精选七年级数学上册第六章整式的加减6-2同类项合并同类项练习题无答案新版青岛版

合集下载

七年级数学上册第六章整式的加减6.2同类项合并同类项练习(新版)青岛版

七年级数学上册第六章整式的加减6.2同类项合并同类项练习(新版)青岛版

合并同类项 班级 姓名一、滚动复习:计算()()22225.03.01-÷⨯÷- ()()()[]()32328523322-÷-⨯-⨯--+-()()()()17.05417.0417.04332⨯-⨯--⨯-⨯- ()()2353411.04⎪⎭⎫ ⎝⎛-⨯--二、下列各题的结果是否正确?指出错误的地方。

(1)3x +3y =6xy ; (2)7x -5x =2x 2(3)16y 2-7y 2=9 (4) 19a 2b -9ab 2=10三、填空1、一个三角形的三边长分别为3x 厘米、4x 厘米、5x 厘米,这个三角形的周长为 厘米。

2、一个长方形的宽为a 厘米,长比宽的2倍多1厘米,这个长方形的周长为 厘米。

3、三个连续整数中,n 是最小的一个,这三个数的和为 。

4、 公园的成人票价每张是20元,儿童票价每张是8元。

甲旅行团有x 名成人和y 名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童数是甲旅行团的21。

两个旅行团的门票费用总和为 元。

四、合并同类项1、f f f 723-+ f x f x 452-+-、;1289632 . 3b a b a b a +-+++pq pq pq pq +++473 .4c b b a c b b a 2222415230 .5--+xy xy wx xy 12587 .6-+-五、求代数式的值:;其中5,1326 .122-=++-+x x x x x;3,2934 .222-==--+y x x xy x ,其中;2,6,61652331 .3==---n m m n n m 其中.23,31,5,4543 .4-===--q p m pq m pq 其中试一试。

初中数学青岛版七年级上册第6章 整式的加减6.2同类项-章节测试习题(5)

初中数学青岛版七年级上册第6章 整式的加减6.2同类项-章节测试习题(5)

章节测试题1.【答题】已知﹣2x m﹣2y2与3x4y2m+n是同类项,则m﹣3n的平方根是______.【答案】±6【分析】本题主要考查的就是同类项的定义以及平方根的计算法则,属于简单题型.在给出同类项时,我们特别需要注意的就是相同字母的指数要保证相同.一个正数的平方根有两个,它们互为相反数,正的平方根为这个数的算术平方根,在求平方根时,我们要写成的形式,这样就不会出现漏解的现象.【解答】同类项是指所含字母相同,且相同字母的指数也相同的两个单项式,根据定义可知:,解得:,则m-3n=6+30=36,则m-3n的平方根为:.点睛:2.【答题】若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是______.【答案】2【分析】本题考查同类项的定义以及立方根的定义.同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.【解答】解:∵﹣2x m﹣n y2与3x4y2m+n是同类项,∴ ,解得:m=2,n=-2,∴=2.故答案为:2.3.【答题】已知单项式与﹣3x2n﹣3y8是同类项,则3m﹣5n的值为______.【答案】-7【分析】由单项式与-3x2n﹣3y8是同类项,可得m=2n-3,2m+3n=8,分别求得m、n的值,即可求出3m-5n的值.【解答】解:由题意可知,m=2n﹣3,2m+3n=8,将m=2n﹣3代入2m+3n=8得,2(2n﹣3)+3n=8,解得n=2,将n=2代入m=2n﹣3得,m=1,所以3m﹣5n=3×1﹣5×2=﹣7.故答案为:﹣7.4.【答题】如果单项式3x a+2y b﹣2与5x3y a+2的和为8x3y a+2,那么|a﹣b|﹣|b﹣a|=______.【答案】0【分析】利用同类项的定义,联立方程组,求解.【解答】由题意得,,解得,|a﹣b|﹣|b﹣a|=|1-5|-|5-1|=4-4=0.5.【答题】单项式- a x+1b4与9a2x-1b4是同类项,则x-2=______.【答案】0【分析】如果两个单项式,它们所含字母相同并且相同字母的指数也相同,那么称这两个单项式为同类项.【解答】试题解析:与是同类项,解得:故答案为:6.【答题】把x-y看成一个整体,合并同类项:5(x-y)+3(x-y)-7(x-y)=______.【答案】x-y【分析】根据合并同类项的法则把系数相加即可.【解答】5(x-y)+3(x-y)-7(x-y)=(5+3-7)(x-y)=x-y.7.【答题】写出一个与是同类项的式子是______.【答案】答案不唯一,如3x2y【分析】根据所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项解答.【解答】观察可知x的指数为2,y的指数为1,因此写出的式子中只要含有这两个字母,并且指数也满足即可,答案不唯一,如3x2y.8.【答题】如果单项式-x a+1y3与是同类项,那么a和b的值分别为______.______.【答案】1,3【分析】根据同类项的定义做答.【解答】根据单项式-x a+1y3与是同类项,可得a+1=2,b=3,解得a=1,b=3,故答案为:1,3.9.【答题】合并同类项:(1)定义.把多项式中的______合并成一项,叫做合并同类项;(2)法则.合并同类项后,所得项的系数是合并前各同类项的系数的______,且字母连同它的指数______.【答案】同类项,和,不变【分析】合并同类项就是把多项式中的同类项合并成一项;【解答】合并同类项的法则是:把同类项的系数相加减,字母部分不变,即先求出各同类项的系数的和,字母部分和指数一起保持不变,故答案为:(1)同类项;(2)和,不变.10.【答题】同类项:所含字母相同,并且______也相同的项叫做同类项.【答案】相同字母的指数【分析】【解答】同类项是指:所含字母相同,并且相同字母的指数也相同的项,故答案为:相同字母的指数.11.【答题】已知单项式﹣a x+y b5与a3y﹣1b x+y是同类项,则x=______,y=______.【答案】3,2【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.【解答】可列出方程组,再运用代入法可求出x,y的值.解:,将②代入①中得:3y﹣1=5,y=2,则x=3.答:x=3,y=2.12.【答题】若单项式2a2b x-y与﹣3a x+y b4是同类项,则x=______,y=______.【答案】3,-1【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.【解答】解:根据同类项的定义得,解得.13.【答题】若单项式x2y n与﹣2x m y3的和仍为单项式,则n m的值为______.【答案】9【分析】单项式x2y n与﹣2x m y3的和仍为单项式,则它们是同类项.由同类项的定义可先求得m和n的值,从而求出n m的值.【解答】解:单项式x2y n与﹣2x m y3的和仍为单项式,则它们是同类项.∴m=2,n=3.则n m=9.14.【答题】已知x6y2与﹣3x3m y n﹣2是同类项,则5m﹣3n的值为______.【答案】-2【分析】根据同类项,可得相同字母的指数相同,可得m、n的值,根据代数式求值,可得答案.【解答】解:∵x6y2与﹣3x3m y n﹣2是同类项,∴3m=6,n﹣2=2,得m=2,n=4,5m﹣3n=5×2﹣3×4=﹣2,故答案为:﹣2.15.【答题】若a2b m和a n b3是同类项,则m﹣n=______.【答案】1【分析】根据同类项,相同的字母的系数相同可得出m和n的值,代入即可得出m+n的值.【解答】解:∵a2b m和a n b3是同类项,∴m=3,n=2,∴m﹣n=1.故答案为:1.16.【答题】若单项式与的差仍是单项式,则m﹣2n=______.【答案】﹣4【分析】根据差是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的减法,可得答案.【解答】解:∵单项式与的差仍是单项式,∴单项式与是同类项,m=2,n+1=4,n=3,m﹣2n=2﹣2×3=﹣4,故答案为:﹣4.17.【答题】若单项式2x m y3与﹣3xy3n是同类项,则m﹣n=______.【答案】0【分析】根据同类项,可得m、n的值,根据m、n的值,可得m﹣n的值.【解答】解:∵单项式2x m y3与﹣3xy3n是同类项,∴m=1,n=1,m﹣n=0,故答案为:0.18.【答题】若x3y n与2x m y是同类项,则m+2n=______.【答案】5【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得m、n的值,根据有理数的加法运算,可得答案.【解答】解:x3y n与2x m y是同类项,m=3,n=1,m+2n=3+2×1=5,故答案为:5.19.【答题】若﹣7x m+2y2与﹣3x3y n是同类项,则m﹣n=______.【答案】﹣1【分析】由同类项的定义可先求得m和n的值,从而求出它们的差.【解答】解:由同类项的定义可知m+2=3,n=2,解得m=1,∴m﹣n=1﹣2=﹣1.故答案为:﹣1.20.【答题】已知x5y n与﹣3x2m+1y3n﹣2是同类项,则m+n=______.【答案】3【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得m、n的值,根据m、n的值,可得答案.【解答】解:x5y n与﹣3x2m+1y3n﹣2是同类项,2m+1=5,n=3n﹣2,m=2,n=1,m+n=2+1=3,故答案为:3.。

