分解因式难题1

合集下载

初中数学因式分解难题汇编及答案

初中数学因式分解难题汇编及答案

初中数学因式分解难题汇编及答案一、选择题1.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .50【答案】A【解析】试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.2.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.3.已知12,23x y xy -==,则43342x y x y -的值为( )A .23B .2C .83D .163【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进行计算即可.【详解】 ∵12,23x y xy -==,∴43342x y x y -=x 3y 3(2x-y)=(xy)3(2x-y)=23×1 3=83,故选C.【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.4.下列等式从左到右的变形属于因式分解的是()A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣aC.6x2y3=2x2•3y3D.mx﹣my+1=m(x﹣y)+1【答案】A【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】解:A、a2﹣2a+1=(a﹣1)2,从左到右的变形属于因式分解,符合题意;B、a(a+1)(a﹣1)=a3﹣a,从左到右的变形是整式乘法,不合题意;C、6x2y3=2x2•3y3,不符合因式分解的定义,不合题意;D、mx﹣my+1=m(x﹣y)+1不符合因式分解的定义,不合题意;故选:A.【点睛】本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.5.下列各式中不能用平方差公式进行计算的是( )A.(m-n)(m+n) B.(-x-y)(-x-y)C.(x4-y4)(x4+y4) D.(a3-b3)(b3+a3)【答案】B【解析】A.(m-n)(m+n),能用平方差公式计算;B.(-x-y)(-x-y),不能用平方差公式计算;C.(x4-y4)(x4+y4),能用平方差公式计算;D. (a3-b3)(b3+a3),能用平方差公式计算.故选B.6.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2x【答案】C【解析】【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A、2a2-2a+1=2a(a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B、(x+y)(x-y)=x2-y2,这是整式的乘法,故此选项不符合题意;C、x2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D、x2+y2=(x-y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;故选C.【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.7.若a2-b2=14,a-b=12,则a+b的值为()A.-12B.1 C.12D.2【答案】C【解析】【分析】已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.【详解】∵a2-b2=(a+b)(a-b)=12(a+b)=14∴a+b=1 2故选C.点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.8.已知x﹣y=﹣2,xy=3,则x2y﹣xy2的值为()A.2 B.﹣6 C.5 D.﹣3【答案】B【解析】【分析】先题提公因式xy,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.9.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B10.若a b +=1ab =,则33a b ab -的值为( )A .±B .C .±D .【答案】C【解析】【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解. 【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+-∴33)a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-故选:C .【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.11.下列因式分解正确的是( )A .x 3﹣x =x (x 2﹣1)B .x 2+y 2=(x+y )(x ﹣y )C .(a+4)(a ﹣4)=a 2﹣16D .m 2+4m+4=(m+2)2【答案】D【解析】【分析】逐项分解因式,即可作出判断.【详解】 A 、原式=x (x 2﹣1)=x (x+1)(x ﹣1),不符合题意;B 、原式不能分解,不符合题意;C 、原式不是分解因式,不符合题意;D 、原式=(m+2)2,符合题意,故选:D .【点睛】此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.12.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.13.若实数x 满足2210x x --=,则322742017x x x -+-的值为( )A .2019B .2019-C .2020D .2020-【答案】D【解析】【分析】根据2210x x --=推出x 2-2x=1,然后把-7x 2分解成-4x 2-3x 2,然后把所求代数式整理成用x 2-2x 表示的形式,然后代入数据计算求解即可.解:∵x 2-2x-1=0,∴x 2-2x=1,2x 3-7x 2+4x-2017=2x 3-4x 2-3x 2+4x-2017,=2x (x 2-2x )-3x 2+4x-2017,=6x-3x 2-2017,=-3(x 2-2x )-2017=-3-2017=-2020故选D.【点睛】本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.14.某天数学课上,老师讲了提取公因式分解因式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-12xy 2+6x 2y+3xy=-3xy•(4y-______)横线空格的地方被钢笔水弄污了,你认为横线上应填写( )A .2xB .-2xC .2x-1D .-2x-l【答案】C【解析】【分析】根据题意,提取公因式-3xy ,进行因式分解即可.【详解】解:原式=-3xy×(4y-2x-1),空格中填2x-1.故选:C .【点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,同时要注意提取公因式后各项符号的变化.15.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+;【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.16.若x 2+mxy+y 2是一个完全平方式,则m=( )A .2B .1C .±1D .±2【答案】D【解析】根据完全平方公式:(a +b )2=a 2+2ab +b 2与(a -b )2=a 2-2ab +b 2可知,要使x 2+mxy +y 2符合完全平方公式的形式,该式应为:x 2+2xy +y 2=(x +y )2或x 2-2xy +y 2=(x -y )2. 对照各项系数可知,系数m 的值应为2或-2.故本题应选D.点睛:本题考查完全平方公式的形式,应注意完全平方公式有(a +b )2、(a -b )2两种形式. 考虑本题时要全面,不要漏掉任何一种形式.17.下列由左到右边的变形中,是因式分解的是( )A .(x +2)(x ﹣2)=x 2﹣4B .x 2﹣1=1()x x x-C .x 2﹣4+3x =(x +2)(x ﹣2)+3xD .x 2﹣4=(x +2)(x ﹣2)【答案】D【解析】【分析】直接利用因式分解的意义分别判断得出答案.【详解】A 、(x+2)(x-2)=x 2-4,是多项式乘法,故此选项错误;B 、x 2-1=(x+1)(x-1),故此选项错误;C 、x 2-4+3x=(x+4)(x-1),故此选项错误;D 、x 2-4=(x+2)(x-2),正确.故选D .【点睛】此题主要考查了因式分解的意义,正确把握定义是解题关键.18.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.19.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.20.下列因式分解正确的是( )A .()22121x x x x ++=++B .()222x y x y -=-C .()1xy x x y -=-D .()22211x x x +-=- 【答案】C【解析】【分析】根据平方差公式,提公因式法分解因式,完全平方公式,对各选项逐一分析判断即可得答案.A.x2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,B.x2-y2=(x+y)(x-y),故该选项因式分解错误,不符合题意,C.xy-x=x(y-1),故该选项正确,符合题意,D.x2+2x-1不能因式分解,故该选项因式分解错误,不符合题意,故选:C.【点睛】本题考查因式分解,因式分解首先看是否有公因式,如果有先提取公因式,然后再利用公式法或十字相乘法进行分解,要分解到不能再分解为止.。

