【成才之路】2014-2015学年高中数学(人教A版)选修2-1练习:3章综合素质检测]
【成才之路】2014-2015学年高中数学(人教A版)选修2-1练习:2.2.1 椭圆及其标准方程]
![【成才之路】2014-2015学年高中数学(人教A版)选修2-1练习:2.2.1 椭圆及其标准方程]](https://img.taocdn.com/s3/m/89a35522ed630b1c59eeb552.png)
第二章 2.2 第1课时一、选择题1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( ) A .椭圆 B .直线 C .圆 D .线段[答案] D[解析] ∵|MF 1|+|MF 2|=6,|F 1F 2|=6, ∴|MF 1|+|MF 2|=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2.2.椭圆x 2m +y 24=1的焦距是2,则m 的值是( )A .5B .3或8C .3或5D .20[答案] C[解析] 2c =2,c =1,故有m -4=1或4-m =1, ∴m =5或m =3,故选C.3.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是( ) A .(±a -b ,0) B .(±b -a ,0) C .(0,±a -b ) D .(0,±b -a )[答案] D[解析] ax 2+by 2+ab =0可化为x 2-b +y 2-a=1,∵a <b <0,∴-a >-b >0,∴焦点在y 轴上,c =-a +b =b -a , ∴焦点坐标为(0,±b -a ).4.(2014·长春市高二期末调研)中心在原点,焦点在x 轴上,长轴长为18,且两个焦点恰好将长轴三等分的椭圆的方程是( )A.x 281+y 245=1 B .x 281+y 29=1C.x 281+y 272=1 D .x 281+y 236=1[答案] C[解析] 由长轴长为18知a =9,∵两个焦点将长轴长三等分,∴2c =13(2a )=6,∴c =3,∴b 2=a 2-c 2=72,故选C.5.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A .95B .3C .977D .94[答案] D[解析] a 2=16,b 2=9⇒c 2=7⇒c =7. ∵△PF 1F 2为直角三角形.且b =3>7=c . ∴F 1或F 2为直角三角形的直角顶点, ∴点P 的横坐标为±7,设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94.6.(2014·洛阳市期末)已知中心在原点的椭圆C 的右焦点为F (15,0),直线y =x 与椭圆的一个交点的横坐标为2,则椭圆方程为( )A.x 216+y 2=1 B .x 2+y 216=1C.x 220+y 25=1 D .x 25+y 220=1[答案] C[解析] 由椭圆过点(2,2),排除A 、B 、D ,选C. 二、填空题7.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________.[答案] x 24+y 23=1[解析] 由题意可得⎩⎪⎨⎪⎧ a +c =3,a -c =1.∴⎩⎪⎨⎪⎧a =2,c =1.故b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.8.如图所示,F1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=________________.[答案] 2 3[解析] 由题意S △POF 2=34c 2=3,∴c =2,∴a 2=b 2+4.∴点P 坐标为(1,3),把x =1,y =3代入椭圆方程x 2b 2+4+y 2b 2=1中得,1b 2+4+3b2=1,解得b 2=2 3. 三、解答题9.已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程.[解析] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆过点P (3,0),知9a 2+0b 2=1,又a =3b ,解得b 2=1,a 2=9,故椭圆的方程为x 29+y 2=1. 当焦点在y 轴上时,设其方程为y 2a 2+x 2b2=1(a >b >0).由椭圆过点P (3,0),知0a 2+9b 2=1,又a =3b ,联立解得a 2=81,b 2=9,故椭圆的方程为y 281+x 29=1. 故椭圆的标准方程为y 281+x 29=1或x 29+y 2=1.10.已知点A (-12,0),B 是圆F :(x -12) 2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,求动点P 的轨迹方程.[解析] 如图所示,由题意知,|P A |=|PB |,|PF |+|BP |=2,∴|P A |+|PF |=2,且|P A |+|PF |>|AF |, ∴动点P 的轨迹是以A 、F 为焦点的椭圆, ∴a =1,c =12,b 2=34.∴动点P 的轨迹方程为x 2+y 234=1,即x 2+43y 2=1.一、选择题11.