九年级数学二次函数的图象和性质4

合集下载

人教版九年级数学上册二次函数的图像与性质

人教版九年级数学上册二次函数的图像与性质
增减性: 【a>0】 x<0,即在对称轴的左侧,y随x的增大而减小 X>0,即在对称轴的右侧,y随x的增大而增大
【a<0】 x<0,即在对称轴的左侧,y随x的增大而增大 X>0,即在对称轴的右侧,y随x的增大而减小
ax2 a<0
图像与性质 (y=ax2)
y ax2
x O a>0
y O
x
二次函数
最值: 【a>0】 二次函数有最小值,即当x=0时,y最小值=0,此时最 低点为(0,0)

A.-6 或1 B.-3或2 或-1 或-2
【练习1】已知二次函数y=7x2+13x+9,求此二次函数图象的顶点坐 标__________ _
二次函数
图像与性质 一般式
【练习2】如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是 直线x=1. 以下四个判断:①b2>4ac;②4a-2b+c<0;③不等式 ax2+bx+c>0的解集是x>2;④若( -1 ,y1),(5,y2)是抛物线 上的两点,则y1<y2。其中正确的是( )
x>-b/2a,即在对称轴的右侧,y随x的增大而增大
是函数解析式的二次项系数、一次项系数和常数项。 二次函数有最大值,即当x=0时,y最大值=0,此时最高点为(0,0)
x<0,即在对称轴的左侧,y随x的增大而减小
对称轴:直线x=h(y轴)
【练习】已知函数y=(m﹣2)xm2+m-4 ﹣2是关于x的二次函数,则m=_____.
x=h
a<0
图像与性质
y x=h
x O a>0

苏科版 九年级数学 下第5章二次函数 5.2二次函数的图像和性质课件(15张PPT)-经典教学教辅文

苏科版 九年级数学 下第5章二次函数 5.2二次函数的图像和性质课件(15张PPT)-经典教学教辅文
(2) y2x2 4x
反馈检测 拓展延伸
1.抛物线y=(x-1)2+1的顶点坐标是( ) A.(1,1) B.(-1,1) C.(1,-1) D.(-1,-1)
2.将抛物线y=3x2向左平移3个单位,再向下平移2个单位后,所得图像的函数表达式是_____.
3.函数y=2x2-4x-1写成y=a(x+h)2+k的形式是______,
向上移 2个单位
y 10
9 y= (x+3)2+2 8
7
6
5 变式:
4 二次函数y= (x-1)2 - 6的图像和y=x2的图像
3 的位置有什么关系?
2 y= (x+3)2 1
y= (x+3)2 +2 y=x2
-6 -5 -4 -3 -2 -1 o 1 2 3 4 5 x
5.2 二次函数的图像和性质(4)
活动二:转化迁移 问题(3)函数y=x2+2x+3 的图像也是抛物线吗?如何说明
问题(4) 你能将函数y=ax2+bx+c 转化为 y=a(x+h)2+k 的形式吗?
5.2 二次函数的图像和性质(4) 合作探究 集思广益
函数y=x2+2x+3 的图像也是抛物线吗?
y =x2+2x+3 =x2+2x+1+2 = (x+1)2+2.
y=x2+2可以看成是y=x2向 上平移两个单位长度.
y= (x+3)2可以看成是y=x2向 左平移三个单位长度.
5.2 二次函数的图像和性质(4)
有什么关系?
y= (x+3)2+2的图像与y=x2的图像
y = x2
向左移 3个单位
y= (x+3)2
(2)观察图像: 函数y= (x+3)2 +2有哪些性质?
初中数学
九年级(下册)

初三下册数学教学计划:第6章第2节二次函数的图象和性质(4课时)

初三下册数学教学计划:第6章第2节二次函数的图象和性质(4课时)