八年级因式分解难题

八年级因式分解难题

八年级因式分解难题一、基础概念类。

1. 分解因式:x^2-4y^2解析:这是一个平方差公式的应用,a^2-b^2=(a + b)(a b),在这里a=x,b =2y,所以x^2-4y^2=(x+2y)(x 2y)。

2. 分解因式:9x^2-16解析:同样是平方差公式,9x^2=(3x)^2,16 = 4^2,所以9x^2-16=(3x + 4)(3x-4)。

二、提取公因式与公式结合类。

3. 分解因式:2x^3-8x解析:首先提取公因式2x,得到2x(x^2-4),然后x^2-4可以继续用平方差公式分解为(x + 2)(x-2),所以2x^3-8x=2x(x + 2)(x 2)。

4. 分解因式:3x^2y-6xy + 3y解析:先提取公因式3y,得到3y(x^2-2x + 1),而x^2-2x + 1=(x 1)^2,所以3x^2y-6xy + 3y=3y(x 1)^2。

三、完全平方公式类。

5. 分解因式:x^2+6x + 9解析:这是完全平方公式(a + b)^2=a^2+2ab+b^2的形式,在这里a=x,b = 3,所以x^2+6x + 9=(x + 3)^2。

6. 分解因式:4x^2-20x+25解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 2x,b=5,所以4x^2-20x + 25=(2x 5)^2。

四、较复杂的综合类。

7. 分解因式:x^4-81解析:可以先将x^4-81看作(x^2)^2-9^2,根据平方差公式得到(x^2+9)(x^2-9),而x^2-9还可以继续分解为(x + 3)(x-3),所以x^4-81=(x^2+9)(x + 3)(x 3)。

