2020版高考数学二轮复习专题一三角函数和平面向量微切口3以正切为背景的最值和范围问题练习(无答案)

合集下载

2020届高考数学(理)课标版二轮复习训练习题:重难考点专题一第1讲 三角函数的图象与性质

2020届高考数学(理)课标版二轮复习训练习题:重难考点专题一第1讲 三角函数的图象与性质

������ 3������
1
2
若2≤ωπ+6< 6 ,则 2ωπ+6≤ 2 ,所以3≤ω≤3.故选 B.
二、填空题
3
7.角 θ 的顶点为坐标原点,始边为 x 轴正半轴,终边经过点 P(4,y),且 sin θ=-5,则 tan θ= .
3
答案 -4
3
解析 因为角 θ 的终边经过点 P(4,y),sin θ=-5<0,所以 θ 为第四象限角,所以 cos
3
+
2������ 3
(k∈Z)
[ ] C.
2������������

2������,2������������
3
+
������ 3
(k∈Z)
[ ] D.
2������������

������,2������������
6+Fra bibliotek5������ 6
(k∈Z)
( ) ( ) 答案 B 解法一:因为 f(x)=2
������ ,0
12
在函数
f(x)的图象上,
[ ( ) ] 所以 Asin 2 ×
‒ ������
12
+ ������ =0,
������
������
解得 φ=kπ+6,k∈Z,由 0<φ<π,可得 φ=6.
( ) ( ) 因为
f
������ 12
3
=2,所以
Asin

������ + ������
7������
5������
所以 θ=kπ- 6 (k∈Z),又 0<θ<π,所以 θ= 6 ,

2020版高考数学大二轮复习专题一专题培优“平面向量、三角函数与解三角形”专题培优课

2020版高考数学大二轮复习专题一专题培优“平面向量、三角函数与解三角形”专题培优课

“平面向量、三角函数与解三角形”错误![错误!级——易错清零练]1.设x,y∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,则|a+b|=( )A. 5B.错误!C.2 5 D.10解析:选B 由题意可知错误!解得错误!故a+b=(3,-1),|a+b|=10。

2.将函数y=sin(2x+φ)的图象沿x轴向左平移错误!个单位长度后,得到一个偶函数的图象,则φ的一个可能取值为( )A.错误!B。

错误!C.0 D。

错误!解析:选B 将函数y=sin(2x+φ)的图象沿x轴向左平移错误!个单位长度后,得到的图象对应的函数解析式为y=sin2x+错误!+φ=sin 错误!.因为所得函数为偶函数,所以错误!+φ=kπ+错误!(k∈Z),即φ=kπ+错误!(k∈Z),则φ的一个可能取值为错误!,故选B.3.(2017·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c。

已知C =60°,b =错误!,c =3,则A =________.解析:由正弦定理,得sin B =错误!=错误!=错误!,因为0°<B <180°,所以B =45°或135°。

因为b <c ,所以B <C ,故B =45°,所以A =180°-60°-45°=75°。

答案:75°[B 级——方法技巧练]1.已知向量a ,b ,且|a |=3,a 与b 的夹角为π6,a ⊥(2a -b ),则|b |=( )A .2B .4 C. 3 D .3解析:选B 如图,作错误!=a ,错误!=b ,〈a ,b >=错误!,作错误!=2a ,则错误!=2a -b .由a ⊥(2a-b )可知,OC ⊥BC .在Rt △OCB 中,OC =2|a |=2错误!,cos 〈a ,b 〉=错误!=错误!=错误!,解得|b |=4。

2020高考文科数学二轮分层特训卷:主观题专练 平面向量、三角函数与解三角形(2) Word版含解析

2020高考文科数学二轮分层特训卷:主观题专练 平面向量、三角函数与解三角形(2) Word版含解析

平面向量、三角函数与解三角形(2)1.已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π. (1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性.解析:(1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2.于是f (x )=2sin ⎝⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ),即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.2.[2019·浙江卷,18]设函数f (x )=sin x ,x ∈R .(1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值;(2)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42的值域. 解析:本题主要考查三角函数的性质、三角恒等变换,考查考生的逻辑推理能力及运算求解能力,考查的核心素养是逻辑推理、数学运算.(1)因为f (x +θ)=sin(x +θ)是偶函数, 所以,对任意实数x 都有sin(x +θ)=sin(-x +θ),即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ,故2sin x cos θ=0,所以cos θ=0.又θ∈[0,2π),因此θ=π2或3π2.(2)y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42=sin 2⎝ ⎛⎭⎪⎫x +π12+sin 2⎝ ⎛⎭⎪⎫x +π4 =1-cos ⎝ ⎛⎭⎪⎫2x +π62+1-cos ⎝ ⎛⎭⎪⎫2x +π22=1-12⎝ ⎛⎭⎪⎫32cos 2x -32sin 2x=1-32cos ⎝ ⎛⎭⎪⎫2x +π3. 因此,函数的值域是⎣⎢⎡⎦⎥⎤1-32,1+32. 3.[2019·山西大同联考]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A =35,tan(A -B )=13,角C 为钝角,b =5.(1)求sin B 的值; (2)求边c 的长.解析:(1)因为角C 为钝角,则A 为锐角,sin A =35,所以cosA =1-sin 2A =45,又tan(A -B )=13,所以0<A -B <π2,且sin(A -B )=110,cos(A-B )=310,所以sin B =sin[A -(A -B )]=sin A cos(A -B )-cos A sin(A -B )=35×310-45×110=1010.(2)因为a b =sin A sin B =3105,且b =5,所以a =310.由(1)知cos B =310,所以cos C =-cos(A +B )=-cos A cos B +sin A sin B =-9510,则c 2=a 2+b 2-2ab cos C =90+25-2×310×5×⎝ ⎛⎭⎪⎫-9510=169,所以c =13.4.[2019·安徽五校联盟第二次质检]如图,在平面四边形ABCD 中,AD =2,sin ∠CAD =2114,3AC sin ∠BAC +BC cos B =2BC ,且B +D =π,求△ABC 的面积的最大值.解析:在△ABC 中,由3AC sin ∠BAC +BC cos B =2BC ,结合正弦定理可得3sin B sin ∠BAC +sin ∠BAC cos B =2sin ∠BAC , ∵sin ∠BAC ≠0,∴3sin B +cos B =2,2sin ⎝ ⎛⎭⎪⎫B +π6=2,sin ⎝ ⎛⎭⎪⎫B +π6=1,∵0<B <π,∴B +π6=π2,∴B =π3.又B +D =π,∴D =2π3.在△ACD 中,D =2π3,sin ∠CAD =2114,∴cos ∠CAD =5714,则sin ∠ACD =sin(D +∠CAD )=32×5714+⎝ ⎛⎭⎪⎫-12×2114=217,由正弦定理得AC sin D =AD sin ∠ACD ,即AC 32=2217,∴AC =7.在△ABC 中,7=AC 2=AB 2+BC 2-AB ·BC ≥2AB ·BC -AB ·BC =AB ·BC ,当且仅当AB =BC 时取“=”,则S △ABC =34AB ·BC ≤734,即△ABC 的面积最大值为734.5.[2019·南昌模拟]已知函数f (x )=1+23sin x 2·cos x 2-2cos 2x 2,△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .(1)求f (A )的取值范围;(2)若A 为锐角且f (A )=2,2sin A =sin B +2sin C ,△ABC的面积为3+34,求b 的值.解析:(1)f (x )=3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6,∴f (A )=2sin ⎝ ⎛⎭⎪⎫A -π6,由题意知,0<A <π,则A -π6∈⎝ ⎛⎭⎪⎫-π6,5π6,∴sin ⎝ ⎛⎭⎪⎫A -π6∈⎝ ⎛⎦⎥⎤-12,1,故f (A )的取值范围为(-1,2].(2)由题意知,sin ⎝ ⎛⎭⎪⎫A -π6=22,∴A -π6=π4+2k π,k ∈Z ,即A=5π12+2k π,k ∈Z ,∵A 为锐角,∴A =5π12.由正、余弦定理及三角形的面积得⎩⎪⎨⎪⎧2a =b +2c ,12bc ·sin 5π12=3+34,cos 5π12=b 2+c 2-a 22bc,解得b = 2.6.[2019·四川绵阳第一次诊断]在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且2c sin B =3a tan A .(1)求b 2+c 2a 2的值;(2)若a =2,求△ABC 面积的最大值.解析:(1)∵2c sin B =3a tan A ,∴2c sin B cos A =3a sin A , 由正弦定理得2cb cos A =3a 2,由余弦定理得b 2+c 2-a 2=3a 2,化简得b 2+c 2=4a 2,∴b 2+c 2a 2=4.(2)∵a =2,由(1)知b 2+c 2=4a 2=16,∴由余弦定理得cos A =b 2+c 2-a 22bc =6bc .根据基本不等式知b 2+c 2≥2bc ,即8≥bc ,当且仅当b =c 时“=”成立,∴cos A ≥68=34.由cos A =6bc ,得bc =6cos A ,且A ∈⎝ ⎛⎭⎪⎫0,π2, ∴△ABC 的面积S =12bc sin A =12×6cos A ×sin A =3tan A .∵1+tan 2A =1+sin 2A cos 2A =cos 2A +sin 2A cos 2A =1cos 2A ,∴tan A =1cos 2A -1≤ 169-1=73,∴S =3tan A ≤7. ∴△ABC 的面积的最大值为7.。