七年级数学上册整式的加减合并同类项专题训练

七年级数学上册整式的加减合并同类项专题训练
8. ,
【解析】
【分析】
根据合并同类项的法则以及有理数的运算法则即可求出答案.
【详解】

代入得,原式 .
【点睛】
本题考查了整式的化简求值,解题的关键熟练运用整式的运算法则.
9. .
【解析】.解:原式 …………3分
………………………………5分
10.(1) ;(2) .
【解析】
【分析】
根据整式的加减运算即可求解.
【详解】
原式=
= (-1-3+4)a+(3-12)b
=-9b
【点睛】
本题考查了整式的加减,解题的关键是熟练掌握整式的加减运算法则.
7.(1)4m-n;(2)
【解析】
【分析】
(1)合并同类项即可得到答案;
(2)将多项式合并同类项.
【详解】
(1) ,
(2) .
【点睛】
此题考查整式的加减法计算,将多项式中的同类项合并.
七年级数学上册整式的加减合并同类项专题训练
学校:___________姓名:___________班级:___________考号:___________
1.合并同类项:
2.合并同类项:
3.合并同类项:
4.合并同类项
6.合并同类项: .
7.合并同类项:
8.合并同类项:
(1)
(2)
9.合并同类项: ,
【解析】
试题分析:(1)先找出同类项,利用加法的交换结合律将同类项结合在一起,然后利用合并同类项的法则计算即可;
(2)先去括号,然后合并同类项即可.
试题解析:
(1)解:原式=(5x-3x)+(2y-7y)
=2x-5y;
(2)解:原式=3m2-n2-2m2+4n2

人教版七年级数学上册整式的加减——合并同类项课件

人教版七年级数学上册整式的加减——合并同类项课件
2.若5xy2+axy2=-2xy2,则a=-7___;
3.在6xy-3x2-4x2y-5yx2+x2中没有同类项 的项是_6_x_y___;
知 识 延 伸:
4.已知:_2 x3my3 3
求 m、n的值 .

-
1_ 4
x6yn+1
是同类项,
解:∵
_2 x3my3 与 3
-
1_ 4
x6yn+1
是同类项
二、展示目标和任务
学习目标: 1、掌握同类项的概念,能辨认同类项,学会合并同 类项并知道合并同类项所根据的运算律。 2、通过视察、思考、分析、归纳、小组合作,学会 了解数学的分类思想。 学习重难点: 1.同类项概念,以及合并同类项法则和基本步骤。 2.正确的判断同类项以及准确合并同类项。
三、自主合作与交流
(5) 2.1与 3 4
(4)2a与2ab
(6)53与b3
4a + 2a =66 a 4xy ――xy== 3xy
探究A:
(1)运用运算律计算:
100 2 252 2 __1_0_0___2_5_2___2__; 1002 2522 _1_0_0___2_5_2_____2__
(2)根据(1)中的方法完成下面的运算,并说说
3x2=-2(2+1-3)x2+(-5+4)x-2
(3
3)a
3
abc
(
1
3
1)c2
=-x-2
33
当x 1 时,原式 1 2 5
2
2
2
abc
当a 1,b 2,c 3时, 6
原式=(- 1) 2 (3) 1 6
随堂练习:

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题2.1 第1课时单项式一、能力提升1.下列结论正确的是()A.a是单项式,它的次数是0,系数为1B.π不是单项式C.是一次单项式D.-是6次单项式,它的系数是-2.已知是8次单项式,则m的值是()A.4B.3C.2D.13.3×105xy的系数是,次数是.4.下列式子:①ab;②-;③;④-a2+a;⑤-1;⑥a-,其中是单项式的是.(填序号)5.写出一个含有字母x,y的五次单项式:.6.观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.7.某学校到文体商店买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠.用单项式填空:(1)购买9个篮球应付款元;(2)购买m(m≥10)个篮球应付款元.8.若单项式(k-3)x|k|y2是五次单项式,则k=.9.观察下列各数,用含n的单项式表示第n个数.-2,-4,-6,-8,-10,…,.二、创新应用10.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么吗?(4)请你根据猜想,写出第2020,2021个单项式.答案一、能力提升1.D a是单项式,次数、系数均为1,所以A错;因为π是单独的一个数,所以π是单项式,所以B错;的分母中含有字母,无法写成数字与字母的积,所以不是单项式,所以C错;对于D项,它的系数为-,次数为2+3+1=6,所以D正确.2.C由单项式的次数的定义,得2m+3+1=8,将A,B,C,D四选项分别代入验证知C为正确答案.3.3×105;2.4.①②⑤.5.-x4y(答案不唯一).6.128a8.7.(1)9a.(2)0.8ma.8.-3;由题意,得|k|+2=5,且k≠3,解得k=-3.9.-2n;-2,-4,-6,-8,-10,这些数都是负数,且都是偶数,因此第n个数为-2n.二、创新应用10.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1,故系数的规律是(-1)n(2n-1).(2)次数即x的指数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2020个单项式是4039x2020,第2021个单项式是-4041x2021.2.1 第2课时多项式一、能力提升1.下列说法正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.-ab2,-x都是单项式,也都是整式D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项2.如果一个多项式是五次多项式,那么它任何一项的次数()A.都小于5B.都等于5C.都不小于5D.都不大于53.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,……其中第10个式子是()A.a10+b19B.a10-b19C.a10-b17D.a10-b214.若x n-2+x3+1是五次多项式,则n的值是()A.3B.5C.7D.05.-3x2y-2x2y2+xy-4的最高次项为.6.若一个关于a的二次三项式的二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.7.多项式的二次项系数是.8.如图(1)(2),某餐桌桌面可由圆形折叠成正方形(图中阴影部分表示可折叠部分).已知折叠前圆形桌面的直径为am,折叠成正方形后其边长为bm.如果一块正方形桌布的边长为am,并按图(3)所示把它铺在折叠前的圆形桌面上,那么桌布垂下部分的面积是多少?如果按图(4)方式把这块桌布铺在折叠后的正方形桌面上呢?并求当a=2,b=1.4时它们的面积大小(π取3.14).9.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.(1)请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为19,则丁报出的答案是多少?二、创新应用10.如图,观察点阵图形和与之对应的等式,探究其中的规律:(1)请在④和⑤后面的横线上分别写出相应的等式:(2)通过猜想,写出与第n个图形相对应的等式.答案一、能力提升1.C.2.D;多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为5.3.B;根据多项式排列的规律,字母a的指数是按1,2,3,…的正整数排列,故第10个式子应为a10.字母b的指数是按1,3,5,7,…的奇数排列,故第10个式子应为b19.中间的符号第1个式子是正,第2个式子是负,这样正、负相间,故第10个式子应为a10-b19.4.C;由题意,得n-2=5,解得n=7.5.-2x2y2;6.2a2-3a-3.7.=-,二次项为,故二次项系数为.8.解:m2;(a2-b2)m2;2.04m2.当a=2,b=1.4时,a2-a2=22-×22=4-3.14=0.86(m2),a2-b2=22-1.42=2.04(m2).9.解:(1)由甲传给乙变为a+1;由乙传给丙变为(a+1)2;由丙传给丁变为(a+1)2-1.故丁所报出的答案为(a+1)2-1.(2)由(1)知,代入a=19,得399.二、创新应用10.解:(1)④4×3+1=4×4-3.⑤4×4+1=4×5-3.(2)4(n-1)+1=4n-3.2.2 第1课时合并同类项一、能力提升1.下列各组式子为同类项的是()A.x2y与-xy2B.0.5a2b与0.5a2cC.3b与3abcD.-0.1m2n与nm22.若-2a m b2m+n与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2B.0C.-1D.13.若x a+2y4与-3x3y2b是同类项,则(a-b)2021的值是()A.-2021B.1C.-1D.20214.已知a=-2021,b=,则多项式3a2+2ab-a2-3ab-2a2的值为()A.1B.-1C.2021D.-5.若2x2y m与-3x n y3的和是一个单项式,则m+n=.6.若关于字母x的整式-3x2+mx+nx2-x+3的值与x的值无关,则m=,n=.7.把(x-y)和(x+y)各看作一个字母因式,合并同类项3(x+y)2-(x-y)+2(x+y)2+(x-y)-5(x+y)2=.8.合并下列各式的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy;(2)3x2y-4xy2-3+5x2y+2xy2+5.9.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.10.先合并同类项,再求值:(1)7x2-3+2x-6x2-5x+8,其中x=-2;(2)3x-4x3+7-3x+2x3+1,其中x=-2.二、创新应用11.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”有一名同学指出,题目中给出的条件“a=0.35,b=-0.28”是多余的,他的说法有没有道理?为什么?答案一、能力提升1.D2.A;∵-2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m-n=2.故选A.3.C;由同类项的定义,得a+2=3,2b=4,解得a=1,b=2.所以(a-b)2021=(1-2)2021=(-1)2021=-1.4.A;把多项式合并同类项,得原式=-ab,当a=-2021,b=时,原式=1.5.5;2x2y m与-3x n y3的和是一个单项式,说明2x2y m与-3x n y3是同类项,即m=3,n=2,故m+n=5.6.1;3;算式的值与x的值无关,说明合并同类项后,所有含x项的系数均为0.-3x2+mx+nx2-x+3=(-3+n)x2+(m-1)x+3,则m=1,n=3.7.0.8.解:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy.(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2.9.解:由同类项定义,得m=3,n=1.3m2n-2mn2-m2n+mn2=(3-1)m2n+(-2+1)mn2=2m2n-mn2.当m=3,n=1时,原式=2×32×1-3×12=18-3=15.10.解:(1)原式=(7-6)x2+(2-5)x+(8-3)=x2-3x+5,当x=-2时,原式=(-2)2-3×(-2)+5=15.(2)原式=-2x3+8,当x=-2时,原式=-2×(-2)3+8=24.二、创新应用11.解:他的说法有道理.因为原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以原式的值与a,b的值无关.即题目中给出的条件“a=0.35,b=-0.28”是多余的.2.2 第2课时去括号一、能力提升1.三角形的第一条边长是(a+b),第二条边比第一条边长(a+2),第三条边比第二条边短3,这个三角形的周长为()A.5a+3bB.5a+3b+1C.5a-3b+1D.5a+3b-12.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.83.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.【】处被钢笔水弄污了,则此处中的一项是()A.-7xyB.7xyC.-xyD.xy4.化简(3x2+4x-1)+(-3x2+9x)的结果为.5.若一个多项式加上(-2x-x2)得到(x2-1),则这个多项式是.6.已知a-b=3,c+d=2,则(b+c)-(a-d)的值为.7.某轮船顺水航行了5h,逆水航行了3h,已知船在静水中的速度为akm/h,水流速度为bkm/h,则轮船顺水航行的路程比逆水航行的路程多.8.先化简,再求值:(1)(x2-y2)-4(2x2-3y2),其中x=-3,y=2;(2)a-2[3a+b-2(a+b)],其中a=-21,b=1000.9.已知A=2x2+3xy-2x-1,B=-x2+kxy-1,且A+B的值与y无关,求k的值.10.观察下列各式:①-a+b=-(a-b);②2-3x=-(3x-2);③5x+30=5(x+6);④-x-6=-(x+6).探索以上四个式子内的括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.二、创新应用11.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.答案一、能力提升1.B;三角形的周长为a+b+(a+b+a+2)+(a+b+a+2-3)=a+b+a+b+a+2+a+b+a+2-3=5a+3b+1.2.D;由a-3b=-3,得-(a-3b)=3,即-a+3b=3.因此5-a+3b=5+3=8.3.C.4.13x-1;(3x2+4x-1)+(-3x2+9x)=3x2+4x-1-3x2+9x=13x-1.5.2x2+2x-1;(x2-1)-(-2x-x2)=x2-1+2x+x2=2x2+2x-1.6.-1;由a-b=3,可得a-b的相反数为-3,即-(a-b)=-3,即-a+b=-3,因此(b+c)-(a-d)=b+c-a+d=(-a+b)+(c+d)=-3+2=-1.7.(2a+8b)km轮船在顺水中航行了5(a+b)km,在逆水中航行了3(a-b)km,因此轮船顺水航行的路程比逆水航行的路程多5(a+b)-3(a-b)=5a+5b-3a+3b=(2a+8b)km.8.解:(1)原式=-x2+y2.当x=-3,y=2时,原式=-.(2)原式=2b-a.当a=-21,b=1000时,原式=2021.解:A+B=(2x2+3xy-2x-1)+(-x2+kxy-1)=2x2+3xy-2x-1-x2+kxy-1=x2+(3+k) xy-2x-2.因为A+B的值与y无关,所以3+k=0,解得k=-3.10.解:因为a2+b2=5,1-b=-2,所以-1+a2+b+b2=-(1-b)+(a2+b2)=-(-2)+5=7.二、创新应用11.解:由题意知a-b<0,c-a>0,b-c<0,a<0,因此原式=-(a-b)-(c-a)-(b-c)-(-a)=-a+b-c+a-b+c+a=a.2.3 第3课时整式的加减一、能力提升1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1B.5x+1C.-13x-1D.13x+12.化简-3x-的结果是()A.-16x+B.-16x+C.-16x-D.10x+3.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A.2a-3bB.4a-8bC.2a-4bD.4a-10b4.小明在复习课堂笔记时,发现一道题:=-x2-xy+y2,括号处被钢笔弄污了,则括号处的这一项是()A.y2B.3y2C.-y2D.-3y25.已知a3-a-1=0,则a3-a+2020=.6.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)7.若a2+ab=8,ab+b2=9,则a2-b2的值是.8.若2x-y=1,则(x2+2x)-(x2+y-1)=.9.先化简,再求值:2(a2b+ab2)-(2ab2-1+a2b)-2,其中a=-,b=-2.10.计算:(1)3(a2-4a+3)-5(5a2-a+2);(2)3x2-.11.规定一种新运算:a*b=a+b,求当a=5,b=3时,(a2b)*(3ab)+5a2b-4ab的值.二、创新应用12.扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是多少?并说明你的理由.13.小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.答案一、能力提升1.A;由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.2.B.3.B;所得新长方形的长为a-b,宽为a-3b,则其周长为2[(a-b)+(a-3b)]=2(2a-4b)=4a-8b.4.C;=-x2+3xy-y2+x2-4xy-()=-x2-xy-y2-()=-x2-xy+y2,故括号处的这一项应是-y2.5.2021;由a3-a-1=0,得a3-a=1,整体代入得a3-a+2020=1+2020=2021.6.x;因为(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)=4xy-3x2-xy+x2+y2-3xy+2x2-2y2=-y2, 所以多项式的值与x无关.7.-1;a2+ab-(ab+b2)=a2+ab-ab-b2=a2-b2=8-9=-1.8.2;当2x-y=1时,(x2+2x)-(x2+y-1)=x2+2x-x2-y+1=2x-y+1=1+1=2.故答案为2.9.解:原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-,b=-2时,原式=×(-2)-1=×(-2)-1=--1=-.10.解:(1)3(a2-4a+3)-5(5a2-a+2)=3a2-12a+9-25a2+5a-10=-22a2-7a-1.(2)3x2-=3x2-5x+x-3-2x2=x2-x-3.11.解:原式=a2b+3ab+5a2b-4ab=(1+5)a2b+(3-4)ab=6a2b-ab.当a=5,b=3时,原式=6×52×3-5×3=450-15=435.二、创新应用12.解:设第一步每堆各有x张牌;第二步左边有(x-2)张牌,中间有(x+2)张牌,右边有x张牌;第三步左边有(x-2)张牌,中间有x+2+1=x+3张牌,右边有(x-1)张牌;第四步中间有x+3-(x-2)=x+3-x+2=5张牌,因此中间一堆牌现有的张数是5.13.解:因为A+B=9x2-2x+7,B=x2+3x-2,所以A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9,所以A-B=8x2-5x+9-(x2+3x-2) =8x2-5x+9-x2-3x+2=7x2-8x+11.。