8. 分解因式:x^3+2x^2-9x-18解析:分组分解,将式子分为(x^3+2x^2)-(9x + 18),分别提取公因式得到x^2(x + 2)-9(x + 2),再提取公因式(x + 2)得到(x + 2)(x^2-9),最后x^2-9=(x + 3)(x-3),所以x^3+2x^2-9x-18=(x + 2)(x + 3)(x 3)。

因式分解难题答案集

因式分解难题答案集

因式分解难题答案集因式分解是代数学中的一个重要概念,它可以帮助我们简化复杂的代数表达式。

在本文档中,我们将提供一些常见难题的因式分解答案,希望对你的研究有所帮助。

难题一:因式分解多项式问题:把多项式 $3x^2 + 6x + 3$ 进行因式分解。

把多项式$3x^2 + 6x + 3$ 进行因式分解。

答案:将多项式进行因式分解得到 $(x + 1)(3x + 3)$。

将多项式进行因式分解得到 $(x + 1)(3x + 3)$。

难题二:因式分解含有平方项的多项式问题:把多项式 $x^2 - 4$ 进行因式分解。

把多项式 $x^2 - 4$ 进行因式分解。

答案:将多项式进行因式分解得到 $(x + 2)(x - 2)$。

将多项式进行因式分解得到 $(x + 2)(x - 2)$。

难题三:因式分解含有高次幂的多项式问题:把多项式 $x^3 - 8$ 进行因式分解。

把多项式 $x^3 -8$ 进行因式分解。

答案:将多项式进行因式分解得到 $(x - 2)(x^2 + 2x + 4)$。

将多项式进行因式分解得到 $(x - 2)(x^2 + 2x + 4)$。

难题四:因式分解含有多个变量的多项式问题:把多项式 $x^2 + 2xy + y^2$ 进行因式分解。

把多项式$x^2 + 2xy + y^2$ 进行因式分解。

答案:将多项式进行因式分解得到 $(x + y)^2$。

将多项式进行因式分解得到 $(x + y)^2$。

这些是一些常见的因式分解难题及其答案。

通过理解和掌握因式分解的方法,你将能够更好地解决和简化复杂的代数表达式。

希望本文档对你的研究有所帮助。

> 注意:以上答案仅供参考,并不代表所有的因式分解问题的唯一答案。

因式分解有时存在多种可能的解法,具体的答案可能因问题的具体形式而有所不同。

浙教版七年级下数学因式分解难题

浙教版七年级下数学因式分解难题

一■分式知识要点回顾1.因式分解几中常用方法①提取公因式法。

②乘法公式法:a2-b2二a b a-b ;a2_2ab b2二a_b 2。

③分组分解法:ma mb na nb = m a b n a b j i:a b m n。

④十字相乘法:x2・a・bx・ab=x・ax・b。

2.分式的有关概念A A .C A A 十C(1 )分式的基本性质:一=——C或—= --------- (C M0),其中A , B, C均为整式。

B B *C B B + C(2)分式的约分分式的约分依据是分式的基本性质,约去分子和分母中相同因式的最低次幕,约去分子和分母系数的最大公约数。

(3)分式的通分把两个或多个因式通分,先求出各个分式分母的最简公分母,再用分式的基本性质变形,达到通分目的。

(4)分式的运算①分式乘法法则: a c•—=ac - 。

b d bd②分式除法法则: a c / d : _ adb d bc bca c a 二c③分式的加减法:(1)同分母分式相加减:;(2)异分母分式相加减:b b ba c ad bc ad 二bc———= 十 = -------------- 。