2020版高考数学二轮复习教程第二编专题二三角函数、解三角形与平面向量第3讲平面向量练习理

2020版高考数学二轮复习教程第二编专题二三角函数、解三角形与平面向量第3讲平面向量练习理

第3讲平面向量「考情研析」1。

考查平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考查,多为选择题、填空题,难度为中低档. 2.考查平面向量的数量积,以选择题、填空题为主,难度为低档;向量作为工具,还常与三角函数、解三角形、不等式、解析几何结合,以解答题形式出现.核心知识回顾1.平面向量的数量积(1)若a,b为非零向量,夹角为θ,则a·b=□,01|a||b|·cosθ.(2)设a=(x1,y1),b=(x2,y2),则a·b=错误!x1x2+y1y2.2.两个非零向量平行、垂直的充要条件若a=(x1,y1),b=(x2,y2),则(1)a∥b⇔错误!a=λb(b≠0)⇔错误!x1y2-x2y1=0。

(2)a⊥b⇔错误!a·b=0⇔错误!x1x2+y1y2=0.3.利用数量积求长度(1)若a=(x,y),则|a|=错误!错误!=错误!错误!。

(2)若A(x1,y1),B(x2,y2),则|错误!|=错误!错误!。

4.利用数量积求夹角若a=(x1,y1),b=(x2,y2),θ为a与b的夹角,则cosθ=错误!错误!=错误!错误!。

5.三角形“四心"向量形式的充要条件设O为△ABC所在平面上一点,角A,B,C所对的边分别为a,b,c,则(1)O为△ABC的外心⇔错误!|错误!|=|错误!|=|错误!|=错误!.(2)O为△ABC的重心⇔错误!错误!+错误!+错误!=0.(3)O为△ABC的垂心⇔□03错误!·错误!=错误!·错误!=错误!·错误!。

(4)O为△ABC的内心⇔错误!a错误!+b错误!+c错误!=0。

热点考向探究考向1 平面向量的概念及运算例1 (1)已知向量a=(1,2),b=(-2,3),若m a-n b与2a +b共线(其中m,n∈R且n≠0),则错误!=( )A.-2 B.2C.-错误! D.错误!答案A解析因为m a-n b=(m+2n,2m-3n),2a+b=(0,7),m a -n b与2a+b共线,所以m+2n=0,即错误!=-2.故选A。

【2020高考数学】三角函数与平面向量结合问题解题指导(含答案)

【2020高考数学】三角函数与平面向量结合问题解题指导(含答案)