已知方程x 2|m |-1+y 22-m =1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .m <2B .1<m <2C .m <-1或1<m <2D .m <-1或1<m <32[答案] D[解析] 由题意得⎩⎪⎨⎪⎧|m |-1>0,2-m >0,2-m >|m |-1.即⎩⎪⎨⎪⎧m >1或m <-1,m <2,m <32.∴1<m <32或m <-1,故选D.[点评] 解答本题应注意,方程表示椭圆,分母应取正值,焦点在y 轴上,含y 2项的分母较大,二者缺一不可.12.若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1 B .y 225+x 29=1(y ≠0)C.x 216+y 29=1(y ≠0) D .x 225+y 29=1(y ≠0)[答案] D[解析] ∵|AB |=8,△ABC 的周长为18,∴|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D.13.已知椭圆的两个焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .射线D .直线[答案] A[解析] ∵|PQ |=|PF 2|且|PF 1|+|PF 2|=2a , ∴|PQ |+|PF 1|=2a , 又∵F 1、P 、Q 三点共线, ∴|PF 1|+|PQ |=|F 1Q |,∴|F 1Q |=2a . 即Q 在以F 1为圆心,以2a 为半径的圆上.14.在平面直角坐标系xOy 中,已知△ABC 的顶点A (0,-2)和C (0,2),顶点B 在椭圆y 212+x 28=1上,则sin A +sin C sin B的值是( )A. 3 B .2 C .2 3 D .4[答案] A[解析] 由椭圆定义得|BA |+|BC |=43,又∵sin A +sin C sin B =|BC |+|BA ||AC |=434=3,故选A.二、填空题15.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 是椭圆上的一点,若|F 1F 2|是|PF 1|和|PF 2|的等差中项,则该椭圆的方程是________.[答案] x 24+y 23=1[解析] 由题意得2|F 1F 2|=|PF 1|+|PF 2|, ∴4c =2a ,∵c =1,∴a =2. ∴b 2=a 2-c 2=3, 故椭圆方程为x 24+y 23=1.16.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.[答案] 35[解析] 设椭圆右焦点为F ′,由椭圆的对称性知, |P 1F |=|P 7F ′|,|P 2F |=|P 6F ′|,|P 3F |=|P 5F ′|,∴原式=(|P 7F |+|P 7F ′|)+(|P 6F |+|P 6F ′|)+(|P 5F |+|P 5F ′|)+12(|P 4F |+|P 4F ′|)=7a =35.[点评] 对椭圆的定义要正确理解、熟练运用,解决与焦点有关的问题时,要结合图形看能否运用定义.三、解答题17.(2013·四川省绵阳中学月考)求满足下列条件的椭圆的标准方程: (1)焦点在y 轴上,焦距是4,且经过点M (3,2); (2)a c =,且椭圆上一点到两焦点的距离的和为26.[解析] (1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知,2a =32+(2+2)2+32+(2-2)2=8,所以a =4,所以b 2=a 2-c 2=16-4=12. 又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1.(2)由题意知,2a =26,即a =13,又a c =135,所以c =5,所以b 2=a 2-c 2=132-52=144, 因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1.[点评] 用待定系数法求椭圆的标准方程时,要首先进行“定位”,即确定焦点的位置;其次是进行“定量”,即求a 、b 的大小,a 、b 、c 满足的关系有:①a 2=b 2+c 2;②a >b >0;③a >c >0.若不能确定焦点的位置,可进行分类讨论或设为mx 2+ny 2=1(m >0,n >0)的形式. 18.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.[解析] 设|PF 1|=m ,|PF 2|=n . 根据椭圆定义有m +n =20,又c =100-64=6,∴在△F 1PF 2中, 由余弦定理得m 2+n 2-2mn cos π3=122,∴m 2+n 2-mn =144,∴(m +n )2-3mn =144, ∴mn =2563,∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2=12×2563×32=6433.。
【成才之路】2014-2015高中数学人教A版选修2-3配套课件:1.2.2 第3课时排列与组合习题课[来源

成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-3
[解析] (1)先安排 4 个小品节目,有 A44种排法,4 个小品 节目中和两头共 5 个空,将 3 个舞蹈节目插入这 5 个空中,共 有 A35种排法.