初三下册数学教学计划:第6章第2节二次函数的图象和性质(4课时)一元复始,万象更新。

查字典数学网初中频道小编预备了九年级下册数学教学打算:第6章第2节二次函数的图象和性质(4课时)的相关内容,期望能够对大伙儿有关心。

教学目标【知识与技能】使学生明白得并把握函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系;会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标.【过程与方法】让学生经历函数y=a(x-h)2+k性质的探究过程,明白得并把握函数y=a(x -h)2+k的性质,培养学生观看、分析、推测、归纳并解决问题的能力.【情感、态度与价值观】渗透数形结合的数学思想,培养学生良好的学习适应.重点难点【重点】确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,明白得函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,明白得函数y=a(x-h) 2+k的性质.【难点】正确明白得函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质.教学过程一、问题引入1.函数y=x2+1的图象与函数y=x2的图象有什么关系?(函数y=x2+1的图象能够看成是将函数y=x2的图象向上平移一个单位得到的.)2.函数y=-(x+1)2的图象与函数y=-x2的图象有什么关系?(函数y=-(x+1)2的图象能够看成是将函数y=-x2的图象向左平移一个单位得到的.)3.函数y=-(x+1)2-1的图象与函数y=-x2的图象有什么关系?函数y=-(x+ 1)2-1有哪些性质?(函数y=-(x+1)2-1的图象能够看作是将函数y=-x2的图象向左平移一个单位,再向下平移一个单位得到的,开口向下,对称轴为直线x=-1,顶点坐标是(-1,-1).)二、新课教授问题1:你能画出函数y=-x2,y=-(x+1)2,y=-(x+1)2-1的图象吗?师生活动:教师引导学生作图,巡视,指导.学生在直角坐标系中画出图形.教师对学生的作图情形作出评判,指正其错误,出示正确图形.解:(1)列表:xy=-x2y=-(x+1)2y=-(x+1)2-1-3--2-3-2-2---1-0-100--1--2-32-2--3--8-9(2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点;(3)连线:用光滑曲线顺次连接各点,得到函数y=-x2,y=-(x+1)2,y=-(x+1)2-1的图象.问题2:观看图象,回答下列问题.函数开口方向对称轴顶点坐标y=-x2向下x=0(0,0)y=-(x+1)2向下x=-1(-1,0)y=-(x+1)2-1向下x=-1(-1,-1)问题3:从上表中,你能分别找到函数y=-(x+1)2-1,y=-(x+1)2与函数y=-x 2的图象之间的关系吗?师生活动:教师引导学生认真观看上述图象.学生分组讨论,互相交流,让各组代表发言,达成共识.教师对学生回答错误的地点进行纠正,补充.函数y=-(x+1)2-1的图象能够看成是将函数y=-(x+1)2的图象向下平移1个单位得到的.函数y=-(x+1)2的图象能够看成是将函数y=-x2的图象向左平移1个单位得到的.故抛物线y=-(x+1)2-1是由抛物线y=-x2沿x轴向左平移1个单位长度得到抛物线y=-(x+1)2,再将抛物线y=-(x+1)2向下平移1个单位得到的.除了上述平移方法外,你还有其他的平移方法吗?师生活动:教师引导学生积极摸索,并适当提示.学生分组讨论,互相交流,让各组代表发言,达成共识.教师对学生回答错误的地点进行纠正,补充.抛物线y=-(x+1)2-1是由抛物线y=-x2向下平移1个单位长度得到抛物线y=-x2-1,再将抛物线y=-x2-1向左平移1个单位得到的.问题4:你能发觉函数y=-(x+1)2-1有哪些性质吗?师生活动:教师组织学生讨论,互相交流.学生分组讨论,互相交流,让各组代表发言,达成共识.教师对学生回答错误的地点进行纠正,补充.当x-1时,函数值y随x的增大而增大;当x-1时,函数值y随x的增大而减小;当x=-1时,函数取得最大值,最大值y=-1.三、典型例题【例】要修建一个圆形喷水池,在水池中心竖直安装一根水管,在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池中心3 m,水管应多长?师生活动:教师组织学生讨论、交流,如何将文字语言转化为数学语言.学生积极摸索、解答.指名板演,教师讲评.解:如图(2)建立的直角坐标系中,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数关系式是y=a(x-1)2+3(0≤x≤3).由这段抛物线通过点(3,0)可得0=a(3-1)2+3,解得a=-,因此y=-(x-1)2+3(0≤x≤3),当x=0时,y=2.25,也确实是说,水管的长应为2.25 m.四、巩固练习1.画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较.【答案】函数y=2(x-1)2的图象能够看成是将函数y=2x2的图象向右平移一个单位得到的,再将y=2(x-1)2的图象向下平移两个单位长度即得函数y =2(x-1)2-2的图象.2.说出函数y=-(x-1)2+2的图象与函数y=-x2的图象的关系,由此进一步说出那个函数图象的开口方向、对称轴和顶点坐标.【答案】函数y=-(x-1)2+2的图象能够看成是将函数y=-x2的图象向右平移一个单位,再向上平移两个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2).五、课堂小结本节知识点如下:一样地,抛物线y=a(x-h)2+k与y=ax2的形状相同,位置不同,把抛物线y= ax2向上(或下)向左(或右)平移,能够得到抛物线y=a(x-h)2+k.平移的方向和距离要依照h、k的值来确定.抛物线y=a(x-h)2+k有如下特点:(1)当a0时,开口向上;当a0时,开口向下;(2)对称轴是x=h;(3)顶点坐标是(h,k).教学反思本节内容要紧研究二次函数y=a(x-h)2+k的图象及其性质.在前两节课的基础上我们清晰地认识到y=a(x-h)2+k与y=ax2有紧密的联系,我们只需对y=ax2的图象做适当的平移就能够得到y=a(x-h)2+k的图象.由y=ax2得到y =a(x-h)2+k有两种平移方法:方法一:y=ax2y=a(x-h)2y=a(x-h)2+k方法二:y=ax2y=ax2+k单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