b 一d bd bd bd3.分式方程(1)定义:只含分式或分式和整式,并且分母里含有未知数的方程叫做分式方程。

(2)解分式方程。

温馨提示:(1)在方程两边都乘以最简公分母时,切勿漏项;(2)验根是必要步骤。

二•巩固练习1.解下列分式方程‘ 2 小x 1 -x 2x (2)x_2 x -5x 6 x_3 2 -x , 11 -x -3 3 - x2.因式分解2 2a -6ab 12b 9b -4a x2_ 2xy「xz yz y2x2 -7x 6 x2 4x - 523x -11x 10 2x -11x 242 2x y 「3xy 2 2y -12y-282 2 2 x 4 -16xx 2「4xy _1 4y 2o12a b x-y -4ab y-x3.分式的混合运算(a 2-5a 21) 且-b . a? -a+2b‘ a 2+4ab+4 b 2a 1 a 1a —1 a -2a 1 a亠 a 2 -42 2xr. E y _ 2y打如* x2+6xy+9y £ 时卩2x-6 ,4-4x x 2(x 3)x 2 x -6 3—x其中a=1.4. 化简求值2x 2x -8/ X -2 x 4、—2十(x 3 2x xx x 1a 2「5a 6 a 2 -5a 4 a 「3 T—2 2a —16 a -4 a 41 —x 3 (2)x^ g 厂2),其中1 x= . 25•计算2 2x -x_2x x-6X2_X_6 X2X_2的结果是6.当m为非负数时,求代数式———3有最大值还是最小值,并求出此最值。

(易错题精选)初中数学因式分解难题汇编含答案

(易错题精选)初中数学因式分解难题汇编含答案
即 ,
整理得: ,
比较系数得: ,
解得: ,
∴ ,
故选:A.
【点睛】
此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.
17.已知 、 、 为 的三边长,且满足 ,则 是()
A.直角三角形B.等腰三角形或直角三角形
C.等腰三角形D.等腰直角三角形
【答案】B
【解析】
【分析】
移项并分解因式,然后解方程求出a、b、c的关系,再确定出△ABC的形状即可得解.
C.(a+4)(a﹣4)=a2﹣16D.m2+4m+4=(m+2)2
【答案】D
【解析】
【分析】
逐项分解因式,即可作出判断.
【详解】
A、原式=x(x2﹣1)=x(x+1)(x﹣1),不符合题意;
B、原式不能分解,不符合题意;
C、原式不是分解因式,不符合题意;
D、原式=(m+2)2,符合题意,
故选:D.
15.下面的多项式中,能因式分解的是()
A. B. C. D.
【答案】B
【解析】
【分析】
完全平方公式的考察,
【详解】
A、C、D都无法进行因式分解
B中, ,可进行因式分解
故选:B
【点睛】
本题考查了公式法因式分解,常见的乘法公式有:平方差公式:
完全平方公式:
16.若多项式 含有因式 和 ,则 的值为()
【详解】
A. ,故本选项正确;
B. ,故本选项错误;
C. ,故本选项错误;
D. ,故本选项错误.
故选A.
【点睛】
此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.

因式分解难题汇编及答案

因式分解难题汇编及答案
【解析】
【分析】
移项并分解因式,然后解方程求出a、b、c的关系,再确定出△ABC的形状即可得解.
【详解】
移项得,a2c2−b2c2−a4+b4=0,
c2(a2−b2)−(a2+b2)(a2−b2)=0,
(a2−b2)(c2−a2−b2)=0,
所以,a2−b2=0或c2−a2−b2=0,
即a=b或a2+b2=c2,
C. D.
【答案】D
【解析】
【分析】
根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.
【详解】
解:由因式分解的定义可知:
A. 2(a﹣b)=2a﹣2b,不是因式分解,故错误;
B. ,不是因式分解,故错误;
C. ,左右两边不相等,故错误;
D. 是因式分解;
故选:D
【点睛】
【详解】
解:A、把一个多项式转化成几个整式积的形式,符合题意;
B、右边不是整式积的形式,不符合题意;
C、是整式的乘法,不是因式分解,不符合题意;
D、是整式的乘法,不是因式分解,不符合题意;
故选:A.
【点睛】
本题考查了因式分解的意义,掌握因式分解的意义是解题关键.
19.多项式 与多项式 的公因式是()
【详解】
a3-4ab2=a(a2-4b2)=a(a+2b)(a-2b).
故选C.
【点睛】
本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
4.下列分解因式正确的是( )
A.x2-x+2=x(x-1)+2B.x2-x=x(x-1)C.x-1=x(1- )D.(x-1)2=x2-2x+1