【2020高考数学】三角函数与平面向量结合问题解题指导第一篇 三角函数与解三角形专题04 三角函数与平面向量结合问题【典例1】如图,在平面直角坐标系中,已知点()2,0A 和单位圆上的两点()10B ,,34,55C ⎛⎫- ⎪⎝⎭,点P 是劣弧BC 上一点,BOC α∠=,BOP β∠=.(1)若OC OP ⊥,求()()sin sin παβ-+-的值;(2)设()f t OA tOP =+,当()f t 的最小值为1时,求OP OC ⋅的值. 【思路引导】(1)根据任意角三角函数定义可求得sin ,cos αα,利用2πβα=-可求得sin cos βα=-,结合诱导公式可化简求出结果;(2)利用向量坐标表示可得到()2cos ,sin OA tOP t t ββ+=+,可求得224cos 4OA tOP t t β+=++,根据二次函数性质可求得22min44cos OA tOPβ+=-,从而利用()f t 的最小值构造方程可求得2cos β,根据角的范围可求得sin β和cos β,进而根据数量积的坐标运算可求得结果.【典例2】【江苏省启东中学2020届高三上学期期初考试数学试题】在平面直角坐标系xOy 中,设向量()cos sin a αα=,,()sin cos b ββ=-,,()12c =-. (1)若a b c +=,求sin ()αβ-的值; (2)设5π6α=,0πβ<<,且()//a b c +,求β的值. 【思路引导】(1)利用向量的数量积转化求解两角差的三角函数即可; (2)通过向量平行,转化求解角的大小即可.【典例3】【2014年全国普通高等学校招生统一考试理科数学(山东卷】已知向量a m x (,cos 2)=,b x n (sin 2,)=,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-. (Ⅰ)求,m n 的值; (Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间. 【思路引导】(Ⅰ)利用向量的数量积坐标运算公式代入函数式整理化简,将函数过的点(12π和点2(,2)3π-代入就可得到关于,m n 的方程,解方程求其值;(Ⅱ)利用图像平移的方法得到()y g x =的解析式,利用最高点到点(0,3)的距离的最小值为1求得ϕ角,得()2cos2g x x =,求减区间需令[]22,2x k k πππ∈+解x 的范围【典例4】【河南省信阳市2019-2020学年高三第一次教学质量检测】已知函数()()f x a b c =+,其中向量()sin ,cos a x x =-,()sin ,3cos b x x =-,()cos ,sin c x x =-,x ∈R .(Ⅰ)若()52f α=,588ππα-<<-,求cos2α的值; (Ⅱ)不等式()2f x m -<在,82x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围. 【思路引导】(Ⅰ)利用向量数量积公式得到()f x 后,再用二倍角公式以及两角和的正弦公式的逆用公式化成辅助角的形式,根据已知条件及同角公式解得3cos 244πα⎛⎫+= ⎪⎝⎭,再将所求变成33cos 2cos 244ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦后,利用两角差的余弦公式求得;(Ⅱ)将不等式恒成立转化为最大最小值可解得.【典例5】【陕西省宝鸡市宝鸡中学2019-2020学年高三上学期期中】已知向量()a cos x cos x ωω=-,,()b sin x x ωω=(ω>0),且函数()f x a b =⋅的两个相邻对称中心之间的距离是4π. (1)求6f π⎛⎫⎪⎝⎭;(2)若函数()()1g x m x =+在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点,求实数m 的取值范围. 【思路引导】(1)首先利用平面向量的数量积的应用求出函数的关系式,进一步把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.(2)利用函数的零点和方程之间的转换的应用,利用函数的定义域和值域之间的关系求出m 的范围.【典例6】【辽宁省鞍山市第一中学2019-2020学年高三上学期11月月考】已知实数0θπ≤≤,()cos ,sin a θθ=,()0,1j =,若向量b 满足()0a b j +⋅=,且0a b ⋅=. (1)若2a b -=,求b ;(2)若()()f x b x a b =+-在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,求实数θ的取值范围.【思路引导】(1)设出b 的坐标,结合0a b ⋅=、2a b -=、()0a b j +⋅=,解方程,先求得θ的值,再求得b 的坐标. (2)利用向量模的运算、数量积的运算化简()f x 表达式,结合二次函数的性质列不等式,解不等式求得b 的取值范围.设出b 的坐标,结合()0a b j +⋅=、0a b ⋅=,解方程,用θ表示出2b ,根据b 的取值范围列不等式,解不等式求得cos θ的取值范围,进而求得θ的取值范围.【典例7】【江西省南昌市第二中学2018届高三上学期第五次月考】在平面直角坐标系xOy 中,已知向量()cos ,sin e αα=,设,(0)OA e λλ=>,向量ππcos ,sin 22OB ββ⎛⎫⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)若π6βα=-,求向量OA 与OB 的夹角; (2)若2AB OB ≥ 对任意实数,αβ都成立,求实数λ的取值范围. 【思路引导】(1)由题意结合平面向量的坐标表示,结合平面向量的数量积运算法则可得1cos sin 62πθ==. 则向量OA 与OB 的夹角为3π. (2)原问题等价于2230OA OB λ-⋅-≥任意实数,αβ都成立.分离参数可得()23sin 2λαβλ-≥-任意实数,αβ都成立.结合三角函数的性质求解关于实数λ的不等式可得3λ≥.1. .【河北省唐山市第一中学2019-2020学年高三上学期10月月考】已知向量()2cos 1,2sin a x x ωω=+,()()6cos 0b x x ωωω=>.(1)当2x k πωπ≠+,k Z ∈时,若向量()1,0c =,()3,0d =,且()()//a c b d -+,求224sin cos x x ωω-的值;(2)若函数()f x a b =⋅的图象的相邻两对称轴之间的距离为4π,当,86x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.2. 已知向量(sin ,1),(3cos ,cos 2)(0)2Am x n A x x A ==>,函数()f x m n =⋅的最大值为6. (Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域. 3. 【河南省郑州市第一中学2019-2020学年高三上学期期中】已知点()2,0A ,()0,2B -,()2,0F -,设AOC α∠=,[)0,2απ∈,其中O 为坐标原点.(1)设点C 在x 轴上方,到线段AF 3AFC π∠=,求α和线段AC 的大小;(2)设点D 为线段OA 的中点,若2OC =,且点C 在第二象限内,求)3cos y DC OB BC OA α=⋅+⋅的取值范围.4. 【河北省衡水市深州市2019-2020学年高三上学期12月月考】已知向量()()2,22=+a x ωϕ,2,22⎛=- ⎝⎭b ,其中0>ω,02πϕ<<,函数()f x a b =⋅的图像过点()1,2B ,点B 与其相邻的最高点的距离为4. (1)求函数()f x 的单调递减区间;(2)计算()()()122019f f f ++⋅⋅⋅+的值. 5. 【河北省衡水中学2017届高三下学期二调考试】 已知向量()()23sin ,1,cos ,cos 1m x n x x ωωω==+,设函数()f x m n b =⋅+.(1)若函数()f x 的图象关于直线6x π=对称,[]0,3ω∈,求函数()f x 的单调递增区间;(2)在(1)的条件下,当70,12x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 有且只有一个零点,求实数b 的取值范围. 6. 已知(sin ,cos ),(sin ,sin )a x x b x x ==,函数()f x a b =⋅. (1)求()f x 的对称轴方程; (2)若对任意实数[,]63x ππ∈,不等式()2f x m -<恒成立,求实数m 的取值范围.7. 【江苏省淮安市淮阴中学2019-2020学年高三期中数学试题】在如图所示的平面直角坐标系中,已知点(1,0)A 和点(1,0)B -,1OC =,且AOC=x ∠,其中O 为坐标原点.(1)若34x π=,设点D 为线段OA 上的动点,求||OC OD +的最小值; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦,向量m BC =,(1cos ,sin 2cos )n x x x =--,求m n ⋅的最小值及对应的x 值. 8. 已知向量(1,3p =,()cos ,sin q x x =. (1)若//p q ,求2sin 2cos x x -的值;(2)设函数()f x p q =⋅,将函数()f x 的图象上所有的点的横坐标缩小到原来的12(纵坐标不变),再把所得的图象向左平移3π个单位,得到函数()g x 的图象,求()g x 的单调增区间.9. 已知向量(3sin ,cos )x x =m ,(cos )x x =-n ,()f x =⋅-m n .(1)求函数()f x 的最大值及取得最大值时x 的值; (2)若方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围. 10. 【黑龙江省大庆实验中学2019届高三上学期第一次月考】已知O 为坐标原点,()22cos ,1OA x =,()1,OB x a =+ ()R,R x a a ∈∈且为常数,若()•f x OA OB =. (Ⅰ)求函数()f x 的最小正周期和单调递减区间; (Ⅱ)若0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最小值为2,求实数a 的值.【参考答案部分】【典例1】如图,在平面直角坐标系中,已知点()2,0A 和单位圆上的两点()10B ,,34,55C ⎛⎫- ⎪⎝⎭,点P 是劣弧BC 上一点,BOC α∠=,BOP β∠=.(1)若OC OP ⊥,求()()sin sin παβ-+-的值;(2)设()f t OA tOP =+,当()f t 的最小值为1时,求OP OC ⋅的值. 