九年级数学-二次函数的图象和性质

九年级数学-二次函数的图象和性质

第二十二章 二次函数第5讲 二次函数的图象和性质【板块一】二次函数的图象和性质题型一 开口方向、对称轴、顶点坐标及位置【例1】(1)抛物线y =2x ²+1的开口方向是 向上 ,对称轴是 y 轴 ,顶点坐标是 (0,1) ;二次函数y =-12(x +1)²﹣2的图象的开口方向是 向下 ,对称轴是直线 x =﹣1 ,顶点坐标是(﹣1.﹣2). (2)抛物线y =2x ²+1在x 轴的 上 方;当x >0时,图象自左向右逐渐 上升 ,它的顶点是最低点;抛物线y =-12(x +1)²﹣2,当x 为全体实数 时,它的图象在x 轴的 下方 ,顶点是 最高点 。

【解析】当a >0时,开口向上;当a <0时,开口向下,y =a (x ﹣h )²+k 的顶点坐标为(h ,k ),对称轴是直线x =h ;当a >0时,抛物线的顶点为最低点,当a <0时,抛物线的顶点为最高点。

题型二 抛物线的开口大小【例2】如图,若抛物线y =ax ²与四条直线x =1,x =2,y =1,y =2围成的正方形ABCD 有公共点,则a 的取值范围是( )A .14≤a ≤1B .12≤a ≤2C .12≤a ≤1D .14≤a ≤2 【解析】确定a 的取值范围,就是探究抛物线的开口大小,当抛物线经过点D 时,开口最小;抛物线经过点B 时,开口最大,而这两条抛物线的解析式的a 值分别2,14,∴14≤a ≤2. 故选D.【例3】如图,在同一平面直角坐标系中,作出①y =x ²;②y =-12x ²,③y =-2x ²的图象,则三个图象I ,Ⅱ,Ⅲ对应的抛物线的解析式依次是 ②③① .【解析】当a >0时,开口向上,当a <0时,开口向下;当|a |越大,开口越小,当|a |越小,开口越大。

故抛物线I 的解析式为y =-12x ²,抛物线Ⅱ的解析式为y =﹣2x ²;抛抛物线Ⅲ的解析式为y =x ².故填②③① 题型三 抛物线的对称性 【例4】抛物线y =ax ²+bx +5经过A (2,5).B (﹣1,2)两点。

最新北师大版九年级数学下册《二次函数的图象与性质》优质教学课件

最新北师大版九年级数学下册《二次函数的图象与性质》优质教学课件
并写出开口方向、顶点坐标、对称轴.
解:y=(x-4)2-15
开口向上,顶点坐标为(4,-15)
对称轴为直线 x=4
类型2:a=1,b为奇数
5.(例2)求抛物线y=x2+x+1的顶点坐标.
解:∵y=x2+x+1
1
1
2
=x +x+ 4 +1-
4
3
1
2
=(x +x+ )+
1 4 3 4
=(x+ 2 )2+ 4
(3)对称轴为直线x=1.25,顶点坐标为(1.25,-1.125).
(4)对称轴为直线x=0.75,顶点坐标为(0.75,9.375).
【例题】
如图,桥梁的两条钢缆具有相同的抛物线形状.按照图中的
直角坐标系,左面的一条抛物线可以用y=
9
400
表示,而且左、右两条抛物线关于y轴对称.
y/m
10
桥面
我们知道,作出二次函数y=3x2的图象,通过平移抛
物线y=3x2可以得到二次函数y=3x2-6x+5的图象.
那是怎样平移的呢?
只要将表达式右边进行配方就可以知道了.
y=3x2-6x+5
=3(x-1)2+2
配方后的表达式通常称为配方
式或顶点式
y 3x 6 x 5
2
3(x 2x) 5
,-3).
.
(2)画抛物线 y=ax2+bx+c 的草图,
(4)若抛物线与 x 轴的两个交点为 A,B,与 y 轴的交点为 C,求 S△ABC.
= (x2+2x+1)- - = (x+1)2-3,∴抛物线的顶点
4a
要确定五点,即①开口方向;②对

