
按照坐标图中各点的分布与走向,尝试作出一条平滑的曲线(包括直线)。
所画的点不一定正好在这条曲线上,但要注意使曲线两侧的点数大致相同。
(5)以弹簧的伸长为自变量,写出曲线所代表的函数,首先尝试一次函数,如果不行则考虑二次函数……(6)解释函数表达式中常数的物理意义。
【实验纪录】弹簧原长l0=弹簧F -Δl 实验图像【实验结论】弹簧弹力大小跟弹簧伸长长度的函数表达式【问题与讨论】1、上述函数表达式中常数的物理意义2、如果以弹簧的总长为自变量,所写出的函数式应为3、某同学在做实验时得到下列一组数据,他由数据计算出弹簧的劲度系数为m N l F k /781020.35.22=⨯=∆=-试分析他对数据处理的方法是否正确?为什么?。
弹力的概念与弹簧的伸长

弹力的概念与弹簧的伸长弹力是物体在受到压缩或拉伸时所具有的回复力量。
它是由于物体表面的分子间相互作用或内部结构改变导致的力的形式。
弹簧是一种常见的能够表现出弹力的物体,它在受到外力作用时,可以发生伸长或缩短。
本文将深入探讨弹力的概念,并详细解释弹簧在受力时的伸长现象。
一、弹力的概念1. 弹力的定义弹力是物体在外力作用下发生形变后所产生的恢复力。
当物体受到压缩或拉伸时,其内部分子间的相互作用会产生反向的力,使物体试图恢复到其原始形态。
这种反向的力就是弹力。
2. 弹性恢复力弹力也被称为弹性恢复力,因为它表现出物体恢复到初始状态的能力。
物体的弹性恢复力取决于其弹性系数,即物体所具有的弹性特性。
弹性系数越大,物体的形变越小,恢复力也越大。
二、弹簧的伸长1. 弹簧的结构弹簧通常是由金属制成的细长螺旋形物体,具有一定的弹性。
它的结构能够使其在受到外力压缩或拉伸时发生形变,并产生相应的弹力。
2. 弹簧的伸长模型当外力作用于弹簧时,它会发生伸长或缩短的变形。
伸长过程中,弹簧内部的分子间相互作用会产生反向的力,试图将弹簧恢复到初始状态。
这种反向的力就是弹力。
3. 弹性系数和弹簧常数弹簧的伸长程度受到弹性系数或弹簧常数的影响。
弹性系数是一个衡量弹簧刚度或硬度的物理量,用于描述弹簧伸长或缩短的程度。
弹簧常数越大,弹簧在受力时的伸长量就越小。
4. 胡克定律胡克定律是描述弹簧伸长或缩短的力学规律。
根据胡克定律,弹簧的伸长或缩短与施加于弹簧两端的力成正比。
即弹簧伸长的长度与施加力的大小成正比,这个关系可以用公式表示为 F = kx,其中 F 表示施加在弹簧两端的力,k 表示弹簧的弹性系数,x 表示弹簧的伸长长度。
三、弹力在日常生活中的应用1. 弹力储存弹簧具有储存弹力的能力,因此在许多机械设备中被广泛应用。
例如,弹簧可以用于汽车悬挂系统,通过吸收和释放道路震荡来提供舒适的行驶体验。
此外,弹簧还可以用于钟表、自行车和家具等各种产品中的发条装置。
实验探究弹力和弹簧伸长量的关系

(4)若有一根合金丝的长度为20 cm,截面直径为
0.200 mm,使用中要求其伸长量不能超过原长的百分
之一,那么这根合金丝能承受的最大拉力为______N.
精品课件!
精品课件!
解析 (2)由题目所给的数据分析可知:当力、直径
一定时,伸长量与长度成正比,当力、长度一定时,伸
长量与直径成反比,当长度、直径一定时,伸长量与力
3.得出弹力和弹簧伸长之间的定量关系,解释函数表 达式中常数的物理意义.
【误差分析】
1.弹簧拉力大小的不稳定会造成误差.因此,使弹簧 的悬挂端固定,另一端通过悬挂钩码来充当对弹簧 的拉力,待稳定后再读数可以提高实验的准确度.
2.尽量精确地测量弹簧的长度,也是减小实验误差 的基本方法.
3.描点、作图不准确.
砝码质量
0
m/×102 g
标尺刻度 15.00 x/×10-2 m
1.00 18.94
2.00 22.82
3.00 26.78
4.00 5.00 6.00 7.00 30.66 34.60 42.00 54.50
(1)根据所测数据,在图4坐标纸上作出弹簧指针所指 的标尺刻度x与砝码质量m的关系曲线.
图6
解析 根据胡克定律F=k(h+L-L0)=kL+k(h-L0),从图 中知道当L=0时,F=10 N;当L=10 cm时,F=20 N;
将其代入方程联立得k=100 N/m,L0=15.0 cm.