【思路引导】(1)根据任意角三角函数定义可求得sin ,cos αα,利用2πβα=-可求得sin cos βα=-,结合诱导公式可化简求出结果;(2)利用向量坐标表示可得到()2cos ,sin OA tOP t t ββ+=+,可求得224cos 4OA tOP t t β+=++,根据二次函数性质可求得22min44cos OA tOP β+=-,从而利用()f t 的最小值构造方程可求得2cos β,根据角的范围可求得sin β和cos β,进而根据数量积的坐标运算可求得结果.解:(1)由34,55C ⎛⎫- ⎪⎝⎭可知:4sin 5α,3cos 5α=- OC OP ⊥ 2πβα∴=-3sin sin cos 25πβαα⎛⎫∴=-=-= ⎪⎝⎭ ()()431sin sin sin sin 555παβαβ∴-+-=-=-= (2)由题意得:()cos ,sin P ββ ()2,0OA ∴=,()cos ,sin OP ββ=()2cos ,sin OA tOP t t ββ∴+=+()()22222cos sin 4cos 4OA tOP t t t t βββ∴+=++=++当2cos t β=-时,22min44cos OA tOPβ+=-()min 1f t ∴==,解得:23cos 4β=1sin 2β∴==0βα<< 6πβ∴=cos β∴= 12P ⎫∴⎪⎪⎝⎭3414525210OP OC -⎛⎫∴⋅=-⨯+⨯=⎪⎝⎭【典例2】【江苏省启东中学2020届高三上学期期初考试数学试题】在平面直角坐标系xOy 中,设向量()cos sin a αα=,,()sin cos b ββ=-,,()12c =-.(1)若a b c +=,求sin ()αβ-的值; (2)设5π6α=,0πβ<<,且()//a b c +,求β的值. 【思路引导】(1)利用向量的数量积转化求解两角差的三角函数即可;(2)通过向量平行,转化求解角的大小即可.解:(1)因为()cos sin a αα=,,()sin cos b ββ=-,,()12c =-,所以1a b c ===,且()cos sin sin cos sin a b αβαβαβ⋅=-+=-.因为a b c +=,所以22a bc +=,即2221a a b b +⋅+=,所以12sin ()11αβ+-+=,即1sin ()2αβ-=-.(2)因为5π6α=,所以3122a ⎛⎫=- ⎪ ⎪⎝⎭,.依题意,1sin cos 2b c ββ⎛⎫+=-- ⎪ ⎪⎝⎭,.因为()//a b c +,所以)()11cos sin 022ββ-+--=.化简得,11sin 22ββ-=,所以()π1sin 32β-=.因为0πβ<<,所以ππ2π333β-<-<.所以ππ36β-=,即π2β=.【典例3】【2014年全国普通高等学校招生统一考试理科数学(山东卷】已知向量a m x (,cos 2)=,b x n (sin 2,)=,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-. (Ⅰ)求,m n 的值; (Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间.试题思路引导:(Ⅰ)利用向量的数量积坐标运算公式代入函数式整理化简,将函数过的点(12π和点2(,2)3π-代入就可得到关于,m n 的方程,解方程求其值;(Ⅱ)利用图像平移的方法得到()y g x =的解析式,利用最高点到点(0,3)的距离的最小值为1求得ϕ角,得()2cos2g x x =,求减区间需令[]22,2x k k πππ∈+解x 的范围试题解析:(1)由题意知.()y f x =的过图象过点(12π和2(,2)3π-,所以sincos,66{442sin cos ,33m n m n ππππ=+-=+即1,2{12,2m n n =-=-解得{1.m n == (2)由(1)知.由题意知()()2sin(22)6g x f x x πϕϕ=+=++.设()y g x =的图象上符合题意的最高点为0(,2)x ,由题意知2011x +=,所以,即到点(0,3)的距离为1的最高点为(0,2).将其代入()y g x =得sin(2)16πϕ+=,因为0ϕπ<<,所以6πϕ=,因此()2sin(2)2cos 22g x x x π=+=.由222,k x k k πππ-+≤≤∈Z 得,2k x k k πππ-+≤≤∈Z ,所以函数()y f x =的单调递增区间为[,],2k k k Z πππ-+∈【典例4】【河南省信阳市2019-2020学年高三第一次教学质量检测】已知函数()()f x a b c =+,其中向量()sin ,cos a x x =-,()sin ,3cos b x x =-,()cos ,sin c x x =-,x ∈R .(Ⅰ)若()52f α=,588ππα-<<-,求cos2α的值; (Ⅱ)不等式()2f x m -<在,82x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围. 【思路引导】(Ⅰ)利用向量数量积公式得到()f x 后,再用二倍角公式以及两角和的正弦公式的逆用公式化成辅助角的形式,根据已知条件及同角公式解得3cos 244πα⎛⎫+= ⎪⎝⎭,再将所求变成33cos 2cos 244ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦后,利用两角差的余弦公式求得;(Ⅱ)将不等式恒成立转化为最大最小值可解得. 解:()()f x a b c =+()()sin ,cos sin cos ,sin 3cos x x x x x x =---222 sin2sin cos3cos1sin22cos x x x x x x =-+=-+32cos2sin2224x x xπ⎛⎫=+-=++⎪⎝⎭(Ⅰ)若()52fα=,则352242πα⎛⎫+=⎪⎝⎭,即3sin(2)44πα+=,由588ππα-<<-∴544ππα-<2<-,即3242πππα-<2+<,则3cos244πα⎛⎫+=⎪⎝⎭则333333cos2cos2cos2cos sin2sin444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦142424⎛=-+=⎝⎭.(Ⅱ)∵不等式()2f x m-<在,82xππ⎡⎤∈⎢⎥⎣⎦上恒成立,∴()22f x m-<-<,即()()22f x m f x-<<+在,82xππ⎡⎤∈⎢⎥⎣⎦上恒成立,当,82xππ⎡⎤∈⎢⎥⎣⎦,则2,4xππ⎡⎤∈⎢⎥⎣⎦,372,44xπππ⎡⎤+∈⎢⎥⎣⎦,则当324xππ+=,即8xπ=时,()f x取得最大值,最大值为()max2f x=,当33242xππ+=,即38xπ=时,()f x取得最小值,最小值为()min322f xπ=+2=-则2222mm>-⎧⎪⎨<⎪⎩,得04m<<,即实数m的取值范围是(0,4-.【典例5】【陕西省宝鸡市宝鸡中学2019-2020学年高三上学期期中】已知向量()a cos x cos xωω=-,,()b sin x xωω=(ω>0),且函数()f x a b=⋅的两个相邻对称中心之间的距离是4π.(1)求6f π⎛⎫⎪⎝⎭; (2)若函数()()1g x m x =+在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点,求实数m 的取值范围. 【思路引导】(1)首先利用平面向量的数量积的应用求出函数的关系式,进一步把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.(2)利用函数的零点和方程之间的转换的应用,利用函数的定义域和值域之间的关系求出m 的范围. 解:(1)向量()a cos x cos x ωω=-,,()b sin x x ωω=, 所以()f x a b =⋅=sinωx •cosωx 2ωx)1212223sin x cos x sin x πωωω⎛⎫=+=- ⎪⎝⎭. 函数的两个相邻对称中心之间的距离是4π. 所以函数的最小正周期为2π, 由于ω>0,所以242πωπ==,所以f (x )=sin (4x 3π-).则f (6π)4632sin ππ⎛⎫=⋅--= ⎪⎝⎭sin 3π=0. (2)由于f (x )=sin (4x 3π-).则()()1g x m x =+在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点,即31432m x π⎛⎫+--= ⎪⎝⎭0,即m 1432x π⎛⎫=-+ ⎪⎝⎭,由于04x π⎡⎤∈⎢⎥⎣⎦,,所以24333x πππ⎡⎤-∈-⎢⎥⎣⎦,,在24333x πππ⎡⎤-∈-⎢⎥⎣⎦,时,函数的图象与y =m 有两个交点,最高点除外.当433x ππ-=时,m 31222=+=,当432x ππ-=时,m 12=,所以当m 122⎡⎫∈⎪⎢⎣⎭时,函数的图象在在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点.【典例6】【辽宁省鞍山市第一中学2019-2020学年高三上学期11月月考】已知实数0θπ≤≤,()cos ,sin a θθ=,()0,1j =,若向量b 满足()0a b j +⋅=,且0a b ⋅=. (1)若2a b -=,求b ;(2)若()()f x b x a b =+-在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,求实数θ的取值范围.【思路引导】(1)设出b 的坐标,结合0a b ⋅=、2a b -=、()0a b j +⋅=,解方程,先求得θ的值,再求得b 的坐标. (2)利用向量模的运算、数量积的运算化简()f x 表达式,结合二次函数的性质列不等式,解不等式求得b 的取值范围.设出b 的坐标,结合()0a b j +⋅=、0a b ⋅=,解方程,用θ表示出2b ,根据b 的取值范围列不等式,解不等式求得cos θ的取值范围,进而求得θ的取值范围. 解:(1)设()00,b x y =,则()00cos ,sin b x a y θθ=+++,∵0a b ⋅=, 由2a b -=得()24a b -=,得2224a a b b -⋅+=,得2104b -+=,得3b =,∵()0a b j +⋅=,∴0sin 0y θ+=,∴0sin y θ=-,∵0a b ⋅=,∴00cos sin 0x y θθ+=,∴20sin cos x θθ=,∴()22222002sin 3sin cos x y b θθθ⎛⎫=+=⇒+- ⎪⎝⎭3tan θ=⇒= ∵[]0,θπ∈,∴3πθ=,或23πθ=,∴当3πθ=时,032x =,0y = 当23πθ=时,032x =-,02y =-,所以3,22b ⎛=-⎝⎭或3,22b ⎛=-- ⎝⎭.