《二次函数的图像和性质》PPT课件 人教版九年级数学

《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标

二次函数的图象与性质(第4课时)-2022-2023学年九年级数学下册教材配套教学课件(北师大版)

(0,1),当x≥0时,y随x的增大而增大,
∴a-1>0,
解得a>1.
故选:A.
3.点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,当x1
>x2>1时,y1与y2的大小是( )
A.y1≤y2 B.y1<y2 C.y1≥y2 D.y1>y2
【答案】D
【详解】解:∵抛物线y=(x-1)2-3,a=1>0开口向上,
(3)将抛物线C先向左平移2个单位长度、再向上平移
1个单位长度后,所得抛物线为` .请直接写出抛物
线` 的函数解析式.
【答案】(1)抛物线C的开口向下,对称轴为直线
x=1,顶点坐标为(1,2);
(2)y的取值范围为-2≤y≤2;
(3)y=-(x+1)2+3
(1)
解:∵y=-x2+2x+1=-(x-1)2+2,
典例精析
例1.已知二次函数y=a(x-1)2-c的图象如图所示,
则一次函数y=ax+c的大致图象可能是( A )
解析:根据二次函数开口向上则a>0,根据-c是
二次函数顶点坐标的纵坐标,得出c>0,故一次函数
y=ax+c的大致图象经过第一、二、三象限.故选A.
知识点二 二次函数y=a(x-h)2+k与y=ax2的关系
对称轴为直线x=1,当x>1时,y随x的增大而增大,
点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,
∴x1>x2>1,
∴y1>y2.
故选:D.
4.如图,在平面直角坐标系中,O为坐标原点,正
方形OABC的顶点A在y轴的负半轴上,点C在x轴的
正半轴上,经过点A、B的抛物线y=a(x-2)2+c(a>0)

九年级数学二次函数的图象与性质湘教版知识精讲

九年级数学二次函数的图象与性质湘教版【本讲教育信息】一. 教学内容:二次函数的图象与性质教学要求:(一)知识与技能要求1. 知道二次函数的图象是抛物线,并且知道抛物线的顶点2. 通过“列表、描点、连线”三步作二次函数y=ax2,y=a(x+d)2,y=a(x+d)2+k,y=ax2+bx+c的图象3. 能说出上述抛物线的对称轴、顶点坐标、开口方向4. 能根据二次函数的图象说明函数值随自变量取值的变化而升或降的性质5. 知道抛物线的顶点坐标与抛物线的最大值(最小值)之间的关系,并能依据抛物线的开口方向确定抛物线的最值(二)过程与方法要求1. 经历探索二次函数y=ax2,y=a(x+d)2,y=a(x+d)2+k,y=ax2+bx+c的图象的作法和性质的过程2. 体会数形结合的思想(三)情感态度与价值观要求1. 积极投入到探索活动中,勇于发表个人意见。

2. 数学活动中充满着探索性,通过认识、观察、归纳、类比可以获得数学猜想二. 重点、难点重点:1. 二次函数y=ax2(a≠0)的性质2. 二次函数y=ax2+bx+c的平移规律3. 求二次函数的最大值或最小值难点:二次函数的性质的应用三. 主要内容:(一)y=ax2(a≠0)的图象及性质1. 二次函数y=ax2的图象是一条抛物线当a>0时,抛物线开口向上,且向上无限伸展a<0时,抛物线开口向下,并且向下无限伸展2. 二次函数y=ax2的性质对称轴是y轴,顶点在原点处a>0,开口向上;a<0,开口向下(二)二次函数y=ax2+bx+c的图象1. 二次函数y=ax2+k的图象可由抛物线y=ax2向上(下)平移得到当k>0时,抛物线y=ax2向上平移|k|个单位,得y=ax2+kk<0时,抛物线y =ax 2向下平移|k|个单位,得y =ax 2+k2. 二次函数y =a (x +d )2的图象由抛物线y =ax 2向左(右)平移 当d>0,抛物线y =ax 2向左平移|d|个单位,得y =a (x +d )2d<0,抛物线y =ax 2向右平移|d|个单位,得y =a (x +d )23. 一般地,抛物线y =a (x +d )2+k 与y =ax 2的形状相同,只是位置不同。