因式分解难题集锦

因式分解难题集锦

因式分解好题难题集锦1、x2-8xy+15y2+2x-4y-3;2、x2-xy+2x+y-3;3、3x2-11xy+6y2-xz-4yz-2z2;4、x3+x2-10x-6;5、x4+3x3-3x2-12x-4;6、4x4+4x3-9x2-x+2;7、2x2+3xy-9y2+14x-3y+20;8、x4+5x3+15x-99、x2-3xy-10y2+x+9y-2;10、x2-y2+5x+3y+4;11、xy+y2+x-y-2;12、6x2-7xy-3y2-xz+7yz-2z2.1、已知x+y=a,x2+y2=b2,求x4+y4的值2、已知a-b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.3、设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值.4、已知13x2-6xy+y2-4x+1=0,求(x+y)13·x10的值.1、322x xx 2、39999能被100整除吗?还能被那些数整除? 3、分解因式2244a ab b 4、已知,,a b c 是ABC 的三边,且222a b c ab bc ca ,则ABC 的形状是()A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形5、分解因式am an bm bn .6、分解因式bxby ay ax 51027、分解因式:ayax y x 228、分解因式:2222c b ab a 9、分解因式:652x x 10、分解因式:672x x 11、分解因式:101132x x 12、分解因式:221288b ab a 13、分解因式:abcx c b a abcx )(222214、分解因式22(1)(2)12x x x x 15、分解因式(1)2005)12005(200522x x (2)2)6)(3)(2)(1(x x x x x 16、分解因式(1))(4)(22222y x xy y xy x (2)90)384)(23(22x x x x (3)222222)3(4)5()1(a a a 17、分解因式()()()bc b c ca c a ab a b 18、分解因式243x x 19、分解因式222()()()a b c b c a c a b 20、分解因式3292315x x x 21、分解因式432564x x x x 22、分解因式613622y x y xy x 23、(1)当m 为何值时,多项式6522y mx y x 能分解因式,并分解此多项式.(2)如果823bx ax x 有两个因式为1x 和2x ,求b a 的值.24、用于分解形如22ax bxy cy dx ey f 的二次六项式25、分解因式225681812x xy y x y26、分解因式22abb a b 27、分解因式32352x x。

因式分解难题竞赛题

因式分解难题竞赛题

因式分解难题竞赛题一、已知多项式 x4 + ax3 + bx2 + cx + d 的因式分解中含有一个因式 (x - 2)2,且当 x = 1 时,多项式的值为 1。

则下列哪个选项可能是该多项式的因式分解形式?A. (x - 2)2(x2 + 4x + 7)B. (x - 2)2(x2 + 5x + 8)C. (x - 2)2(x2 + 3x + 5)D. (x - 2)2(x2 + 6x + 9)(答案:C)二、多项式 x3 + ax2 + bx + c 分解因式后有一个因式是 x + 1,且当 x = 2 时,多项式值为 0;当 x = -2 时,多项式值为 -27。

下列哪个选项是该多项式的因式分解?A. (x + 1)(x2 - x + 3)B. (x + 1)(x2 - 2x - 3)C. (x + 1)(x2 - 3x + 9)D. (x + 1)(x2 - x - 9)(答案:C)三、多项式 x4 - ax3 + bx2 - ax + 1 在进行因式分解时,有一个因式是 x2 + 1,且常数项为 1。

下列哪个选项可能是该多项式的另一个因式?A. x2 - ax - 1B. x2 - ax + 2C. x2 - ax - 2D. x2 - ax + 3(答案:A)四、已知多项式 2x4 - 11x3 + 19x2 - 11x + 2 可以完全分解,且含有一个二次因式。

下列哪个选项是该多项式的一个因式?A. x2 - 5x + 1B. x2 - 4x + 2C. x2 - 3x + 1D. x2 - 6x + 2(答案:B)五、多项式 x3 + ax2 + bx + c 有一个因式 x - 1,且满足 x = 0 时多项式为 -6,x = 2 时多项式为 0。

下列哪个选项是该多项式的因式分解?A. (x - 1)(x2 + x - 6)B. (x - 1)(x2 + 2x - 6)C. (x - 1)(x2 + 3x - 6)D. (x - 1)(x2 + 4x - 6)(答案:A)六、多项式 x4 + 6x3 + ax2 + bx + c 有一个因式 (x + 1)(x + 2),且常数项 c 为正数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解的方法介绍
一、教学目标
1、知识目标
掌握因式分解的一些技巧,并会运用解决实际相关问题.
2、能力目标
培养学生观察,比较,类推的能力.
3、情感目标
激发学生探究数学的动力,提高学生学习数学方法技巧的兴
趣.
二、教学重点难点
因式分解的技巧及其应用
三、教学方法
教师引导学生为主
四、教学过程
引入: 我们知道因式分解的常见方法有:提取公因式法,运用
公式法,分组分解法和十字相乘法。