(2)()()()1f x b x a b xa x b =+-=+-()()2222121a x b x x a b =+-+-⋅()2222212b b x bx b ==+-+,∵()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,所以对称轴()2221221b b--≤+,即1b ≤, 设()00,b x y =,则()00cos ,sin b x a y θθ=+++,又∵()0a b j +⋅=,且0a b ⋅=,∴0sin y θ=-,20sin cos x θθ=. ∴22222020sin sin 1cos x b y θθθ⎛⎫=+=+≤ ⎪⎝⎭,即22sin cos θθ≤,21cos 2θ≥, ∴21,22cos θ⎤⎡∈--⎢⎥⎢⎣⎦⎣⎦,∴30,,44ππθπ⎡⎤⎡⎤∈⎢⎥⎢⎥⎣⎦⎣⎦. 【典例7】【江西省南昌市第二中学2018届高三上学期第五次月考】在平面直角坐标系xOy 中,已知向量()cos ,sin e αα=,设,(0)OA e λλ=>,向量ππcos ,sin 22OB ββ⎛⎫⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)若π6βα=-,求向量OA 与OB 的夹角; (2)若2AB OB ≥ 对任意实数,αβ都成立,求实数λ的取值范围. 【思路引导】(1)由题意结合平面向量的坐标表示,结合平面向量的数量积运算法则可得1cos sin62πθ==. 则向量OA 与OB 的夹角为3π. (2)原问题等价于2230OA OB λ-⋅-≥任意实数,αβ都成立.分离参数可得()23sin 2λαβλ-≥-任意实数,αβ都成立.结合三角函数的性质求解关于实数λ的不等式可得3λ≥.解析:(1)由题意, ()cos ,sin (0)OA λαλαλ=>, ()sin ,cos OB ββ=-, 所以 OA λ=, 1OB =, 设向量OA 与OB 的夹角为θ, 所以()()cos sin sin cos cos sin 1OA OB OA OBλαβλαβθαβλ-+⋅===-⋅⋅.因为6πβα=-,即6παβ-=,所以1cos sin62πθ==.又因为[]0,θπ∈,所以3πθ=,即向量OA 与OB 的夹角为3π.(2)因为2AB OB ≥对任意实数,αβ都成立,而1OB =, 所以24AB ≥,即()24OB OA-≥任意实数,αβ都成立. .因为OA λ=,所以2230OA OB λ-⋅-≥任意实数,αβ都成立. 所以()22sin 30λλαβ---≥任意实数,αβ都成立.因为0λ>,所以()23sin 2λαβλ-≥-任意实数,αβ都成立.所以2312λλ-≥,即2230λλ--≥,又因为0λ>,所以3λ≥1. .【河北省唐山市第一中学2019-2020学年高三上学期10月月考】已知向量()2cos 1,2sin a x x ωω=+,()()6cos 0b x x ωωω=->.(1)当2x k πωπ≠+,k Z ∈时,若向量()1,0c =,()3,0d =,且()()//a c b d -+,求224sin cos x x ωω-的值;(2)若函数()f x a b =⋅的图象的相邻两对称轴之间的距离为4π,当,86x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值. 【思路引导】(1)先将a c -和b d +用坐标形式表示出来,然后根据向量平行对应的坐标表示得到tan x ω的值,然后利用22sin cos 1x x ωω+=将224sin cos x x ωω-进行变形即可求值; (2)计算并化简()f x ,根据相邻两对称轴之间的距离为4π求解出ω的值,然后根据x 范围即可求解出()f x 的最大值和最小值.解:(1)因为()2cos ,2sin a c x x ωω-=,()6cos ,cos b d x x ωω+=,又因为()()//a cb d -+,2cos x x x ωωω=,又因为()2xk k Z πωπ≠+∈,所以tan x ω=,所以22222222114sin cos 4tan 1834sin cos 1sin cos tan 113112x x x x x x x x ωωωωωωωω----====-+++; (2)()())2cos 112sin cos f x a b ωx ωx ωx ωx =⋅=+-+)22cos 1sin 2sin 222sin 23x x x x x πωωωωω⎛⎫=-+==+ ⎪⎝⎭,因为相邻两对称轴之间的距离为4π,所以242T ππ=⨯=,所以224Tπω==,所以2ω=, 所以()2sin 43πf x x ⎛⎫=+⎪⎝⎭,因为,86x ππ⎡⎤∈-⎢⎥⎣⎦,所以4,36ππx π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()max 2sin22f x π==,此时24x π=,()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,此时8x π=-. 2. 已知向量(sin ,1),(3cos ,cos 2)(0)2Am x n A x x A ==>,函数()f x m n =⋅的最大值为6. (Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域. 【解析】(Ⅰ)()(sin ,1)cos ,cos 2)sin 2.26A f x m n x x x A x π⎛⎫=⋅=⋅=+ ⎪⎝⎭ 因为()f x m n =⋅的最大值为6,所以 6.A = (Ⅱ)将函数()y f x =的图象向左平移12π个单位, 得到()6sin 26sin 2.1263t x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变, 得到()6sin 4.3g x x π⎛⎫=+ ⎪⎝⎭因为5[0,],24x π∈所以74,336x πππ≤+≤ ()6sin 43g x x π⎛⎫=+ ⎪⎝⎭的最小值为76sin 3,6π⨯=-最大值为6sin 6,2π⨯=所以()g x 在5[0,]24π上的值域为[]3,6.- 3. 【河南省郑州市第一中学2019-2020学年高三上学期期中】已知点()2,0A ,()0,2B -,()2,0F -,设AOC α∠=,[)0,2απ∈,其中O 为坐标原点.(1)设点C 在x 轴上方,到线段AF 3AFC π∠=,求α和线段AC 的大小;(2)设点D 为线段OA 的中点,若2OC =,且点C 在第二象限内,求)3cos y DC OB BC OA α=⋅+⋅的取值范围. 【思路引导】(1)过点C 作AF 的垂线,垂足为点E ,可得出CE =2CF =,可得出OCF ∆为等边三角形,可求出α的值,然后在ACF ∆中利用余弦定理求出AC ;(2)由题中条件求出DC 、OB 、OA 的坐标,化简)cos y OB BC OA α=⋅+⋅的解析式为4cos 223y πα⎛⎫=++ ⎪⎝⎭,再根据α的取值范围,结合余弦函数的定义域与基本性质可求出y 的取值范围.解:(1)过C 作AF 的垂线,垂足为E ,则CE =在直角三角形FCE 中,2sin CEFC CFE==∠,又2OF =,3OFC π∠=,所以OFC ∆为正三角形.所以3FOC π∠=,从而23FOC παπ=-∠=.在AFC ∆中,AC ==; (2)()2,0A ,点D 为线段OA 的中点,()1,0D ∴,2OC =且点C 在第二象限内,()2cos ,2sin C αα∴,,2παπ⎛⎫∈ ⎪⎝⎭,从而()2cos 1,2sin DC αα=-,()2cos ,2sin 2BC αα=+,()2,0OA =,()0,2OB =-,则)2cos cos 4cos y OB BC OA αααα=⋅+⋅=-+()221cos 24cos 223πααα⎛⎫=-++=++ ⎪⎝⎭,因为,2παπ⎛⎫∈⎪⎝⎭,所以472,333πππα⎛⎫+∈ ⎪⎝⎭,从而1cos 2123πα⎛⎫-<+≤ ⎪⎝⎭, 04cos 2263πα⎛⎫∴<++≤ ⎪⎝⎭,因此,)cos y OB BC OA α=⋅+⋅的取值范围为(]0,6.4. 【河北省衡水市深州市2019-2020学年高三上学期12月月考】已知向量()()2,22=+a x ωϕ,2,⎛= ⎝⎭b ,其中0>ω,02πϕ<<,函数()f x a b =⋅的图像过点()1,2B ,点B 与其相邻的最高点的距离为4. (1)求函数()f x 的单调递减区间;(2)计算()()()122019f f f ++⋅⋅⋅+的值. 【思路引导】(1)先求出()1cos2()f x x ωϕ=-+,则()1,2B 为函数()f x 的图象的一个最高点,又点B 与其相邻的最高点的距离为4,所以242πω=,可得4πω=,再将点()1,2B 代入求出4πϕ=即可求出()1sin 2f x x π=+,最后令322222k x k πππππ+≤≤+解之即可求出函数()f x 的单调递减区间;(2)根据函数()f x 的最小正周期4,则()()()()()()()()()()1220195041234123f f f f f f f f f f ++⋅⋅⋅+=++++++⎡⎤⎣⎦求出()1f 、()2f 、()3f 、()4f 的值代入计算即可.解:(1)因为()()2,22=+a x ωϕ,2,22⎛=- ⎝⎭b()22()1cos 2()22∴=⋅=⋅-+=-+f x a b x x ωϕωϕ ()max 2∴=f x ,则点()1,2B 为函数()f x 的图象的一个最高点.点B 与其相邻的最高点的距离为4,242∴=πω,得4πω=. 函数()f x 的图象过点()1,2B ,1cos 222⎛⎫∴-+=⎪⎝⎭πϕ即sin 21=ϕ. 02πϕ<<,4πϕ∴=.()1cos 21sin 442⎛⎫∴=-+=+ ⎪⎝⎭f x x x πππ,由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈.()f x ∴的单调递减区间是[]41,43++k k ,k Z ∈.(2)由(1)知,()1sin2=+f x x π,()f x ∴是周期为4的周期函数,且()12f =,()21f =,()30f =,()41f =()()()()12344∴+++=f f f f而201945043=⨯+,()()()12201945042102019∴++⋅⋅⋅+=⨯+++=f f f5. 【河北省衡水中学2017届高三下学期二调考试】 已知向量()()23sin ,1,cos ,cos 1m x n x x ωωω==+,设函数()f x m n b =⋅+.(1)若函数()f x 的图象关于直线6x π=对称,[]0,3ω∈,求函数()f x 的单调递增区间;(2)在(1)的条件下,当70,12x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 有且只有一个零点,求实数b 的取值范围. 