九年级数学北师大版初三下册--第二单元2.2 《二次函数的图象和性质(第四课时)》课件

2
负半轴上,所以不与x轴相交;函数y=
3 2
x2-1与y=
3 (x-1)2的二次项系数相同,所以抛物线的形状相同,
2
因为对称轴和顶点的位置不同,所以抛物线的位置不同;
抛物线y=
1 2
x
1 2
2
的顶点坐标为
1 2
,0
;抛物线y=
1 2
x+
1 2
2
的对称轴是直线x=-
1 2
.
总结
知2-讲
本题运用了性质判断法和数形结合思想,运用二 次函数的性质,画出图象进行判断.
y 1 (x 1)2 …
2
-2 -0.5
0 -0.5
-2 -4.5 -8 …
y 1 (x 1)2 … -8 -4.5 -2 -0.5 0 -0.5 -2 …
2
y
画出二次函数 y = - 1 ( x + 1)2

y= -
1(x-
2 1)2 的图像,
2
1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
知识点 1 二次函数y=a(x-h)2的图象
知1-导
议一议
二次函数y= 1 (x-1)2的图象与二次函数y= 1 x2
2
2
的图象有什么关系?
类似地,你能发现二次函数y= 1 (x+1)2的图象与
二次函数y=
1
2 (x-1)2的图象有什么关系吗?
2
知1-导
x … -3 -2 -1 0 1 2 3 …
的开口方向、对称
轴、顶点坐标、增减性和最值?
(2)抛物线
y= -
1(x2
1)2

九年级数学上册22、1二次函数的图象和性质4二次函数y=ax2+bx+c的图象和性质第2课时习题课件


(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上, 并写出平移后抛物线的解析式.
(2)答案不唯一,如:先向左平移2个单位长 度,再向下平移1个单位长度,得到的抛物线 的解析式为y=-x2,平移后抛物线的顶点为 (0,0),落在直线y=-x上.
考查角度二 已知面积求抛物线上点的坐标 16.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0). (1)求此抛物线的解析式;
考查角度一 抛物线的平移 15.如图,已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过 点C(0,-3). (1)求抛物线的解析式和顶点坐标;
解:(1)设抛物线的解析式为y=a(x-1)(x-3). ∵抛物线过点C(0,-3),∴-3=a×(-1)×(-3), 解得a=-1,∴y=-(x-1)(x-3)=-x2+4x-3. ∵y=-x2+4x-3=-(x-2)2+1,∴顶点坐标为 (2,1).
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.4 二次函数y=ax2+bx+c的图象和性质 第2课时 用待定系数法求二次函数的解析式
知识点一 利用“一般式”求二次函数的解析式
1.已知二次函数y=x2+bx+c的图象经过点(-1,0)和(1,-2),则这个函
数的解析式为( ) B
A.y=x2-x+2
3
6.如图所示的抛物线的解析式为__y_=__2_x_2_-__4_x_+__2____.
7.已知二次函数当x=-1时,有最小值-4,且当x=0时,y=-3,则二次 函数的解析式为________________.
y=(x+1)2-4
知识点三 利用“交点式”求二次函数的解析式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.配方:
老师提示:
y ax2 bx c c 2 b a x x a a 2
提取二次项系数
2
这个结果通常 称为求顶点坐 标公式.
2 b b b c a x x a 2 a 2 a a 2 b 4ac b 2 整理:前三项化为平方形 a x 2 式,后两项合并同类项 2a 4a 2 2
y(件)
400
300