七年级数学整式的加减练习题

七年级数学整式的加减练习题

七年级数学整式的加减练习题【例1】下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y④﹣3(x﹣y)+(a﹣b)=﹣3x﹣3y+a﹣b.A.1个B.2个C.3个D.4个【变式1-1】下列添括号正确的是()A.a+b﹣c=a﹣(b﹣c)B.a+b﹣c=a+(b﹣c)C.a﹣b﹣c=a﹣(b﹣c)D.a﹣b+c=a+(b﹣c)【变式1-2】给下列多项式添括号.使它们的最高次项系数变为正数:(1)﹣x2+x=;(2)3x2﹣2xy2+2y2=;(3)﹣a3+2a2﹣a+1=;(4)(4)﹣3x2y2﹣2x3+y3=.b2添上括号:【变式1-3】去分别按下列要求把多项式5a﹣b﹣2a2+13(1)把前两项括到前面带有“+”号的括号里,后两项括到前面带有“﹣”号的括号里;(2)把后三项括到前面带有“﹣”号的括号里;(3)把含有字母a的项括到前面带有“+”号的括号里,把含有字母b的项括到前面带有“﹣”号的括号里.【例2】去括号,合并同类项(1)﹣3(2s﹣5)+6s;x﹣4)];(2)3x﹣[5x﹣(12ab);(3)6a2﹣4ab﹣4(2a2+12(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)【变式2-1去括号,合并同类项得:3b﹣2c﹣[﹣4a+(c+3b)]+c=.【变式2-2】将下列各式去括号,并合并同类项.(1)(7y﹣2x)﹣(7x﹣4y)(2)(﹣b +3a )﹣(a ﹣b )(3)(2x ﹣5y )﹣(3x ﹣5y +1)(4)2(2﹣7x )﹣3(6x +5)(5)(﹣8x 2+6x )﹣5(x 2−45x +15)(6)(3a 2+2a ﹣1)﹣2(a 2﹣3a ﹣5)【变式2-3】将4a 2﹣2(a 2﹣b 2)﹣3(a 2+b 2)先去括号,再合并同类项得( )A .﹣a 2﹣b 2B .﹣a 2+b 2C .a 2﹣b 2D .﹣2a 2﹣b 2 【例3】若代数式2mx 2+4x ﹣2(y 2﹣3x 2﹣2nx ﹣3y +1)的值与x 的取值无关,则m 2019n 2020的值为( )A .﹣32019B .32019C .32020D .﹣32020【变式3-1】已知a ﹣b =5,c +d =﹣3,则(b +c )﹣(a ﹣d )的值为( )A .2B .﹣2C .8D .﹣8【变式3-2】观察下列各式:(1)﹣a +b =﹣(a ﹣b );(2)2﹣3x =﹣(3x ﹣2);(3)5x +30=5(x +6);(4)﹣x ﹣6=﹣(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你的探索出来的规律,解答下面的题目:已知a 2+b 2=5,1﹣b =﹣2,求1+a 2+b +b 2的值.【变式3-3】阅读下列材料:为了简化计算,提高计算速度,我们在日常的加减运算中,通常会利用运算律来计算较长且繁杂的代数式.例如计算1+2+3+4+5+⋯+99+100时我们可以运用加法的运算律来简化计算,即1+2+3+4+5+⋯+99+100=(1+100)+(2+99)+(3+98)+⋯+(50+51)=101×50=5050.请你根据阅读材料给出的方法计算:(1)a +(a +m )+(a +2m )+(a +3m )+⋯+(a +100m );【例4】如果M =x 2+3x +12,N =﹣x 2+3x ﹣5,那么M 与N 的大小关系是( )A .M >NB .M <NC .M =ND .无法确定【变式4-1】已知A =a 3+3a 2b 2+2b 2+3b ,B =a 3﹣a 2b 2+b 2+3b .A 与B 的关系是( )A .A <B B .A >BC .A ≤BD .A ≥B【变式4-2】整式5m 2﹣6m +3和整式5m 2﹣7m +5的值分别为M 、N ,则M 、N 之间的大小关系是( )A .M >NB .M <NC .M =ND .无法确定【变式4-3】若P =4a 2+2a +2,Q =a +2a 2﹣5,则P 与2Q 之间的大小关系是( )A .P >2QB .P =2QC .P <2QD .无法确定【例5】小文在做多项式减法运算时,将减去2a 2+3a ﹣5误认为是加上2a 2+3a ﹣5,求得的答案是a 2+a ﹣4(其他运算无误),那么正确的结果是( )A .﹣a 2﹣2a +1B .﹣3a 2+a ﹣4C .a 2+a ﹣4D .﹣3a 2﹣5a +6【变式5-1】小宇在计算A ﹣B 时,误将A ﹣B 看错成A +B ,得到的结果为4x 2﹣2x +1,已知B =2x 2+1,则A ﹣B 的正确结果为 .【变式5-2】由于看错了运算符号,“小马虎”把一个整式减去一个多项式2a ﹣3b 误认为加上这个多项式,结果得出的答案是a +2b ,则原题的正确答案是 .【变式5-3】小明做一道代数题:“求代数式10x 9+9x 8+8x 7+7x 6+6x 5+5x 4+4x 3+3x 2+2x +1,当x =1时的值”,由于粗心误将某一项前的“+”号看为“﹣”号,从而求得代数式的值为39,小明看错了 次项前的符号.【例6】若多项式8a 2﹣3a +5和多项式3a 3+(n +4)a 2+5a +7相加后结果不含a 2项,则n 的值为( )A .﹣4B .﹣6C .﹣8D .﹣12【变式6-1】若(2x 2+mx ﹣y +3)﹣(3x ﹣2y +1﹣nx 2)的值与字母x 的取值无关,则代数式(m +2n )﹣(2m ﹣n )的值是 .【变式6-2】若关于a ,b 的代数式ma 2b 2﹣3ma 2b 2﹣(3a 3﹣6a 2b 2)+34a 3−12ab ﹣5中不含四次项,则有理数m = .【变式6-3】已知关于x 的多项式(a +b )x 5+(a ﹣3)x 3﹣2(b +2)x 2+2ax +1不含x 3和x 2项,则当x =﹣1时,这个多项式的值为 .【例7】小明准备完成题目:化简:(□x 2+6x +8)﹣(6x +5x 2+2)发现系数“□”印刷不清楚.(1)她把“□”猜成4,请你化简(4x 2+6x +8)﹣(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”请通过计算说明原题中“□”是几?【变式7-1】老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1(1)求所挡的二次三项式;(2)若x =﹣1,求所挡的二次三项式的值.【变式7-2】(2022秋•常宁市期末)李老师在黑板上写了一个含m ,n 的整式:2[3mn +m ﹣(﹣2m ﹣n )]﹣(4mn +5m +5)﹣m ﹣3n .(1)化简上式;(2)老师将m,n的取值挡住了,并告诉同学们当m,n互为倒数时,式子的值为0,请你计算此时m,n的值;(3)李老师又将这个题进行了改编,当m取一个特殊的值时,式子的结果与n无关,那么此时m的值为多少.【变式7-3】已知:A、B都是关于x的多项式,A=3x2﹣5x+6,B=□﹣6,其中多项式B有一项被“□”遮挡住了(1)当x=1时,A=B,请求出多项式B被“□”遮挡的这一项的系数;(2)若A+B是单项式,请直接写出多项式B.【例8】若M、N都是三次四项式,那么它们的和的次数一定是()A.六次B.三次C.不超过三次D.以上都不对【变式8-1】A、B都是五次多项式,则A﹣B的次数一定是()A.四次B.五次C.十次D.不高于五次【变式8-2】两个三次多项式的和的次数一定是()A.3B.6C.大于3D.不大于3【变式8-3】若A是三次多项式,B是二次多项式,则A+B一定是()A.五次多项式B.三次多项式C.三次单项式D.三次的整式【例9】先化简,再求值:5ab2﹣[2a2b﹣(4ab2﹣2a2b)],其中a=2,b=﹣1.【变式9-1】计算:①n﹣(﹣n+3);②4a3﹣3a2b+5ab2+a2b﹣5ab2﹣3a3;③5(3x﹣2y)﹣7(3x﹣2y)﹣3(3x﹣2y)+(3x﹣2y);④5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)].【变式9-2】先化简,再求值:已知2(﹣3xy+y2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【变式9-3】已知A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y时,求B﹣2A的值.(1)当x=2,y=−15(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.【例10】如图,在矩形ABCD中放入正方形AEFG,正方形MNRH,正方形CPQN,点E在AB上,点M、N在BC上,若AE=4,MN=3,CN=2,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.8【变式10-1】下列式子表示十位上的数是a,个位上的数是b的两位数减去十位上的数是b,个位上的数是a的两位数的差的是()A.ab﹣ba B.10a+b﹣10b+aC.10b+a﹣(10a+b)D.(10a+b)﹣(10b+a)【变式10-2】如图①所示,在一个边长为a的正方形纸片上剪去两个小长方形,得到一个如图②的图案,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A.2a﹣3b B.2a﹣4b C.4a﹣10b D.4a﹣8b【变式10-3】数学实践活动课上,陈老师准备了一张边长为a和两张边长为b(a>b)的正方形纸片如图1、图2所示,将它们无重叠的摆放在矩形ABCD内,矩形未被覆盖的部分用阴影表示,设左下阴影矩形的周长为l1,右上阴影矩形的周长为l2.陈老师说,如果l1﹣l2=6,求a或b的值.下面是四位同学得出的结果,其中正确的是()A.甲:a=6,b=4B.乙:a=6,b的值不确定C.丙:a的值不确定,b=3D.丁:a,b的值都不确。

青岛市七年级数学上册第二章《整式的加减》习题(含答案解析)

青岛市七年级数学上册第二章《整式的加减》习题(含答案解析)