思路引导:(1)根据平面向量数量积运算求解出函数()•f x m n b =+,利用函数()f x 的图象关于直线6x π=对称,且[]0,3ω∈可得1ω=,结合三角函数的性质可得其单调区间;(2)当70,12x π⎡⎤∈⎢⎥⎣⎦时,求出函数()f x 的单调性,函数()f x 有且只有一个零点,利用其单调性求解求实数b 的取值范围. 试题解析: 解:向量()3sin ,1m x ω=, ()cos ,cos21n x x ωω=+,()2•3sin cos cos 1f x m n b x x x b ωωω=+=+++133cos2sin 222262x x b x b πωωω⎛⎫=+++=+++ ⎪⎝⎭ (1)∵函数()f x 图象关于直线6x π=对称,∴()2?662k k Z πππωπ+=+∈,解得: ()31k k Z ω=+∈,∵[]0,3ω∈,∴1ω=,∴()3sin 262f x x b π⎛⎫=+++ ⎪⎝⎭,由222262k x k πππππ-≤+≤+,解得: ()36k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)由(1)知()3sin 262f x x b π⎛⎫=+++ ⎪⎝⎭,∵70,12x π⎡⎤∈⎢⎥⎣⎦, ∴42,663x πππ⎡⎤+∈⎢⎥⎣⎦, ∴2,662x πππ⎡⎤+∈⎢⎥⎣⎦,即0,6x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递增; 42,663x πππ⎡⎤+∈⎢⎥⎣⎦,即7,612x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减. 又()03f f π⎛⎫=⎪⎝⎭, ∴当70312f f ππ⎛⎫⎛⎫>≥ ⎪ ⎪⎝⎭⎝⎭或06f π⎛⎫= ⎪⎝⎭时函数()f x 有且只有一个零点. 即435sinsin326b ππ≤--<或3102b ++=,所以满足条件的52b ⎛⎧⎫∈-⋃- ⎨⎬ ⎩⎭⎝⎦. 6. 已知(sin ,cos ),(sin ,sin )a x x b x x ==,函数()f x a b =⋅. (1)求()f x 的对称轴方程; (2)若对任意实数[,]63x ππ∈,不等式()2f x m -<恒成立,求实数m 的取值范围. 【思路引导】(I )利用平面向量数量积的坐标表示、二倍角公式以及两角和与差的正弦公式将函数()f x 化为12242x π⎛⎫-+ ⎪⎝⎭,利用242x k k Z πππ-=+∈,可得对称轴方程;(II )原不等式化为sin 24x π⎛⎫-≥⎪⎝⎭,利用3222444k x k k Z πππππ+≤-≤+∈,可得结果;(Ⅲ)2f x m -()<恒成立,等价于2max m f x ->(),利用63x ππ⎡⎤∈⎢⎥⎣⎦,,求得5212412x πππ≤-≤,可得max f x (),从而可得结果.【详解】(I )()21cos21sin sin cosx sin222x f x a b x x x -=⋅=+⋅=+ 1sin 2242x π⎛⎫=-+ ⎪⎝⎭,令242x k k Z πππ-=+∈,,解得328k x k Z ππ=+∈,. ∴f x ()的对称轴方程为328k x k Z ππ=+∈,.(II )由1f x ()≥得121242x π⎛⎫-+≥ ⎪⎝⎭,即sin 242x π⎛⎫-≥⎪⎝⎭, ∴3222444k x k k Z πππππ+≤-≤+∈,. 故x 的取值集合为42xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭,.(Ⅲ)∵63x ππ⎡⎤∈⎢⎥⎣⎦,,∴5212412x πππ≤-≤, 又∵sin y x =在02π⎡⎤⎢⎥⎣⎦,上是增函数,∴5sin sin 212412x sin πππ⎛⎫≤-≤ ⎪⎝⎭,又5sinsin 12644πππ⎛⎫=+=⎪⎝⎭,∴()f x 在63x ππ⎡⎤∈⎢⎥⎣⎦,时的最大值是()122max f x =+=,∵2f x m -()<恒成立,∴2max m f x ->(),即54m >,∴实数m 的取值范围是⎫+∞⎪⎪⎝⎭.7. 【江苏省淮安市淮阴中学2019-2020学年高三期中数学试题】在如图所示的平面直角坐标系中,已知点(1,0)A 和点(1,0)B -,1OC =,且AOC=x ∠,其中O 为坐标原点.(1)若34x π=,设点D 为线段OA 上的动点,求||OC OD +的最小值; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦,向量m BC =,(1cos ,sin 2cos )n x x x =--,求m n ⋅的最小值及对应的x 值. 【思路引导】(1)设D (t ,0)(0≤t ≤1),利用二次函数的性质求得它的最小值.(2)由题意得⋅=m n 1sin (2x 4π+),再利用正弦函数的定义域和值域 求出它的最小值.解:(I )设(,0)(01)D t t ≤≤,又22C ⎛⎫- ⎪ ⎪⎝⎭所以22OC OD t ⎛+=-+ ⎝⎭所以22211||122OC OD t t +=++=-+ 21(01)22t t ⎛⎫=-+≤≤ ⎪ ⎪⎝⎭所以当2t =时,||OC OD +最小值为2. (II )由题意得(cos ,sin )C x x ,(cos 1,sin )m BC x x ==+ 则221cos sin 2sin cos 1cos2sin 2m n x x x x x x ⋅=-+-=--124x π⎛⎫=-+ ⎪⎝⎭因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52444x πππ≤+≤ 所以当242x ππ+=时,即8x π=时,sin 24x π⎛⎫+⎪⎝⎭取得最大值1所以8x π=时,1224m n x π⎛⎫⋅=-+ ⎪⎝⎭取得最小值1所以m n ⋅的最小值为1,此时8x π=8. 已知向量(1,3p =,()cos ,sin q x x =. (1)若//p q ,求2sin 2cos x x -的值;(2)设函数()f x p q =⋅,将函数()f x 的图象上所有的点的横坐标缩小到原来的12(纵坐标不变),再把所得的图象向左平移3π个单位,得到函数()g x 的图象,求()g x 的单调增区间. 【思路引导】(1)由//p q ,可得出tan x =2sin 2cos x x -的值;(2)利用平面向量数量积的坐标运算以及辅助角公式可得出()2sin 6f x x π⎛⎫=+⎪⎝⎭,利用三角函数图象变换规律得出()52sin 26g x x π⎛⎫=+⎪⎝⎭,然后解不等式()5222262k x k k Z πππππ-+≤+≤+∈,可得出函数()y g x =的单调递增区间. 解:(1)(1,3p =,()cos ,sin q x x =,且//p q ,sin x x ∴=,则tan x =222222sin cos cos 2tan 1sin 2cos sin cos tan 1x x x x x x x x x --∴-===++;(2)()cos 2sin 6f x p q x x x π⎛⎫=⋅=+=+ ⎪⎝⎭,由题意可得()52sin 22sin 2366g x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()5222262k x k k Z πππππ-+≤+≤+∈,得()236k x k k Z ππππ-+≤≤-+∈. ∴函数()y g x =的单调递增区间为()2,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦.9. 已知向量(3sin ,cos )x x =m ,(cos )x x =-n ,()f x =⋅m n . (1)求函数()f x 的最大值及取得最大值时x 的值; (2)若方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围. 【思路引导】(1)先通过数量积求出5()26f x x π⎛⎫=+⎪⎝⎭,再根据三角函数即可求出最大值.(2)方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根表示()f x a =与y 在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点,画出()f x 在0,2π⎡⎤⎢⎥⎣⎦的图像易得a 的取值范围. 【详解】(1)23()3sin cos sin 22f x x x x x =⋅=-=-+m n35cos 2)sin 22222226x x x x π⎛⎫+-=-+=+ ⎪⎝⎭.当52262x k πππ+=+,即6x k ππ=-,k ∈Z 时,函数f (x(2)由于0,2x π⎡⎤∈⎢⎥⎣⎦时,55112,666x πππ⎡⎤+∈⎢⎥⎣⎦.而函数()g x x =在区间53,62ππ⎡⎤⎢⎥⎣⎦上单调递减,在区间311,26ππ⎡⎤⎢⎥⎣⎦上单调递增.又11362g g ππ⎛⎫⎛⎫==⎪⎪⎝⎭⎝⎭56g π⎛⎫=⎪⎝⎭结合图象(如图),所以方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根时,a ⎛∈ ⎝⎦.故实数a 的取值范围为⎛ ⎝⎦. 10. 【黑龙江省大庆实验中学2019届高三上学期第一次月考】已知O 为坐标原点,()22cos ,1OA x =,()1,OB x a =+ ()R,R x a a ∈∈且为常数,若()•f x OA OB =. (Ⅰ)求函数()f x 的最小正周期和单调递减区间; (Ⅱ)若0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最小值为2,求实数a 的值. 【思路引导】(1)通过向量的数量积,把OA ,OB 的坐标,代入函数解析式,利用向量积的运算求得函数解析式,进而得到函数()f x 的最小正周期和单调递减区间; (2)通过x ∈[0,2π],求出相位的范围,然后求出函数的最大值,利用最大值为2,直接求得a . 解:(1)由题意()()22cos ,1,1,3sin2(,,OA x OB x a x R a R a ==-∈∈是常数)所以()22cos cos212sin 216f x x x a x x a x a π⎛⎫=++=+++=+++ ⎪⎝⎭, ∴()f x 的最小正周期为22ππ=, 令3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈, 所以()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,72,666x πππ⎡⎤+∈⎢⎥⎣⎦, ∴当7266x ππ+=,即2x π=时,()f x 有最小值a ,所以2a = .。