60
70
x(元)
解:(1)设y与x之间的函数关为 ∵经过(60,400)(70,300) ∴ 60k b 400
70k b 300
y kx b
解得:
k 10 b 1000
∴y与x之间的函数关系式为 y 10x 1000
y=-x2-2x+1
例:已知一抛物线与x轴的交点A(-2,0),B(1,0)且经 过点C(2,8) (1)求该抛物线的解析式 (2)求该抛物线的顶点坐标 由已知,抛物线过点(-2,0),B(1,0),C(2,8)三点, 得 解:设这个抛物线的表达式为Y=ax2+bx+c a=2 4a-2b+c=0 b=2 解这个方程组得, a+b+c=0 C=-4 4a+2b+c=8 所以该抛物线的表达式为y=2x2+2x-4 (2)y=2x2+2x-4=2(x2+x-2)=2(x+1/2)2-9/2 所以该抛物线的顶点坐标为(-1/2,-9/2)
由抛物线与x轴两交点横坐标为1,3,∴设y=a(x-1)(x-3),过
(0,-3),∴ a(0-1)(0-3)=-3, ∴a=-1 ∴ y=-(x-1)(x-3),即y=-x2+4x-3
(3)已知二次函数的图像过(-1,2),(0,1),(2, -7)
已知普通三点设一般式y=ax2+bx+c,
设y=ax2+bx+c过(-1,2),(0,1),(2,-7)三点 a-b+c=0 ∴ c=1 4a+2b+c=-7 a=-1 b=-2 c=1
3
x
-9
图13
B
解:(1)将x=-1,y=-1;x=3,y=-9分别代入 得 1 a ( 1) 2 4 ( 1) c, 解得 a 1,
y ax2 4x c
9 a 32 4 3 c.
c 6.
∴二次函数的表达式为. y x 4x 6 (2)对称轴为 x 2 ;顶点坐标为(2,-10). (3)将(m,m)代入 y x 2 4x 6,得 m m 2 4m 6 , 解得 m1 1, m2 6 .∵m>0,∴ m1 1 不合题意,舍 去. ∴ m=6. ∵点P与点Q关于对称轴 x 2 对称, ∴点Q到x轴的距离为6.
用待定系数法求二次函数解析式,要根据给定条件 的特点选择合适的方法来求解 一般地,在所给条件中已知顶点坐标时,可设顶点 式y=a(x-h)2+k,在所给条件中已知抛物线与x轴 两交点坐标或已知抛物线与x轴一交点坐标与对称 轴,可设交点式y=a(x-x1)(x-x2);在所给的三个条 件是任意三点时,可设一般式y=ax2+bx+c;然后 组成三元一次方程组来求解。
?
X=1
作出函数y=2x2-12x+13的图象.
(3,-5) X=3

2 b 4 ac b y a x . 2a 4a
2
函数y=ax²+bx+c的顶点式
一般地,对于二次函数y=ax² +bx+c,我们可以利用配方法 推导出它的对称轴和顶点坐标.
例.求次函数 y=ax² +bx+c的对 称轴和顶点坐标.
3.列表:根据对称性,选取适当值列表计算.
x …
2
-2
-1
0
1
234…y 3 x 1 2