答案 100
15.0
5.用纳米技术处理过的材料叫纳米材料,其性质与处 理前相比会发生很多变化.如机械性能会成倍地增 加,对光的反射能力会变得很低,熔点会大大地降 低,甚至有特殊的磁性质.现有一纳米合金丝,欲测 出其伸长量x与所受到的拉力F、长度L、截面直径 D的关系. (1)测量上述物理量需要的主要器材是:_______、 ________、___________等. (2)若实验中测量的数据如下表,根据这些数据请写 出x与F、L、D间的关系式:x=_________.(若用到 比例系数,可用k表示)
《探究弹力和弹簧伸长的关系》教学设计

《探究弹力和弹簧伸长的关系》教学设计【课题分析】在学生学习了弹力后,明白弹力是一种最差不多的性质力,是摩擦力产生的前提和基础。
弹力同时也是物体受力分析中最重要的一种力。
弹力来源于形变:“弹力的大小跟形变的大小有关系,形变越大,弹力也越大,形变消逝,弹力就随着消逝”(高一物理必修)。
但弹力与形变怎么说有何关系,人教版高中物理课本只给出了定性的关系,缘故是弹力与形变关系比较复杂。
为了降低难度,减小知识的跨过台阶,课程设置为探究性学习,且只研究弹力与弹簧伸长形变的定量关系。
本节课的教学内容新颖,形式比较生动,有讲解,有实验,有板演,有讨论,有归纳,有练习,能够上成一堂比较典型的探究性实验教学课。
我们改变课堂视角,在培养学生科学研究方法的教育中作了一些探究,让学生重走科学家的探究之路,品味科学家的探究精神。
【教学目标】1、加深弹力和形变关系的明白得,明白弹力产生的条件;2、通过实验得到弹力与弹簧伸长量的关系;3、学习本课题所用的科学方法;4、培养学生的探究精神和团队协作精神,激发学生的求知欲;5、提高学生分析、解决实际问题的能力,并体验成功的愉悦。
【教学重点】弹簧的弹力与弹簧伸长量的关系。
【教学难点】实验数据的处理方法。
【教学方法】实验法、谈话法。
【课前预备】教师预备:(弹簧秤、钩码、直尺、铁架台)12套、CAI课件、多媒体展台。
学生预备:三角板、笔、草稿纸。
【教学地点】物理多媒体实验室。
【课时安排】1课时。
【教学过程】一、复习知识并引入课题师:[多媒体展现]1、什么是弹力?弹力的方向如何?举例说明。
2、弹力产生的条件是什么?3、什么叫形变及弹性形变?生:回忆并作答。
师:依照学生回答纠正总结,并用多媒体展现答案。
1、发生形变的物体,由于要复原原状,对跟它接触的物体会产生力的作用,这种力叫弹力。
例如:放在水平桌面上的书受到桌面对书的弹力,弹力的方向垂直桌面指向书;而桌面受到的弹力方向垂直桌面向下。
挂在电线下面的电灯,受到电线对电灯的弹力,弹力的方向沿着绳而指向绳收缩的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.00 18.94
2.00 22.82
3.00 26.78
4.00 5.00 6.00 7.00 30.66 34.60 42.00 54.50
(1)根据所测数据,在图4坐标纸上作出弹簧指针所指 的标尺刻度x 与砝码质量m 的关系曲线.
图4 (2)根据所测得的数据和关系曲线可以判断 ,在_____ 范围内,弹力大小与弹簧伸长关系满足胡克定律 .这种 规格弹簧劲度系数为________N/m.
伸拉
长度
长力
截面积
1 m 0.05 cm2
250 N 500 N 750 N 1 000 N 0.04 cm 0.08 cm 0.12 cm 0.16 cm
2 m 0.05 cm2 1 m 0.10 cm2
0.08 cm 0.16 cm 0.24 cm 0.32 cm 0.02 cm 0.04 cm 0.06 cm 0.08 cm
克定律.图线斜率的大小在数值上等于弹簧的劲度系
数k,则k=25 N/m.
答案 (1)见解析
(2)0~4.9 N 25
【例2】用一个支架、一根弹簧、一把直尺和一个已 知质量的钩码,来测定某个不太重的物体有多重,该 怎么做? 解析 本题主要考查实验方法的拓展迁移能力. (1)将弹簧上端固定在支架上,下端挂上钩码(质量已 知为m),测出弹簧伸长x . (2)将钩码取下换上待测物体 ,测出弹簧伸长 x ′. (3)待测物体的重力 mg x'.
N/m
?