高三数学二轮复习冲刺:三角函数的图像与最值

高三数学二轮复习冲刺:三角函数的图像与最值

三角函数求最值的六种类型类型1.)sin(ϕω+=x A y 与辅助角公式1.辅助角公式:形如),(,cos sin 不同时为零b a b a θθ+的式子可做如下变换:)cos sin (cos sin 222222θθθθba b b a a b a b a ++++=+--------(1)令2222sin ,cos b a b b a a +=+=ϕϕ(1)式=)sin()cos sin sin (cos 2222ϕθθϕθϕ++=++b a b a ,其中ab =ϕtan .例1.已知()1sin cos sin 23234f x x x x ππ⎛⎫=++⎛⎫⎪⎝⎭+- ⎪⎝⎭.求()f x 的单调递增区间.解析:化简得111()cos sin sin 22222f x x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭11cos 21sin 2sin 2cos 2424x x x x +=⨯+13sin 2cos 2sin 2223x x x π⎛⎫=+=+ ⎪⎝⎭ ,令222232k x k πππππ-≤+≤+,Z k ∈,解得51212k x ππππ≤+≤-,Z k ∈所以单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈.例2.已知函数()2cos sin f x x x x ωωω=+,其中06ω<<,且1122f π⎛⎫= ⎪⎝⎭.(1)求函数()f x 的单调递增区间;(2)若(),126ππθ∈,且()56f θ=,求sin 2θ的值.解析:()1cos 212sin 2262x f x x x ωπωω-⎛⎫=+=-+ ⎪⎝⎭ ,11sin 126622f πππω⎛⎫⎛⎫∴=-+= ⎪ ⎪⎝⎭⎝⎭,()66k k Z ππωπ∴-=∈,解得:()16k k Z ω=+∈,又06ω<<,1ω∴=,()1sin 262f x x π⎛⎫∴=-+ ⎪⎝⎭;令()222262k x k k Z πππππ-+≤-≤+∈,解得:()63k x k k Z ππππ-+≤≤+∈,()f x ∴的单调递增区间为(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)sin 2θ类型2.二次函数型(1)把形如c x b x a y ++=sin sin 2或c x b x a y ++=cos cos 2的三角函数最值问题看成与x sin 或x cos 有关的二次函数解析式,再将其解析式变形转化为n m x a y ++=2)(sin 或n m x a y ++=2)(cos ,最后根据已知变量的范围求最值.(2)对于x a x y sin 2cos +=和x a x y cos 2cos +=的形式,也可转化为二次函数来求解.例3.函数2sin y x x =+的定义域为3π,4α⎡⎤-⎢⎥⎣⎦,值域为3,2⎡-⎢⎣,则α的取值范围是()A .3π0,4⎡⎤⎢⎥⎣⎦B .[0,π]C .π,04⎡⎤-⎢⎥⎣⎦D .π,π2⎡⎤⎢⎥⎣⎦解析:由222sin 1cos (cos 3y x x x x x =+=-+=-+,令cos t x =,得:2(3y t =--+,二次函数开口向下,对称轴为1t =>,因为cos 1t x =≤,所以函数为递增函数,因为当3πcos()24t =-=-时,32y =-,当1t =时,y =,所以12t -≤≤,即3π[,]4x α∈-时,cos 2x ⎡⎤∈-⎢⎥⎣⎦,使函数的值域为3,2⎡-⎢⎣,所以由余弦函数图象与性质可知,3π04α≤≤,所以α的取值范围是:3π04⎡⎤⎢⎣⎦,.故选:A 类型3.Cx x B x x A x f +±±=)cos (sin cos sin )(如求三角函数b x x a x x y +++=cos sin cos sin 的最值,可将x x cos sin +看作t ,则原函数可变形为b t a t y +-+=2)1(2,该函数是我们熟悉的二次函数,可求它的最值.例4.已知函数()sin cos 2sin cos 2f x x x x x =+++,则()f x 的最大值为().A .3B .3C .2D .2解析:()sin cos 2sin cos 2f x x x x x =+++()2sin cos sin cos 12x x x x =+++-+,令sin cos cos 224t x x x x x π⎫⎛⎫⎡=+=+=+∈⎪ ⎪⎣⎪⎝⎭⎭,即()()2213124f xg t t t t ⎛⎫==++=++ ⎪⎝⎭,由t ⎡∈⎣,则()max 213g t g==+=故选:A.类型4.分式型其中同名函数利用分离常数法,形如()()sin sin sin a x b nf x f x m c x d c x d+=⇒=+++非同名函数利用数形结合的方法,形如()sin cos a x bf x c x d+=+利用单位圆与直线相交相切来解决最值问题.例5.求sin [0,]2sin xy x xπ=∈+值域。