第一章 1.2 1.2.2 第3课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-3
2.(2013·吉林白山一中高二期末)某公司新招聘8名员工,
平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不
能分在同一部门,另外三名电脑编程人员也不能全分在同一部
门,则ቤተ መጻሕፍቲ ባይዱ同的分配方案共有( )
第一章 1.2 1.2.2 第3课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-3
牛刀小试
1.5名志愿者分到3所学校支教,每个学校至少去一名志
愿者,则不同的分派方法共有( )
A.150种
B.180种
C.200种
D.280种
[答案] A
[解析] 人数分配上有 1、1、3 与 1、2、2 两种方式,若 是 1,1,3,则有C35AC1222C11×A33=60(种),若是 1、2、2,则有C15AC2422C22 ×A33=90(种),所以共有 150 种,选 A.
第一章 1.2 1.2.2 第3课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-3
[分析] 由题目可获取以下主要信息: ①题目中涉及3个舞蹈、4个小品共7个节目; ②是同类节目互不相邻的问题. 解答本题的第(1)问可以先安排4个小品,然后让3个舞蹈 “插空”;第(2)问彼此相间时安排方式只能是小品占1,3,5,7, 舞蹈占2,4,6.故分两步,先安排小品,再安排舞蹈,或先安排舞 蹈再安排小品.
【成才之路】高中数学人教A版选修2-3练习:模块综合检测(能力卷)(含答案解析)

模块综合检测(能力卷)时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2016·福州高二检测)某机构对儿童记忆能力x 和识图能力y 进行统计分析,得到如下数据:由表中数据,求得线性回归方程为y =45x +a ,若某儿童记忆能力为12,则他的识图能力为导学号 03960726( )A .9.2B .9.8C .9.5D .10[答案] C[解析] ∵x -=14(4+6+8+10)=7;y -=14(3+5+6+8)=5.5,∴样本的中心点坐标为(7,5.5), 代入回归方程得:5.5=45×7+a ^,∴a ^=-0.1. ∴y ^=0.8x -0.1,当x =12时,y ^=0.8×12-0.1=9.5,故选C .2.(2016·四川理,2)设i 为虚数单位,则(x +i)6的展开式中含x 4的项为导学号 03960753( )A .-15x 4B .15x 4C .-20i x 4D .20i x 4[答案] A[解析] (x +i)6的展开式的通项为T r +1=C r 6x6-r i r (r =0,1,2,…,6),令r =2,得含x 4的项为C 26x 4i 2=-15x 4,故选A .3.若随机变量ξ~N (-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率导学号 03960727( )A .(2,4]B .(0,2]C .[-2,0)D .(-4,4][解析]此正态曲线关于直线x=-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.4.设A=37+C27·35+C47·33+C67·3,B=C17·36+C37·34+C57·32+1,则A-B的值为导学号03960728()A.128 B.129C.47D.0[答案] A[解析]A-B=37-C17·36+C27·35-C37·34+C47·33-C57·32+C67·3-1=(3-1)7=27=128,故选A.5.独立性检验中,假设H0:变量X与变量Y没有关系,则在H0成立的情况下,P(k2≥6.635)=0.010表示的意义是导学号03960729()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99.9%C.变量X与变量Y没有关系的概率为99%D.变量X与变量Y有关系的概率为99%[答案] D[解析]由题意知变量X与Y没有关系的概率为0.01,即认为变量X与Y有关系的概率为99%.6.(2016·四川理,4)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为导学号03960730()A.24 B.48C.60 D.72[答案] D[解析]由题意,可知个位可以从1,3,5中任选一个,有A13种方法,其他数位上的数可以从剩下的4个数字中任选,进行全排列,有A44种方法,所以奇数的个数为A13A44=3×4×3×2×1=72,故选D.7.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻.那么不同的发言顺序种数为导学号03960731()A.360 B.520C.600 D.720[解析] 当甲、乙两人中只有一人参加时,有C 12·C 35·A 44=480种方法;当甲、乙两人都参加时,有C 22·C 25(A 44-A 22A 23)=120种方法.由分类加法计数原理知,不同的发言顺序共有480+120=600种,故选C .8.某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X (单位:分)的数学期望为导学号 03960732( )A .0.9B .0.8C .1.2D .1.1[答案] A[解析] X 的取值为0、1、2, P (X =0)=(1-0.4)(1-0.5)=0.3,P (X =1)=0.4×(1-0.5)+(1-0.4)×0.5=0.5, P (X =2)=0.4×0.5=0.2,∴E (X )=0×0.3+1×0.5+2×0.2=0.9. 