1.某养殖场2018年年底的生猪出栏价格是每千克a元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()A.(1-15%)(1+20%)a元B.(1-15%)20%a元C.(1+15%)(1-20%)a 元D.(1+20%)15%a元A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a元.故选:A.【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.2.在代数式a2+1,﹣3,x2﹣2x,π,1x中,是整式的有()A.2个B.3个C.4个D.5个C 解析:C【分析】单项式和多项式统称为整式,分母中含有字母的不是整式.【详解】解:a2+1和 x2﹣2x是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个.故选择C.【点睛】本题考查了整式的定义.3.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7 B.﹣1 C.5 D.11A解析:A【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A 解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.6.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .46A 解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -1D解析:D【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可.【详解】解:∵5y 3-4y -6-(3y 2-2y -5)= 5y 3-4y -6-3y 2+2y+5= 5y 3-3y 2-2y -1.故答案为D .【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键.9.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C 解析:C【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 10.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B解析:B【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.11.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C 解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.12.已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2-B .2C .2±D .3± A 解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】 解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 13.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( )A .2B .﹣2C .0D .4A解析:A【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解.【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0, ∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2.故选:A .【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.14.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.1.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 2.如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键【分析】先去括号,再根据“不含2x 的项”列出式子求解即可得.【详解】3223242(176)4(2)176x x kx x x k x x +-+-=+--+,由题意得:20k -=,解得2k =,故答案是:2.【点睛】本题考查了去括号、多项式中的无关型问题,熟练掌握去括号法则是解题关键. 3.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n 个图形有6n+2根火柴棒.4.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.5.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.6.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -. 【点睛】本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.7.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253ab ab a b ab +--+ 解:()22253a b ab a b ab +--+22253a b ab a b ab =++-①22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律【分析】直接利用整式的加减运算法则进而得出答案.【详解】解:原式=2a 2b+5ab+a 2b-3ab=2a 2b+a 2b+5ab-3ab=(2a 2b+a 2b )+(5ab-3ab )=3a 2b+2ab .第②步依据是:加法交换律.故答案为:加法交换律.【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键.8.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示) …………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n 由以上规律即可求解【详解解析:83n -【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.9.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.10.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___. 7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值从而可以求得|b ﹣c|的值【详解】∵|a ﹣c|=10|a ﹣d|=12|b ﹣d|=9∴c ﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.11.图中阴影部分的面积为______.【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积 解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.1.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.2.用代数式表示:(1)a 的5倍与b 的平方的差;(2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍.解析:(1)5a -b 2(2)m 2+n 2(3)x 2+y 2-2xy【分析】(1)a 的5倍表示为5a ,b 的平方表示为b 2,然后把它们相减即可;(2)m 与n 平方的和表示为m 2+n 2;(3)x 、y 两数的平方和表示为x 2+y 2,它们积的2倍表示为2xy ,然后把两者相减即可;【详解】解:(1)a 的5倍与b 的平方的差可表示为:5a -b 2;(2)m 的平方与n 的平方的和可表示为:m 2+n 2;(3)x ,y 两数的平方和减去它们积的2倍可表示为:x 2+y 2-2xy .【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.3.某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式 321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.解析:070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.4.单项式233x y π-的系数是______,次数是______.佳佳认为此单项式的系数是3-,次数为6,请问佳佳的答案正确吗?如果不正确,请说明错误的理由,并且把正确的答案写出来.解析:23π-,4.佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.正确的答案为系数是23π-,次数是4.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.故正确的答案为系数是23π-,次数是4.【点睛】考查了单项式,解答此题关键是构造单项式的系数和次数,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.。

第08讲整式加减七年级数学上册同步精品课堂(沪科版2024)[含答案]

第08讲整式加减七年级数学上册同步精品课堂(沪科版2024)[含答案]