2020年高考数学冲刺复习知识点精讲:平面向量中的最值范围问题含解析

2020年高考数学冲刺复习知识点精讲:平面向量中的最值范围问题含解析

平面向量中的最值、范围问题题型分析(一) 平面向量数量积的范围问题已知两个非零向量a 和b ,它们的夹角为θ,cos a b θ⋅⋅叫做a 和b 的数量积(或内积),记作a b ⋅.即a b ⋅=cos a b θ⋅⋅,规定00a ⋅=,数量积的表示一般有三种方法:(1)当已知向量的模和夹角时,可利用定义法求解,即a b ⋅=cos a b θ⋅⋅;(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2;(3)运用平面向量基本定理,将数量积的两个向量用基底表示后,再运算.【例1】在边长为2的等边三角形ABC 中,D 是AB 的中点,E 为线段AC 上一动点,则⋅的取值范围为【分析】利用向量的加法或减法法则,将向量,EB ED 分别表示,结合已知条件设|AE |x =(02x ≤≤),将⋅用变量x 表示,进而转化为二次函数的值域问题.c a -表示点A,C 的距离即圆上的点与点A (4,0)的距离;∵圆心到B 的距离为,∴c a -的最大值为12+,故选:D .【点评】建立直角坐标系的原则是能准确快捷地表示有关向量或点的坐标,正确找到变量间的关系,以及目标函数代表的几何意义是解题关键.【小试牛刀】【浙江省嘉兴市2019届高三第一学期期末】已知向量,满足,,则的取值范围是A .B .C .[D .[【答案】D【解析】设点M 为平面中任意一点,点是关于原点对称的两个点,设,根据题意,根据椭圆的定义得到点M 的轨迹是以为焦点的椭圆,方程为. ,即.故答案为D.(三) 平面向量夹角的取值范围问题设11(,)a x y =,22(,)b x y =,且,a b 的夹角为θ,则.【例3】已知向量→OA 与→OB 的夹角为θ,0t 在时取得最小值,当0105t <<时,夹角θ的取值范围为( ) A.0,3π⎛⎫ ⎪⎝⎭B.,32ππ⎛⎫ ⎪⎝⎭C.2,23ππ⎛⎫ ⎪⎝⎭ D.20,3π⎛⎫⎪⎝⎭【分析】将PQ 表示为变量t 的二次函数PQ,转化为求二次函数的最小值问题,当时,取最小值,由已知条件0105t <<,得关于夹角θ的不等式,解不等式得解.【点评】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解.【小试牛刀】已知非零向量,a b 满足2a b = ,若函数在R 上存在极值,则a 和b 夹角的取值范围为( )A. 0,6π⎡⎫⎪⎢⎣⎭ B. ,3ππ⎛⎤ ⎥⎝⎦ C. 2,33ππ⎛⎤ ⎥⎝⎦ D. ,3ππ⎡⎤⎢⎥⎣⎦【答案】B【解析】,设a 和b 夹角为θ,因为()f x 有极值,所以,即,即1cos 2θ<,所以,3πθπ⎛⎤∈ ⎥⎝⎦. 3.【辽宁省实验中学、大连八中、大连二十四中、鞍山一中、东北育才学校2019届高三上学期期末】中,,点是内(包括边界)的一动点,且,则的最大值是( ) A .B .C .D .【答案】C4.【安徽省黄山市2019届高三第一次质量检测】如图,在中,,,为上一点,且满足,若的面积为,则的最小值为 ( )A .B .C .D .【答案】B则(当且仅当即时取“=”).故的最小值为.5.【四川省攀枝花市2019届高三第一次统一考试】在四边形中,已知是边上的点,且,,若点在线段(端点除外)上运动,则的取值范围是( ) A .B .C .D .【答案】C6.【2018届浙江省台州市高三上学期期末】已知m , n 是两个非零向量,且1m =, 23m n +=,则m n n ++的最大值为C. 4D. 5 【答案】B 【解析】,,25n =-,,令,则,令()'0f x =,得x =∴当时, ()'0f x >,当时, ()'0f x <, ∴当2x =时, ()f x 取得最大值,故选B.7.【2018届安徽省淮南市高三第一次(2月)模拟】已知G 是ABC 的重心,过点G 作直线MN 与AB , AC交于点,M N ,且AM xAB =, AN y AC =, (),0x y >,则3x y +的最小值是( ) A.83 B. 72 C. 52 D. 4333+ 【答案】D【解析】令故故当且仅当等号成立,故选D8.【2018上海市杨浦区高三数学一模】设A 、B 、C 、D 是半径为1的球面上的四个不同点,且满足0AB AC ⋅=,,,用1S 、2S 、3S 分别表示ABC ∆、ACD ∆、ABD ∆的面积,则123S S S ++的最大值是( ) A.12B. 2C. 4D. 8 【答案】B9.【2018届河北省定州中学高中毕业班上学期期中】设向量,,a b c 满足2a b ==, 2a b ⋅=-,,则c 的最大值等于( )D. 1 【答案】A【解析】由2a b ==,2a b ⋅=-, ,可得,如图所示,设则,A,O,B,C 四点共圆,23AB =由三角形的正弦定理得外接圆的直径,当OC 为直径时,它的模c 最大,最大为4,故选A.12.【2018届湖南师范大学附属中学高三上学期月考】已知向量,a b 夹角为3π, 2b =,对任意x R ∈,有,则的最小值是__________.【答案】2【解析】,表示(),0P t 与的距离之和的2倍,当,,M P N 共线时,取得最小值2MN ,即有,故答13.【2018届江苏省泰州中学高三12月月考】在矩形ABCD 中, 3AB =, 1AD =,若M , N 分别在边BC , CD 上运动(包括端点,且满足,则AM AN ⋅的取值范围是__________.【答案】[1,9]14.【2018届安徽省蒙城“五校”联考】在ABC ∆中,点D 在线段BC 的延长线上,且12BC CD =,点O 在线段CD 上(与点,C D 不重合),若,则x 的取值范围是__________.【答案】()2,0-【解析】 因为,因为12BC CD =,点O 在线段CD 上, 所以()0,2y ∈, 因为,所以()2,0x ∈-.15.【江苏省苏州市2019届高三上学期期末】如图,在边长为2的正方形ABCD 中,M ,N 分别是边BC ,CD 上的两个动点,且BM +DN =MN ,则的最小值是_______.【答案】又由,设,整理得,解得,所以,所以的最小值为.。

(名师讲坛)2020版高考数学二轮复习专题一三角函数和平面向量微切口3以正切为背景的最值和范围问题练习

(名师讲坛)2020版高考数学二轮复习专题一三角函数和平面向量微切口3以正切为背景的最值和范围问题练习

微切口3 以正切为背景的最值和范围问题1.在△ABC 中,若sin (2A +B )=2sin B ,则tan B 的最大值为________.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3a cos C +b =0,则tan B 的最大值是________.3.在△ABC 中,若tan B =3tan C ,AB =2,则△ABC 面积的最大值为________.4.(2019·昆山中学质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+b 2+42=c 2,ab =4,则sin C tan 2A sin2B的最小值是________.5.(2019·丹阳中学)在锐角三角形ABC 中,9tan A ·tan B +tan B tan C +tan C tan A 的最小值为________.6.(2019·如皋一模)在△ABC 中,D 为AB 的中点,若2BA →·DC →=3AB →·AC →,则tan A +tan B+tan C 的最小值是________.7.在△ABC 中,若tan A +tan B =2,则cos 2A +cos 2B 的最大值为________.8.(2019·扬州中学)在△ABC 中,若tan A tan C +tan A tan B =5tan B tan C ,则sin A 的最大值为________.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin C tan B =2a -b b,且c sin A sin B =32,则ab 的最小值为________.10.在锐角三角形ABC 中,若2sin 2A +sin 2B =2sin 2C ,则1tan A +1tan B +1tan C的最小值为________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微切口3 以正切为背景的最值和范围问题
1.在△ABC 中,若sin (2A +B )=2sin B ,则tan B 的最大值为________.
2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3a cos C +b =0,则tan B 的最大值是________.
3.在△ABC 中,若tan B =3tan C ,AB =2,则△ABC 面积的最大值为________.
4.(2019·昆山中学质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+b 2
+42=c 2,ab =4,则sin C tan 2A sin2B
的最小值是________.
5.(2019·丹阳中学)在锐角三角形ABC 中,9tan A ·tan B +tan B tan C +tan C tan A 的最小值为________.
6.(2019·如皋一模)在△ABC 中,D 为AB 的中点,若2BA →·DC →=3AB →·AC →,则tan A +tan B
+tan C 的最小值是________.
7.在△ABC 中,若tan A +tan B =2,则cos 2A +cos 2B 的最大值为________.
8.(2019·扬州中学)在△ABC 中,若tan A tan C +tan A tan B =5tan B tan C ,则sin A 的最大值为________.
9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin C tan B =2a -b b
,且c sin A sin B =32
,则ab 的最小值为________.
10.在锐角三角形ABC 中,若2sin 2A +sin 2B =2sin 2C ,则1tan A +1tan B +1tan C
的最小值为________.。

相关文档
最新文档