(对以上四种方法通过提问学生来
回忆旧知)
除了这四种常见的方法外,在数学竞赛中还要用到下面的一些方
法,现例析如下:
1. 推广了的十字相乘法
根据十字相乘法的形式,将其对系数的要求推广到含有字
母的式子,可将较为复杂的多项式分解因式。

例分解因式: (希望杯赛题)
x²+xy-6y²)+(x+13y)-6 (提示学生为什么要这样合并
= (x+3y)(x-2y)+(x+13y)-6 关键在于x²+xy-6y²可以分解)
=(x+3y-2)(x-2y+3)
教学过程注意分析:
x+3y -2
3(x+3y)-2(x-2
x-2y 3
练习题:分解因式: (02年重庆赛题)
2. 延拓了的公式法
在平方差公式、立方和与立方差公式的基础上,推导出了
公式:
(教学过程:给出平方差公式, 立方和与立方差公式,并作一定形式上的分析:
)
例已知乘法公式:
利用或者不用上述公式分解因式:
(祖冲之杯赛题)
分析:题目对比,
发现跟的类似找出规律.
解:
练习题:分解因式:
3. 拓展了的分组分解法
⑴拆项(分组)法
把多项式里的某一项拆成两项或多项,使其能进行分组分解的
一种方法。

例分解因式: (祖冲之杯赛题)
解:
⑵添项(分组)法
在多项式中适当地添上一些项,使其能转化为可进行分组分解
的一种方法。

例分解因式:
练习:① (02年河南赛题)
② (祖冲之杯赛题)
4. 换元法
换元法是一种重要的数学方法,在分解因式时,通过将原式的
代数式用字母代替后,达到简化原式结构的目的
例1 分解因式: (天津赛题)
例2 分解因式:(天津赛题)
:分解因式①
② (希望杯赛题)
五主元法:
主元法就是将多元(多个字母)中某个元作为主要字母,视其他
元为常数。

重新按主元排列多项式,排除非主元字母的干扰,从
而简化问题
例分解因式:(天津赛题)
练习:
六构造法
构造法是数学解题中的一种重要方法,在中考与竞赛中经常用到。

在分解因式时,通过适当的构造,可简化分解的难度。

例分解因式:
练习: 分解因式: (河南赛题)
七待定系数法
待定系数法是数学常用方法,用途十分广泛。

在因式分解中,就是首先设出几个含有待定系数的因式,然后根据多项式恒等和方程
(组)来确定待定系数,从而分解因式。

例分解因式:
解:因为原式为轮换对称式,其分解后的因式也必然是轮换对
称式。

当x=-(y+z)时,原式=0。

所以原式含有(x+y+z)
的因式。

余下的必为2次对称式,设成
比较三次项系数得m=1
又当x=1,y=0,z=1时
得:2=2(2+n) ∴n=-1
练习:若有两个因式x+1和x+2,
求(a+b)的值,(武汉赛题)
八配方法
配方法是把一个式子的一部分配成完全平方式或几个完全平方式的和(差)的形式,在此基础上分解因式。

例分解因式:(哈尔滨赛题)
练习: (
九整体法
整体法就是把字母的某种组合看成一个整体,作为一个字母来对待,从而便于因式分解的一种方法。

例 分解因式:
分析:由于两个括号内都有,我们把看作一个整体,当作是一个字母来分解因式。

十综合方法
我们在分解因式的过程中,往往要将几个分解因式的方法结合起来才能完成一个因式分解的问题。

对上述方法要灵活的运用。

例 分解因式: (五羊杯赛题)
解:令m=x-2,n=y-2
∴m-n=x-y
注:此题在换元的基础上,通过分组、公式、提公因式等多种
方法来完成分解因式的。

练习:分解因式:。

相关文档
最新文档