第08讲整式加减(5个知识点+6种题型+过关检测)知识点1.同类项(1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.同类项中所含字母可以看成是数字、单项式、多项式等.(2)注意事项:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.知识点2.合并同类项(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.知识点3.去括号与添括号(1)去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.(2)去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;②a﹣(b﹣c)=a﹣b+c,括号前是“﹣”号,去括号时连同它前面的“﹣”号一起去掉,括号内各项都要变号.说明:①去括号法则是根据乘法分配律推出的;②去括号时改变了式子的形式,但并没有改变式子的值.(3)添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.知识点4.整式的加减(1)几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.(2)整式的加减实质上就是合并同类项.(3)整式加减的应用:①认真审题,弄清已知和未知的关系;②根据题意列出算式;③计算结果,根据结果解答实际问题.【规律方法】整式的加减步骤及注意问题1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.知识点5.整式的加减—化简求值给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.题型一、图形类规律探索(23-24七年级上·安徽·单元测试)1.如图,按照图形变化的规律,第2024个图形中黑色正方形的个数是( )A.1010B.1012C.3032D.3036(23-24七年级上·安徽六安·期末)2.如图是一组有规律的图煤,第1个图案由4个基础图形组成,第2个图案由7个基础形组成,¼¼,第2024个图案中的基础图形个数为.(23-24七年级上·安徽·期末)3.探索规律:在数学探究课上,小明将一张面积为1的正方形纸片进行分割,如图所示:第1次分割,将此正方形的纸片三等分,其中空白部分的面积记为1S;第2次分割,将第1次分割图中空白部分的纸片继续三等分,其中空白部分的面积记为2S;第3次分割,将第2次分割图中空白部分的纸片继续三等分,其中空白部分的面积记为3S;……根据以上规律,完成下列问题:(1)尝试:第4次分割后,4S =______(2)初步应用:根据规律,求23422223333+++的值.(3)拓展应用:利用以上规律,求2311113333n +++×××+的值.题型二、合并同类项(22-23七年级上·安徽合肥·期末)4.下列计算不正确的是( )A .2221239x x x -+=B .235325a a a +=C .16511m m m-=D .10.2504ab ab -+=(23-24七年级上·安徽阜阳·期中)5.写出一个能与3423x y -合并的单项式:.(22-23七年级上·安徽六安·阶段练习)6.合并同类项.(1)2323a b b a -+-;(2)223x y y x ---;(3)()221324252x x x x æö---+-+-ç÷èø;(4)()22422m n mn m n mn --+.题型三、去括号(22-23七年级上·安徽芜湖·期中)7.化简:()x y z ---的结果是 .(23-24七年级上·安徽宿州·期中)8.下列等式成立的是( )A .22223x x x +=B .532m m m -=C .()x y x y--=--D .33332-=-a b ab a b(23-24七年级上·安徽黄山·期中)9.化简:()()223235m m m m --+-题型四、添括号(22-23七年级上·安徽安庆·期中)10.对多项式2x m n -+添括号,正确的是( )A .22()x m n x m n -+=--B .22()x m n x m n -+=-+C .22()x m n x m n -+=+--D .22()x m n x m n -+=+-(23-24七年级上·安徽亳州·期中)11.按下列要求,将多项式322468x x x --+的后两项用 括起来,要求括号前面带有“-”号,则322468x x x --+=.题型五、整式加减的应用(23-24七年级上·安徽合肥·期末)12.大、小两个长方形如图所示,大长方形的周长比小长方形的周长多( )A .22m n +B .223m n ++C .226m n ++D .3m n ++(23-24七年级上·安徽铜陵·期中)13.如图,将9个数放入“◯”内,分别记作a ,b ,c ,d ,e ,f ,m ,n ,k ,若每条边上3个“◯”内数字之和相等,即a b c c d e e f a d k f ++=++=++==++L ,则a ,c ,d ,f 四个数之间的数量关系是 ;b ,k ,e 三个数之间的数量关系是.(23-24七年级上·安徽阜阳·期末)14.把四张形状大小完全相同的小长方形卡片(如图1),分两种不同形式不重叠的放在一个底面长为m ,宽为n 的长方形盒子底部(如图2,3),盒子底面未被卡片覆盖的部分用阴影表示.设图2中阴影部分图形的周长为1l ,图3中两个阴影部分图形的周长的和为2l ,(1)用含m ,n 的式子表示图2阴影部分的周长1l (2)若1254l l =,求m ,n 满足的关系?题型六、整式的加减中的化简求值(23-24七年级上·安徽合肥·期中)15.已知222a ab +=-,24ab b -=-,则2271222a ab b ++的值为.(23-24七年级上·安徽阜阳·期中)16.已知代数式231A x x =-+,马小虎同学在做整式加减运算时,误将“A B -”看成“A B +”,计算的结果是2232x x --.(1)求代数式B .(2)若x 是最大的负整数,求A B -的值.一、单选题17.下列各组中的两项是同类项的是( )A .23x y 与22xy B .2a b 与2a bcC .4m n 与46nm -D .3a 与2a 18.下列整式中,不是同类项的是( )A .2m n 与2nm -B .1与2-C .23x y 和213yxD .213a b 与213b a19.下列各组代数式中,是同类项的是( )A .22x y 与3xy B .25x y -与215x yC .23ax 与2yx -D .83与3x 20.下列各式运算正确的是( )A .22532a a -=B .2358a a a +=C .325a b ab+=D .220a b ba -=21.下列各组单项式中,不是同类项的一组是( )A .23-和3B .3xy 和2xy -C .25x y 和22yx -D .2x y 和22xy 22.下列单项式中,与2x y 是同类项的是( )A .22xy B .23yx C .22x y D .4xy23.如图各图形由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第8个图中黑点的个数是( )A .79B .81C .98D .11924.用黑白两种颜色的正六边形地板砖按如图所示的规律,拼成如下若干地板图案,为探索出第n 个图案中白色地板砖的块数,同学们列出三种不同的算式:①()641n +-;②()621n n --;③()21n n ++éùëû.其中正确的算式有( )A .①B .①②C .②③D .①②③25.如图,从左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第二个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形的个数和等边三角形的个数之和为( )A .51+nB .42n +C .93n +D .102n +26.如图,有三张边长分别为a ,b ,c 的正方形纸片,将三张纸片按图1,图2两种不同方式放置于同一长方形中,若图1中阴影部分周长与图2中阴影部分的周长之差已知,则能求出哪条线段的长( )A .线段AB B .线段BC C .线段AED .线段FB二、填空题27.化简:()()25332a b a b ---= .28.扑克牌游戏,小明背对小王按照下列四个步骤操作:第一步:分发左、中、右三堆牌每堆不少于4张,且各堆牌的张数相同;第二步:从左边一堆拿出4张,放入中间一堆;第三步:从右边一堆拿出2张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿出几张放入左边一堆.这时小王准确地说出了中间一堆牌的现有张数,你认为中间一堆牌现有张数是 .29.两艘船从同一港口出发,甲船顺水而下,乙船逆水而上,已知两船在静水中的速度都是45km/h ,水流速度是km/h a ,3h 后两船相距km .30.某校三年级和四年级各有两个班,三年级(一)班比三年级(二)班多4人,四年级(一)班比四年级(二)班少5人,三年级比四年级少17人,那么三年级(一)班比四年级(二)班少 人.三.解答题(2023秋•蚌山区期中)31.化简:22224333a b ab a b +--+.(2023秋•无为市期中)32.合并同类项:()362xy xy xy -+-.(2022秋•蒙城县校级期中)33.已知代数式28m x y -与32n x y 是同类项,求代数式2m n -的值.(2023秋•砀山县期中)34.已知单项式()55nm x y -与单项式43m x y -是同类项,求m n +的值.(2021秋•烈山区期末)35.先化简,再求值:()()2232322x xy x y xy y éù---++ëû,其中1,32x y =-=-.(2023秋•临泉县校级期中)36.已知32232A x x y y =--,在计算整式的加减时,小聪将“2A B -”错看成了“2A B +”,得到的结果为32232x x y y -+-.(1)求整式B .(2)请你帮助小聪同学求出正确的结果.(2023秋•亳州期末)37.已知代数式22573A x xy y =+--,22B x xy -=+.(1)当1x =-,2y =时,求A B +的值;(2)若2A B -的值与y 的取值无关,求x 的值.(2023秋•太湖县期末)38.王明在准备化简代数式()2334x xy +-■()2231x xy +-时一不小心将墨水滴在了作业本上,使得()2231x xy +-前面的系数看不清了,于是王明就打电话询问李老师,李老师为了测试王明对知识的掌握程度,于是对王明说:“该题标准答案的结果不含有y .”请你通过李老师的话语,帮王明解决如下问题:(1)■的值为________;(2)求出该题的标准答案.(2021秋•金安区校级期中)39.老师写出一个整式:222(1)3(2)1ax bx x x -----,其中a 、b 为常数,且表示为系数,然后让同学们给a 、b 赋予不同的数值进行计算.(1)甲同学给出了一组数据,然后计算的结果为223x x --,则甲同学给出a 、b 的值分别是a = ,b = ;(2)乙同学给出了5a =,1b =-,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x 的取值无关,请直接写出丙同学的计算结果.1.D【分析】本题主要考查图形的变化规律,归纳出第n 个图形中黑色正方形的数量是解题的关键.仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.【详解】解:根据图形变化规律可知:第1个图形中黑色正方形的数量为2,第2个图形中黑色正方形的数量为3,第3个图形中黑色正方形的数量为5,第4个图形中黑色正方形的数量为6,...,当n 为偶数时第n 个图形中黑色正方形的数量为2nn +个;当n 为奇数时第n 个图形中黑色正方形的数量为12n n ++个,当2024n =时,20242024303622nn +=+=.故选D .2.6073【分析】本题主要考查了图形类的规律探索,根据所给图形,依次求出图案中基础图形的个数,发现规律即可解决问题.【详解】解:由所给图形可知,第1个图案中的基础图形个数为:4131=´+;第2个图案中的基础图形个数为:7231=´+;第3个图案中的基础图形个数为:10331=´+;¼,依次类推,第n 个图案中的基础图形个数为(31)n +个.当2024n =时,313202416073n +=´+=(个),即第2023个图案中的基础图形个数为6073个.故答案为:6073.【点评】本题考查图形变化的规律,能根据所给图形发现基础图形的个数依次增加3是解题的关键.3.(1)181(2)8081(3)11223n-´【分析】(1)根据正方形面积为1,构建关系式,可得结论.(2)利用规律解决问题即可.(3)用转化的思想解决问题即可.本题考查规律型-图形变化类,有理数的混合运算,正方形的性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.【详解】(1)解:第4次分割后空白部分的面积为41111113333381´´´==故答案为:181;(2)解:第1次分割后空白部分的面积为12133=-第2次分割后空白部分的面积为2211122133333æö´==-+ç÷èø第3次分割后空白部分的面积为32311112221(3333333´´==-++第4次分割后空白部分的面积为34421111122221()333333333´´´==-+++∴2342222180133338181+++=-=故答案为:8081(3)解:由(2)得出第n 次分割后空白部分的面积为2341111222221()333333333n n ´´´==-+++++……∴23411111112()333333n n=-´+++++…∴23111111111333332223n n næö+++×××+=-´=-ç÷´èø4.B【分析】本题主要考查了整式加减运算,熟练掌握整式加减运算法则是解题关键.合并同类项法则:把同类项的系数相加减,字母和字母的指数不变.根据合并同类项法则进行计算,即可获得答案.【详解】解:A. 2221239x x x -+=,运算正确,不符合题意;B. 23a 与32a 不是同类项,不能合并,故运算正确,符合题意;C. 16511m m m -=,运算正确,不符合题意;D. 10.2504ab ab -+=,运算正确,不符合题意.故选:B .5.34x y -(答案不唯一)【分析】本题考查同类项的定义,掌握所含字母相同且相同字母的指数也相同的项叫做同类项,是本题的解题关键. 根据同类项的定义求解即可.【详解】 解:∵能进行合并的单项式是同类项,∴写出一个能与3423x y -合并的单项式,可以写34x y -.故答案为∶ 34x y -(答案不唯一).6.(1)a b --(2)24x y --(3)251611x x -++(4)263m n mn-【分析】(1)先找到同类项再合并即可得出答案;(2)先找到同类项再合并即可得出答案;(3)先去括号,再找到同类项,最后合并即可得出答案;(4)先去括号,再找到同类项,最后合并即可得出答案;【详解】(1)2323a b b a-+-2323a a b b=-+-a b=--(2)223x y y x---322x x y y=---24x y=--(3)()221324252x x x x æö---+-+-ç÷èø2236122101x x x x =-++-+-2232610121x x x x =--+++-251611x x =-++(4)()22422m n mn m n mn--+22442m n mn m n mn=-++22424m n m n mn mn=+-+263m n mn=-【点睛】本题考查去括号及合并同类项,熟练掌握运算法则是解题的关键.去括号:括号前面是加号时,去掉括号,括号内的算式不变;括号前面是减号时,去掉括号,括号内加号变减号,减号变加号.合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.7.x y z++【分析】根据去括号的法则:括号前面为+号,里面各项不变号;括号前面为-号,里面各项要变号即可解答.【详解】解:∵()x y z x y z ---=++,故答案为x y z ++.【点睛】本题考查了去括号的法则,熟记去括号法则是解题的关键.8.A【分析】本题考查了合并同类项以及去括号法则:括号前面是加号时,去掉括号,括号内的算式不变;括号前面是减号时,去掉括号,括号内加号变减号,减号变加号.合并同类项的法则:系数直接相加减,字母以及字母的指数不变,据此作答即可.