29
14
5
2
5
14
29

4.画对称轴,描点,连线:作出二次函数y=3(x-1)2+2 的图象.
学了就用,别客气
y 3x 6 x 5
2
y 2x2 12x 13

(1,2)
2
2 2 2
独立 作业 1.确定下列二次函数的开口方向、对称轴和 顶点坐标.
2
1. y 5x ; 2. y 2x2 4x 1;
3. y 3x 2 6x 2;
4. y x 1x 2; 5. y 3x 3x 9.
2 10( x 75) 6250 (2)P=(-10x+1000)(x-50)=
∴当x=75时,P最大,最大利润为6250元
请你总结函数 函数y=ax2+bx+c(a≠0) 的图象和性质
想一想,函数y=ax2+bx+c和y=ax2 的图象之间的关系是什么?
二次函数y=ax2+bx+c(a≠0)的图象和性质
b 4ac b 2 它的顶点是 2a , 4 a .
?
根据公式确定下列二次函数图象的对称轴和顶点坐标: 1. y 2x2 12x 13; 2. y 5x2 80x 319;
1 3. y 2 x x 2; 4. y 32x 12 x. 2
b 4ac b 2 当x 时, 最大值为 2a 4a
小结
拓展
回味无穷
二次函数y=ax2+bx+c(a≠0)与=ax² 的关系
驶向胜利 的彼岸
1.相同点: (1)形状相同(图像都是抛物线,开口方向相同). (2)都是轴对称图形. (3)都有最(大或小)值. (4)a>0时, 开口向上,在对称轴左侧,y都随x的增大而减小,在对称 轴右侧,y都随 x的增大而增大. a<0时,开口向下,在对称轴左侧,y 都随x的增大而增大,在对称轴右侧,y都随 x的增大而减小 . 2 b 4ac b , 2.不同点: (1)位置不同(2)顶点不同:分别是 和(0,0). b 2a 4a (3)对称轴不同:分别是 直线x 和y轴. 2a 4ac b (4)最值不同:分别是 4a 和0. 3.联系: y=a(x-h)²+k(a≠0) 的图象可以看成y=ax² 的图象先沿x轴整 b b b <0时,向 体左(右)平移| 2|a 个单位(当 2>0 时 , 向右平移 ; 当 a 2a 4ac b 4ac b 左平移),再沿对称轴整体上(下)平移| |个单位 (当 >0时 4a 4a 4ac b 向上平移;当 4a<0时,向下平移)得到的.
例:如图,已知二次函数 y ax 4x c 的图像经过点 A和点B. (1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P(m,m)与点Q均在该函数图像上(其 中m>0),且这两点关于抛物线的对称轴对称, 求m的值及点Q 到x轴的距离.
2
y
-1 O A -1
1.顶点坐标与对称轴
2.位置与开口方向
3.增减性与最值 根据图形填表: 抛物线
y=ax2+bx+c(a>0)
b 4ac b 2 2a , 4a b 直线 x 2a
y=ax2+bx+c(a<0)
b 4ac b 2 2a , 4a b 直线 x 2a
2
结束寄语

探索是数学的生命线.
; / 第一商务模特网

松咯/ 浩荡の力量肆虐/毁天灭地/把壹切都给摧毁绞碎/轰隆隆巨响/天地壹片片塌陷/这确定壹股惊人の画面/如此肆虐の力量/让人感觉这壹片宛如灭世之处/ 很多修行者都受到波及/距离爆炸中心最近の修行者/无壹生还/都被这股暴动出来の劲气磨灭/ 而壹切离の远の修行者/ 也抪少被重创/这确定壹场灾难/无数人为此而付出咯代价/ 即使确定黑霉宗王/到被这股爆炸之力冲击到后/重创砸到咯大地/身上很多骨头都断裂/身上伤痕累累/满确定血液/ 整佫人遭受咯重创/也幸好确定它反应灵敏/到马开引爆天地器の时候就开始退后/并且暴动出自身力量 防御/要抪然马开这壹次引爆/就能要咯它の命/ 这灾难般の场面到肆虐咯壹阵之后/这才缓缓の消失/直剩下壹股股呼啸の风声/很多人目光落到咯黑霉宗王身上/着它这番惨状/壹佫佫神情复杂/ "马开就这样走咯?夺;壹;本;读;袅说yb+du走咯黑霉宗王の宝物/ 很多人觉得难以置 信/堂堂壹佫宗王级人物都没有留下马开/反倒确定被它算计/重创到这番模样/马开真の无法灭杀抪成? 当然/抪少人更确定震撼马开の实力/马开接下过宗王级の壹击/也正确定因为接下这壹击/让它借机逃离/要抪然/黑霉宗王也抪可能遭受它算计/重创到这种地步/甚至连那件神 奇の宝物都被马开拿走咯/ 那件宝贝何等珍贵谁都知道/能产生道符/以马开の惊世天赋/得到这样の宝物/实力定然能突飞猛进/怕确定很快就能冲击宗王级咯/ 很多人都叹息咯壹声/也有着几分同情の着黑霉宗王/被壹佫法则级欺负到这种地步/身为宗王级真の确定颜面无存咯/ 黑霉宗王身上还到滴血/但它见到很多人投过来の同情神态/心中の怒火腾腾の烧上来/壹股无法宣泄の情绪让它の面容狰狞/ 它确定什么人?堂堂宗王级人物/到这佫时候还确定能横走壹方の存到/特别确定到这里/自己就确定主宰/可现到/居然被人用怜悯の神态着/ 而这壹切/都 确定因为马开/而且/这佫人居然把它の那件至宝夺走咯/那对于它太重要咯/确定它到繁世立足自保の根本/要确定那东西都缺失咯/自己到群雄并立の年代/有什么资格和别人交锋? 想到这/黑霉宗王の狰狞更浓/它抪顾身上重创/站起咯起来/取出壹些珍贵の丹药/吞
相关文档
最新文档