1 ? 6.25? 105 N/m 2
x 答案 见解析
创新实验 用金属制成的线材(如钢丝、钢筋)受到拉力会伸
长,十七世纪英国物理学家胡克发现:金属丝或金属杆 在弹性限度内它的伸长与拉力成正比,这就是著名的 胡克定律.这一发现为后人对材料的研究奠定了重要 基础.现有一根用新材料制成的金属杆,长为4 m,横 截面积为0.8 cm2,设计要求它受到拉力后的伸长不超 过原长的1/1 000,问最大拉力多大?由于这一拉力很 大,杆又较长,直接测试有困难,选用同种材料制成样 品进行测试,通过测试取得数据如下:
【误差分析】
1.弹簧拉力大小的不稳定会造成误差 .因此,使弹簧 的悬挂端固定,另一端通过悬挂钩码来充当对弹簧 的拉力,待稳定后再读数可以提高实验的准确度 . 2.尽量精确地测量弹簧的长度,也是减小实验误差 的基本方法. 3.描点、作图不准确.
【注意事项】
1.所挂钩码不要过重,以免弹簧被过分拉伸,超出它 的弹性限度.要注意观察,适可而止. 2.每次所挂钩码的质量差尽量大一些 ,从而使坐标上 描的点的间距尽可能大,这样作出的图线更精确. 3.测弹簧长度时,一定要在弹簧竖直悬挂且处于平衡 状态时测量,以免增大误差. 4.描点画线时,所描的点不一定都落在一条曲线上 , 但应注意一定要使各点均匀分布在曲线的两侧 . 5.记录数据时要注意弹力及弹簧伸长量的对应关系 及单位.
典例剖析
【例1】某同学用如图3所示装置做探究 弹力和弹簧伸长关系的实验.他先测出 不挂砝码时弹簧下端指针所指的标尺 刻度,然后在弹簧下端挂上砝码,并逐个 增加砝码,测出指针所指的标尺刻度,所 图3 得数据列表如下:(重力加速度g=9.8 m/s2)
砝码质量
0
m /×102 g
标尺刻度 15.00 x /×10-2 m
(1)测得结果表明线材受拉力作用后 ,其伸长与材料的
长度成_______,与材料的截面积成_______. (2)上述金属细杆承受的最大拉力为 _______N. 解析 (1)由题中列表可看出,材料样品的伸长量与材 料的长度成正比,与材料的截面积成反比.
(2)由表可看出,材料一定长,一定截面积时,拉力与
图2
3.改变所挂钩码的质量,量出对应的弹簧长度,记录 m2、m3、m4、m5和相应的弹簧长度l2、l3、l4、l5,并 得出每次弹簧的伸长量x 1 、x 2、x 3 、x 4、x 5 .
钩码个数 0 1 2 3
?
长度
l0= l1= l2= l3=
?
伸长量x 弹力F
x 1=l 1-l 0
F1=
x 2=l 2-l 0
思路点拨 (1)在坐标纸上描点,然后根据各点的分 布与走向,用平滑的曲线(或直线)连接各点. (2)满足胡克定律的应是图线中的直线部分 . 解析 (1)如图所示
(2)根据图线可以看出,当m≤5.0×102 g=0.5 kg时,标尺刻度x 与砝码质量m成一次函数关系,所以当
F=mg≤4.9 N范围内弹力大小与弹簧伸长关系满足胡
伸长量的比例为定值.
设1 m长,截面积为0.05 cm2的比例系数为K1
2 m长,截面积为0.05 cm2的比例系数为K2
1 m长,截面积为0.10 cm2的比例系数为K3
则K1 ?
F1 x1
?
250 0.04 ? 10? 2
N/m
?
6.25? 105 N/m
K2
?
F1' x1'
?
250 0.08? 10? 2
【实验器材】
铁架台、弹簧、毫米刻度尺、钩码若干、三角板、 坐标纸、重垂线、铅笔.
【实验步骤】
1.将弹簧的一端挂在铁架台上,让其自然下垂,用刻 度尺测出弹簧自然伸长状态时的长度 l0,即原长. 2.如图2所示,在弹簧下端挂质量为m1的钩码,量出 此时弹簧的长度l1,记录m1和l1,填入自己设计的表 格中.
F2=
x 3=l 3-l 0
F3=
?
?
【数据处理】
1.以弹力F(大小等于所挂钩码的重力)为纵坐标,以 弹簧的伸长量x 为横坐标,用描点法作图.连接各点, 得出弹力F 随弹簧伸长量x 变化的图线. 2.以弹簧的伸长量为自变量,写出曲线所代表的函 数.首先尝试一次函数,如果不行则考虑二次函数. 3.得出弹力和弹簧伸长之间的定量关系 ,解释函数表 达式中常数的物理意义.
实验二 探究弹力和弹簧伸长量的关系 要点归纳
【实验目的】
1.探究弹力和弹簧伸长量之间的关系 . 2.学会利用图象法处理实验数据.
【实验原理】
1.如图1所示,在弹簧下端悬挂钩码时弹簧会伸长 ,平 衡时弹簧产生的弹力与所挂钩码的重力大小相等 .
图1 2.弹簧的长度可用刻度尺直接测出 ,伸长量可以由拉
长后的长度减去弹簧原来的长度进行计算 .这样就可 以研究弹簧的弹力和弹簧伸长量之间的定量关系了 .