【详解】解:A 、22223x x x +=,故该选项计算正确的;B 、5m 与3m 不是同类项,不能合并,故该选项计算错误的; C 、()x y x y --=-+,故该选项计算错误的;D 、3a b 与33ab 不是同类项,不能合并,故该选项计算错误;故选:A 9.263m -+【分析】本题主要考查整式的加减运算,去括号、合并同类项化简即可.【详解】解:原式26435m m m m=-++-263m =-+10.A【分析】根据添括号法则:括号前面是正号,括号里面每一项的符号不变,括号前面为负号,括号里面的每一项都要变号,进行判断即可.【详解】解:多项式2x m n -+添括号,可得:22()x m n x m n -+=--;故选A .【点睛】本题考查添括号.熟练掌握添括号法则,是解题的关键.11.括号()322468x x x ---【分析】本题考查了添加括号,掌握添加括号的方法即可.根据添加括号的法则进行解答即可.添加括号时,若括号前为负,要变号.【详解】解:根据题意可得:()323224682468x x x x x x --+=---,故答案为:括号;()322468x x x ---.12.C【分析】本题考查了整式加减的应用,用大长方形的周长减去小长方形的周长即可求解.【详解】解:()()22232m n m n ++-+44622m n m n =++--226m n =++故选C .13.c d a f +=+ 2b k e+=【分析】本题考查了整式的加减运算,根据题意列等式计算即可得到答案.正确理解题意,利用题目中出现的字母的所在边寻找数量关系式解题关键.【详解】解析:c d e a f e ++=++Q ,c d a f \+=+,a b c c d e ++=++Q ,a b d e \+=+,e f a d k f ++=++Q ,e a d k \+=+,d e a k \=+-,a b d e e a k e \+=+=+-+,2b k e \+=.故答案为:c d a f +=+,2b k e +=.14.(1)22m n +(2)23m n=【分析】本题考查整式加减的应用:(1)观察图形,可知,阴影部分的周长等于长方形ABCD 的周长,计算即可;(2)设小卡片的宽为x ,长为y ,则有2y x m +=,再将两阴影部分的周长相加,通过合并同类项即可求解2l ,根据1254l l =,即可求m 、n 的关系式.【详解】(1)解:由图可知,阴影部分的周长等于长方形ABCD 的周长,故()1222m n m n l =+=+;(2)设小长形卡片的宽为x ,长为y ,则2y x m +=,∴2y m x =-,所以两个阴影部分图形的周长的和为:()()2222m n y n x +-+-()()22222m n m x n x =+-++-222424m n m x n x=+-++-4n =,即2l 为4n∵1254l l =,∴52244m n n+=´整理得:23m n =.15.2-【分析】本题考查了“整体代换法”求整式的值,能将原整式化为22112422a ab ab b æö+--ç÷èø是解题的关键.【详解】解:因为222a ab +=-,24ab b -=-,所以2244a ab +=-,211222ab b -=-,所以()2211244222a ab ab b æö+--=---ç÷èø,所以22271222a ab b +=-+,故答案为:2-.16.(1)223x x ---(2)7【分析】本题主要考查整式的加减运算及化简求值;(1)根据题意利用计算结果减去代数式A 即可;(2)将(1)中B 及A 代入计算,进而根据题意得出=1x -,代入求解即可.【详解】(1)解:根据题意知()2223231B x x x x =----+2223231x x x x =---+-223x x =---(2)()()223123A B x x x x -=-+----223123x x x x =-++++244x x =++ ∵x 是最大的负整数,∴x =―1,则原式()24114=´--+414=-+=717.C【分析】本题考查同类项,熟练掌握字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项是解题的关键.根据同类项的定义进行判断作答即可.【详解】解:23x y 与22xy 所含字母相同,但相同字母的指数不相同,不是同类项,故A 不符合题意;2a b 与2a bc 所含字母不相同,不是同类项,故B 不符合题意;4m n 与46nm -所含字母相同,并且相同字母的指数也相同,是同类项,故C 符题意;3a 与2a 所含字母相同,但相同字母的指数不相同,故D 不符题意;故选:C .18.D【分析】此题考查了同类项,所含字母相同,相同字母的指数也相同的项叫做同类项,熟练掌握同类项的定义是解题的关键.根据同类项的定义进行判断即可.【详解】解:A .2m n 与2nm -是同类项,故选项不符合题意;B .1与2-是同类项,故选项不符合题意;C .23x y 和213yx 是同类项,故选项不符合题意;D .213a b 与213b a 不是同类项,故选项符合题意.故选:D .19.B【分析】根据同类项的定义(如果两个单项式,它们所含字母相同,并且相同字母的指数也分别相同,那么这两个单项式是同类项)逐项判断即可得.【详解】解:A.22x y 与3xy 中x 的指数不相同,不是同类项,则此项不符题意;B.25x y -与215x y 是同类项,则此项符合题意;C.23ax 与2yx -中所含的字母不相同,不是同类项,则此项不符题意;D.38中不含有字母,与3x 不是同类项,则此项不符题意.故选:B .【点睛】本题主要考查了同类项,熟记定义是解题关键.20.D【分析】本题考查了整式的加减运算,根据合并同类项的方法“字母及字母的指数不变,系数相加(或减)”即可求解,掌握整式的加减运算法则是解题的关键.【详解】解:A 、222532a a a -=,原选项计算错误,不符合题意;B 、358a a a +=,原选项计算错误,不符合题意;C 、3a 与2b 不是同类项,不能合并,原选项计算错误,不符合题意;D 、()222110a b ba a b -=-=,原选项计算正确,符合题意;故选:D .21.D【分析】根据同类项的定义逐项分析判断即可求解,同类项的定义:所含字母相同,且相同字母的指数也相同的两个单项式是同类项.【详解】解:A 、23-和3是同类项,故此选项不合题意;B 、3xy 和2xy-是同类项,故此选项不合题意;C 、25x y 和22yx -是同类项,故此选项不合题意;D 、2x y 和22xy 不是同类项,故此选项符合题意;故选:D .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.22.B【分析】根据同类项的定义加以判断即可.【详解】因为23yx =23x y ,所以与2x y 是同类项的是23yx ,其余都不是,故选B .【点睛】本题考查了同类项即含有字母相同且相同字母的指数相同,正确理解定义是解题的关键.23.A【分析】整体观察图形,发现黑点组成的图形是正方形少了2个黑点,而第n 个图的正方形的边长是(n +1),所以第n 个图中黑点的个数为(n +1)2−2.【详解】解:∵图1中有2=[(1+1)2−2]个点,图2中有7=[(2+1)2−2]个点,图3中有14=[(3+1)2−2]个点,…,∴第8个图中黑点的个数为:(8+1)2−2=81−2=79(个),故选:A .【点睛】本题考查了探索规律,体现了数形结合的思想,整体观察图形,发现黑点组成的图形是正方形少了2个黑点是解题的关键.24.D【分析】根据图形可分三种计算方法,找出规律计算即可.【详解】解:根据图意可以发现,当只有一个完整的图案时是6块白色的瓷砖,增加一个图案就增加了4块白色瓷砖,所以增加大第n 个时,白色瓷砖的块数就是()641n +-.故①正确;也可以这样想:每个图案中6块白色瓷砖,n 个图案就是6n 个白色瓷砖,但拼接时每两个图案之间重叠2块,所以就少2块,共少了()21n -块,因此n 个图案一共有白瓷砖:()621n n --,故②正确;也可以这样想:每个图案中黑瓷砖上下各一块白色瓷砖,左右各两块白色瓷砖,因此n 个图案中白瓷砖的块数是:()()21221n n n n éù++´=++ëû,故③正确.综上,①②③正确.故选:D .【点睛】此题主要考查图形的变化规律类问题,重点考查了学生通过特例分析从而归纳总结出一般结论的能力.25.C【分析】根据题中正方形和等边三角形的个数找出规律,进而可得出结论.【详解】从左至右,各图中正方形的个数依次为6、11、16…,即:第一个图中正方形的个数为5116´+=,第二个图中正方形的个数为52111´+=,第三个图中正方形的个数为53116´+=,……∴第n 个图中正方形的个数为51+n ;从左至右,各图中等边三角形的个数依次为6、10、14…,即:第一个图中等边三角形的个数为4126´+=,第二个图中等边三角形的个数为42210´+=,第三个图中等边三角形的个数为43214´+=,……∴第n 个图中等边三角形的个数为42n +;∴第n 个图中正方形和等边三角形的个数之和为521934n n n +=+++.故选:C .【点睛】本题考查图形类规律探索,根据题意找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.26.C【分析】本题主要考查整式的混合运算,明确整式的混合运算的计算方法是解题的关键.根据图示,分别求出图1中阴影部分周长与图2中阴影部分周长,然后计算它们的差即可求解.【详解】解:由题意知AD BC a b c ==++,AB CD a b c ==+-,图1中阴影部分周长为()()22a b c a b c c +++++-442a b c =+-,图2中阴影部分为()()22a b c b a b c ++-++-42a b=+∴图1中阴影部分周长与图2中阴影部分周长为()44242a b c a b +--+22b c=-()2b c =-2AE =,故选:C .27.2353a a b-++【分析】先去括号,然后根据整式的加减计算法则求解即可.【详解】解:()()25332a b a b ---25336a b a b=--+2353a a b =-++,故答案为:2353a a b -++.【点睛】本题主要考查了整式的加减计算,熟知整式的加减计算法则是解题的关键.28.10【分析】设各堆牌的张数为a 张,根据题中的步骤操作,确定出中间一堆的张数即可.【详解】解:①设原来有a 张,②左、中、右分别有a −4,a +4,a ,③左、中、右分别有a −4,a +6,a −2.④左边有a −4,中间拿走a −4,即a +6−(a −4)=10.故答案为:10.【点睛】此题考查了整式的加减,弄清题意是解本题的关键.29.270【分析】根据顺水航行的实际速度=船在静水中的速度+水流速度,逆水航行的实际速度=船在静水中的速度-水流速度,即可列出代数式,计算即可求得.【详解】解:根据题意得:()()()45453270km a a ++-´=éùëû,故答案为:270.【点睛】本题考查了整式加减的应用,根据题意,正确列出代数式是解决本题的关键.30.9【分析】本题考查了整式的加减运算的应用,设三年级(一)班a 人,四年级(二)班b 人,则三年级(二)班()4a -人,四年级(一)班()5b -人,由题意可得()5417b b a a -+-+-=,据此可得9b a -=,即可求解,掌握整式的运算法则是解题的关键.【详解】解:设三年级(一)班a 人,四年级(二)班b 人,则三年级(二)班()4a -人,四年级(一)班()5b -人,由题意可得,()5417b b a a -+-+-=,∴2218b a -=,∴9b a -=,∴三年级(一)班比四年级(二)班少9人,故答案为:9.31.2234a ab b -+【分析】本题主要考查合并同类项,所以此题可直接根据合并同类项进行求解即可.【详解】原式222222433334a a b b ab a ab b =-++-=-+.32.5xy-【分析】此题主要考查了合并同类项,先去括号,再利用合并同类项法则计算得出答案.正确把握合并同类项法则是解题关键.【详解】解:()362xy xy xy -+-362xy xy xy=--5xy =-.33.27m n -=【分析】由同类项的含义可得3m =,2n =,再代入代数式进行计算即可.【详解】解:∵代数式28m x y -与32n x y 是同类项,∴3m =,2n =,∴22327m n -=-=.【点睛】本题考查的是同类项的含义,求解代数式的值,理解同类项的含义是解本题的关键.34.1m n +=-【分析】本题考查了同类项的定义,代数式求值.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项;熟练掌握同类项的定义求出m ,n 的值是解题的关键.直接利用同类项的定义得出关于m ,n 的等式,即可求解.【详解】解:因为单项式()55n m x y -与单项式43m x y -是同类项,∴5m =且50m -¹,4n =,∴5m =-,4n =,∴1m n +=-.35.8xy -,12-【分析】本题考查整式化简求值,熟练掌握整式运算法则是解题的关键.先根据去括号法则计算,再合并同类项即可化简,然后将字母值代入计算即可.【详解】解:原式22363222x xy x y xy y éù=---++ëû22363222x xy x y xy y=--+--8xy =-,当1,32x y =-=-.原式()183122æö=-´-´-=-ç÷èø.36.(1)322392x x y y -++(2)3225156x x y y --【分析】本题考查了整式的加减运算,熟练掌握整式加减运算法则是解题的关键.(1)依题意得3223222)(23232x x y y A B B x x y y --=++-+-=,进而可求解;(2)32232A x x y y =--和322392B x x y y =-++代入2A B -,利用去括号和合并同类项法则进行运算即可.【详解】(1)解:依题意得:3223222)(23232x x y y A B B x x y y --=++-+-=,32232232(223)B x x y y x x y y -+---=-32232232642x x y y x x y y -+--++=322392x x y y -++=∴322392B x x y y =-++.(2)2A B-()()322322322392x x y y x x y y =---++-322322264392x x y y x x y y --+--=3226515x x y y --=.37.(1)20-(2)1x =【分析】本题主要考查了整式的化简求值,整式加减中的无关型问题,根据整式的加减计算法则求出A B +和2A B -的化简结果是解题的关键.(1)先根据整式的加减计算法则求出A B +的化简结果,然后代值计算即可;(1)先根据整式的加减计算法则求出2A B -的化简结果,然后根据值与y 无关,则含y 的项的系数为0,据此可得答案.【详解】(1)解:∵22573A x xy y =+--,22B x xy -=+,∴A B+()2225732x xy y x xy -=+--++2225732x xy y x xy -=+--++23741x xy y =--+,当1x =-,2y =时,原式()()23141272120=´-+´-´-´-=-;(2)解;∵22573A x xy y =+--,22B x xy -=+,∴2A B-()22257322x xy y x xy +----+=222257324x xy y x xy +--+--=777xy y =--()717y x =--∵2A B -的值与y 的取值无关,∴10x -=,∴1x =.38.(1)4;(2)24x +【分析】(1)设看不清的系数为a ,将原式去括号合并同类项后根据题意得出1230a -=,求解即可;(2)将代数式()2334x xy +-4()2231x xy +-去括号合并同类项即可.【详解】解:(1)设看不清的系数为a ,∵()2334x xy +-a ()2231x xy +-,2291223x xy ax axy a =+--+ ,()()292123a x a xy a =-+-+ ,∵该题标准答案的结果不含有y ,∴1230a -= ,∴4a = ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合并同类项习题
1、什么叫做同类项?怎样?
2、下列各题中的两个项是不是同类项?
(1)3x2y与-3x2y(2)0.2a2b与0.2ab2 (3)11abc与9bc
(4)3m2n3与-n3m2 (5)4xy2z与4x2yz(6)62与x2
3、下列各题合并同类项的结果对不对?不对的,指出错在哪里。