9.(2016·长沙二模)二项式(x -1x)6的展开式中常数项为导学号 03960733( ) A .-15 B .15 C .-20 D .20[答案] B [解析] 二项式(x -1x )6的展开式的通项是T r +1=C r 6·x 6-r ·(-1x )r =C r 6·(-1)r·x 6-32r ,令6-32r =0,得r =4.因此,二项式(x -1x)6的展开式中的常数项是C 46·(-1)4=15,故选B . 10.某中学拟从4个重点研究性课题和6个一般研究性课题中各选2个课题作为本年度该校启动的课题项目,若重点课题A 和一般课题B 至少有一个被选中的不同选法种数是k ,那么二项式(1+kx 2)6的展开式中x 4的系数为导学号 03960734( )A .50000B .52000C .54000D .56000[答案] C[解析] A 、B 均未被选中的种数有C 23C 25=30,∴k =C 24C 26-30=60.在(1+60x 2)6展开式中,T r +1=C r 6(60x 2)r ,令r =2,得T 3=C 26602x 4=54000x 4.故选C .11.盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是导学号 03960735( )A .18125B .36125C .44125D .81125[答案] B[解析] 每次取到红球的概率为35,所求概率为C 12×35×25×35=36125.故选B . 12.已知0<a <1,方程a |x |=|log a x |的实根个数为n ,且(x +1)n +(x +1)11=a 0+a 1(x +2)+a 2(x +2)2+…+a 10(x +2)10+a 11(x +2)11,则a 1等于导学号 03960736( )A .-10B .9C .11D .-12 [答案] B[解析] 作出y =a |x |(0<a <1)与y =|log a x |的大致图象如图所示,所以n =2.故(x +1)n +(x +1)11=(x +2-1)2+(x +2-1)11,所以a 1=-2+C 1011=-2+11=9.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.某校1000名学生的某次数学考试成绩X 服从正态分布,其密度函数曲线如图所示,则成绩X 位于区间(52,68]的人数大约是________.导学号 03960737[答案] 682[解析] 由题图知X ~N (μ,σ2), 其中μ=60,σ=8,∴P (μ-σ<X ≤μ+σ)=P (52<X ≤68)=0.6826. ∴人数为0.6826×1000≈682.14.随机变量X 的分布列如下表,且E (X )=1.1,则D (X )=________.导学号 03960738[答案] 0.49[解析] p =1-⎝⎛⎭⎫15+310=12,E (X )=1.1=0×15+1×12+310x ,解得x =2,所以D (X )=15×(0-1.1)2+12×(1-1.1)2+310×(2-1.1)2=0.49.15.(2016·临沂高二检测)如图所示,A 、B 两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内通过的最大信息总量为X ,则P (X ≥8)=________.导学号 03960739[答案] 45[解析] 由已知X 的取值为7,8,9,10.∵P (X =7)=C 22C 12C 35=15,P (X =8)=C 22C 11+C 22C 12C 35=310, P (X =9)=C 12C 12C 11C 35=25, P (X =10)=C 22C 11C 35=110.∴X 的概率分布列为∴P (X ≥8)=P (X =8)+P (X =9)+P (X =10)=310+25+110=45.16.一只电子蚂蚁在如图所示的网格线上由原点O (0,0)出发,沿向上或向右方向爬至点(m ,n ),(m ,n ∈N *),记可能的爬行方法总数为f (m ,n ),则f (m ,n )=________.导学号 03960740[答案] C m m +n[解析] 从原点O 出发,只能向上或向右方向爬行,记向上为1,向右为0,则爬到点(m ,n )需m 个0和n 个1.这样爬行方法总数f (m ,n )是m 个0和n 个1的不同排列方法数.m 个0和n 个1共占m +n 个位置,只要从中选取m 个放0即可.∴f (m ,n )=C m m +n .(例如f (3,4)=C 37其中0010111表示从原点出发后,沿右右上右上上上的路径爬行.) 三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)6男4女站成一排,求满足下列条件的排法共有多少种?(列出算式即可)导学号 03960741(1)任何2名女生都不相邻,有多少种排法? (2)男甲不在首位,男乙不在末位,有多少种排法? (3)男生甲、乙、丙顺序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?[解析] (1)任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法.(2)方法一:甲不在首位,按甲的排法分类,若甲在末位,则有A 99种排法,若甲不在末位,则甲有A 18种排法,乙有A 18种排法,其余有A 88种排法,综上共有(A 99+A 18A 18·A 88)种排法.方法二:甲在首位的共有A 99种,乙在末位的共有A 99种,甲在首位且乙在末位的有A 88种,因此共有(A 1010-2A 99+A 88)种排法.(3)10人的所有排列方法有A 1010种,其中甲、乙、丙的排序有A 33种,其中只有一种符合题设要求,所以甲、乙、丙顺序一定的排法有A 1010A 33种.(4)男甲在男乙的左边的10人排列与男甲在男乙的右边的10人排列数相等,而10人排列数恰好是这二者之和,因此满足条件的有12A 1010种排法.18.(本题满分12分)已知(x -12x )n 的展开式中,前三项系数的绝对值依次成等差数列.导学号 03960742(1)求展开式中的常数项;(2)求展开式中所有整式项.[解析] (1)T r +1=C r n ·(x )n -r ·(12x )r ·(-1)r , ∴前三项系数的绝对值分别为C 0n,12C 1n ,14C 2n , 由题意知C 1n =C 0n+14C 2n , ∴n =1+18n (n -1),n ∈N *,解得n =8或n =1(舍去), ∴T k +1=C k 8·(x )8-k ·(-12x)k=C k 8·(-12)k ·x 4-k,0≤k ≤8, 令4-k =0得k =4,∴展开式中的常数项为T 5=C 48(-12)4=358. (2)要使T k +1为整式项,需4-k 为非负数,且0≤k ≤8,∴k =0,1,2,3,4. ∴展开式中的整式项为:x 4,-4x 3,7x 2,-7x ,358.19.(本题满分12分)假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量,记一天中从甲地去乙地的旅客人数不超过900的概率为p 0.导学号 03960743(1)求p 0的值;(参考数据:若X ~N (μ,σ2),有 P (μ-σ<X ≤μ+σ)=0.6826, P (μ-2σ<X ≤μ+2σ)=0.9544,P (μ-3σ<X ≤μ+3σ)=0.9974.)(2)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天要以不小于p 0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?[解析] (1)由于随机变量X 服从正态分布N (800,502),故有μ=800,σ=50, P (700<X ≤900)=0.9544. 由正态分布的对称性,可得p 0=P (X ≤900)=P (X ≤800)+P (800<X ≤900) =12+12P (700<X ≤900)=0.9772. (2)设A 型、B 型车辆的数量分别为x 、y 辆,则相应的营运成本为1600x +2400y 依题意,x 、y 还需满足x +y ≤21,y ≤x +7,P (X ≤36x +60y )≥p 0由(1)知,p 0=P (X ≤900),故P (X ≤36x +60y )≥p 0等价于36x +60y ≥900. 于是问题等价于求满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N.且使目标函数z =1600x +2400y 达到最小的x ,y .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1600x +2400y 经过可行域的点P 时,直线z =1600x +2400y 在y 轴上截距z2400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆.20.(本题满分12分)(2015·全国卷Ⅰ文,15)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值导学号 039607448i =1(x i -x )28i =1(w i -w )28i =1(x i -x )(y i -y ) 8i =1(w i -w )(y i -y )表中w i =x i ,w =18i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: (ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=ni =1 u i -uv i -vn i =1u i -u2,α^=v -β^u .[解析] (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2) 令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18w i -wy i -y∑i =18w i -w2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x .(3)(ⅰ)由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6, 年利润z 的预报值z ^=0.2×576.6-49=66.32. (ⅱ)根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12.所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.21.(本题满分12分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.