(1)3a+2b=5ab(2)5y2-2y2=3 (3)4x2y-5y2x=-x2y(4)a+a=2a
(5)7ab-7ba=0(6)3x2+2x3=5x5
4、合并下列各式中的同类项:
(1)15x+4x-10x(2)-6ab+ba+8ab
(3)-p2-p2-p2(4)m-n2+m-n2
(5)x3-x3+x3(6)x-0.3y-x+0.3y
5、求下列各式的值:
(1)3c2-8c+2c3-13c2+2c-2c3+3,其中c=-4;
(2)3y 4-6x 3y-4y 4+2yx 3
,其中x=-2,y=3; 6、把(a+b)、(x-y)各当作一个因式,合并下列各式中的同类项:
(1)4(a+b)+2(a+b)-7(a+b)(2)3(x-y)2-7(x-y)+8(x-y)2+6(x-y);
7、有这样一道题:“当a=0.35,b=-0.28时,求多项式7a 3-6a 3b+3a 2b+3a 3+6a 3b-3a 2b-10a 3的值。


有一位同学指出,题目中给出的条件a=0.35,b=-0.28是多余的,他的说法有没有道理?
过关测试:
一、选择题
1.下列计算正确的是()A.2a +b =2ab B.3x 2-x 2=2C.7mn -7nm =0D.a +a =a 2
2.当a =-5时,多项式a 2+2a -2a 2-a +a 2-1的值为()
A.29
B.-6
C.14
D.24
3.下列单项式中,与-3a 2b 为同类项的是() A.-3ab 3B.-41
ba 2 C.2ab 2D.3a 2b 2
4.下面各组式子中,是同类项的是()
A.2a 和a 2
B.4b 和4a
C.100和21
D.6x 2y 和6y 2x
二、填空题
1.合并同类项:-mn +mn =_______ -m -m -m =_______.
3.合并同类项的法则是_______,所得结果作为_______、_______和_______不变.
4.两个单项式-2a m 与3a n 的和是一个单项式,那么m 与n 的关系是_______.
三、根据题意列出代数式
1.三个连续偶数中,中间一个是2n ,其余两个为_______,这三个数的和是_______.
2.一个长方形宽为x cm,长比宽的2倍少1 cm ,这个长方形的长是_______,周长是_______.
3.一个圆柱形蓄水池,底面半径为r ,高为h ,如果这个蓄水池蓄满水,可蓄水_______.。

相关文档
最新文档