导学号 03960745(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?[解析] (1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X ≤3”的事件为A ,则事件A 包含有“X =0”,“X =2”,“X =3”三个两两互斥的事件, 因为P (X =0)=(1-23)×(1-25)=15,P (X =2)=23×(1-25)=25,P (X =3)=(1-23)×25=215,所以P (A )=P (X =0)+P (X =2)+P (X =3)=1115,即这2人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X 1,都选择方案乙所获得的累计得分为X 2,则X 1、X 2的分布列如下:所以E (X 1)=0×19+2×49+4×49=83,E (X 2)=0×925+3×1225+6×425=125.因为E (X 1)>E (X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.22.(本题满分12分)(2016·山东理,19)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:导学号 03960746(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).[解析] (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A -BCD +A B -CD +AB C -D +ABC D -.由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A -BCD )+P (A B -CD )+P (AB C -D )+P (ABC D -)=P (A )P (B )P (C )P (D )+P (A -)P (B )P (C )P (D )+P (A )P (B -)P (C )P (D )+P (A )P (B )P (C -)P (D )+P (A )P (B )P (C )P (D -) =34×23×34×23+2×(14×23×34×23+34×13×34×23) =23. 所以“星队”至少猜对2个成语的概率为23. (2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144, P (X =1)=2×(34×13×14×13+14×23×14×13)=10144=572, P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144, P (X =3)=34×23×14×13+14×13×34×23=12144=112, P (X =4)=2×(34×23×34×13+34×23×14×23)=60144=512, P (X =6)=34×23×34×23=36144=14. 可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236.。
成才之路人教a版数学选修2-2综合检测3 (1)

第三章综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2014·浙江理,2)已知i 是虚数单位,a 、b ∈R ,则“a =b =1”是“(a +b i)2=2i ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] A[解析] 本题考查充分条件、必要条件及复数的运算,当a =b =1时,(a +b i)2=(1+i)2=2i ,反之,(a +b i)2=a 2-b 2+2ab i =2i ,则a 2-b 2=0,2ab =1,解a =1,b =1或a =-1,b =-1,故a =1,b =1是(a +b i)2=2i 的充分不必要条件,选A.2.已知复数z 1=3+4i ,z 2=t +i ,且z 1·z -2是实数,则实数t 等于( ) A.34 B .43C .-43D .-34[答案] A[解析] z 1·z -2=(3+4i)(t -i)=(3t +4)+(4t -3)i.因为z 1·z -2是实数,所以4t -3=0,所以t =34.因此选A.3.(2014·长安一中、高新一中、交大附中、师大附中、西安中学一模)已知复数z =i +i 2+i 3+…+i 20131+i,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 [答案] A[解析] ∵i n=⎩⎪⎨⎪⎧i n =4k +1,-1 n =4k +2,-i n =4k +3,1 n =4k ,k ∈Z ,∴i +i 2+i 3+…+i 2013=503×(i +i 2+i 3+i 4)+i 2013=503×0+i =i ,∴z =i 1+i =i (1-i )(1+i )(1-i )=1+i 2,在复平面内的对应点(12,12)在第一象限.4.(2014·东北三省三校联考)已知复数z =-12+32i ,则z +|z |=( )A .-12-32iB .-12+32iC.12+32i D .12-32i[答案] D[解析] 因为z =-12+32i ,所以z +|z |=-12-32i +(-12)2+(32)2=12-32i. 5.若θ∈⎝⎛⎭⎫3π4,5π4,则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限[答案] B[解析] θ∈⎝⎛⎭⎫3π4,5π4时, sin θ+cos θ<0,sin θ-cos θ>0,故对应点(cos θ+sin θ,sin θ-cos θ)在第二象限.[点评] 由于θ∈⎝⎛⎭⎫3π4,5π4时,据选项知,此复数对应点只能在某一象限,∴取θ=π检验知,对应点在第二象限.6.已知复数z 1=m +2i ,z 2=3-4i ,若z 1z 2为实数,则实数m 的值为( )A.83 B .32C .-83D .-32[答案] D [解析]z 1z 2=m +2i 3-4i =(m +2i )(3+4i )(3-4i )(3+4i )=3m -8+(6+4m )i25为实数,所以6+4m =0⇒m =-32,故选D.7.若z =cos θ+isin θ(i 为虚数单位),则使z 2=-1的θ值可能是( ) A.π6 B .π4C.π3 D .π2[答案] D [解析]∵z 2=cos2θ+isin2θ=-1,∴⎩⎪⎨⎪⎧cos2θ=-1,sin2θ=0. ∴2θ=2k π+π (k ∈Z ), ∴θ=k π+π2.令k =0知,D 正确.8.若关于x 的方程x 2+(1+2i)x +3m +i =0有实根,则实数m 等于( ) A.112 B .112iC .-112D .-112i[答案] A[解析] 设方程的实数根为x =a (a 为实数), 则a 2+(1+2i)·a +3m +i =0,∴⎩⎪⎨⎪⎧a 2+a +3m =0,2a +1=0,∴⎩⎨⎧a =-12,m =112.故选A.9.已知复数z =(x -2)+y i(x 、y ∈R )在复平面内对应的向量的模为3,则yx 的最大值是( )A.32B .33C.12 D . 3[答案] D[解析] 因为|(x -2)+y i|=3,所以(x -2)2+y 2=3,所以点(x ,y )在以C (2,0)为圆心,以3为半径的圆上,如图,由平面几何知识知-3≤yx≤ 3.10.(2014·河北衡水中学模拟)设a ∈R ,i 是虚数单位,则“a =1”是“a +ia -i 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件[答案] A[解析] 当a =1时,1+i 1-i =(1+i )22=i 为纯虚数.当a +i a -i =(a +i )2a 2+1=a 2-1+2a ia 2+1为纯虚数时, a 2=1即a =±1,故选A.11.已知复数a =3+2i ,b =4+x i(其中i 为虚数单位,x ∈R ),若复数ab ∈R ,则实数x的值为( )A .-6B .6 C.83 D .-83[答案] C[解析] a b =3+2i 4+x i =(3+2i )(4-x i )16+x 2=12+2x 16+x 2+⎝ ⎛⎭⎪⎫8-3x 16+x 2·i ∈R ,∴8-3x 16+x 2=0,∴x =83. 12.设z =(2t 2+5t -3)+(t 2+2t +2)i ,t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限 B .z 一定不为纯虚数 C.z 对应的点在实轴的下方 D .z 一定为实数[答案] C[解析] ∵t 2+2t +2=(t +1)2+1>0, ∴z 对应的点在实轴的上方. 又∵z 与z 对应的点关于实轴对称. ∴C 项正确.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知x +1x =-1,则x 2014+1x 2014的值为________.[答案] -1[解析] ∵x +1x =-1,∴x 2+x +1=0.∴x =-12±32i ,∴x 3=1.∵2014=3×671+1,∴x 2014=x , ∴x 2014+1x 2014=x +1x=-1.14.已知复数z 1=cos α+isin α,z 2=cos β+isin β,则复数z 1·z 2的实部是________ [答案] cos(α+β)[解析] z 1·z 2=(cos α+isin α)(cos β+isin β) cos αcos β-sin αsin β+(cos αsin β+sin αcos β)i =cos(α+β)+sin(α+β)i 故z 1·z 2的实部为cos(α+β).15.若(3-10i)y +(-2+i)x =1-9i ,则实数x 、y 的值分别为________. [答案] x =1,y =1 [解析] 原式可以化为 (3y -2x )+(x -10y )i =1-9i , 根据复数相等的充要条件,有⎩⎪⎨⎪⎧ 3y -2x =1,x -10y =-9.解得⎩⎪⎨⎪⎧x =1,y =1.16.设θ∈[0,2π],当θ=________时,z =1+sin θ+i(cos θ-sin θ)是实数. [答案] π4或54π[解析] 本题主要考查复数的概念.z 为实数,则cos θ=sin θ,即tan θ=1.因为θ∈[0,2π], 所以θ=π4或54π.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)(2014·郑州网校期中联考)已知复数z =(2m 2-3m -2)+(m 2-3m +2)i.(1)当实数m 取什么值时,复数z 是:①实数;②纯虚数; (2)当m =0时,化简z 2z +5+2i.[解析] (1)①当m 2-3m +2=0时,即m =1或m =2时,复数z 为实数.②若z 为纯虚数,则⎩⎪⎨⎪⎧2m 2-3m -2=0,m 2-3m +2=0,解得⎩⎪⎨⎪⎧m =-12或m =2,m ≠1且m ≠2,∴m =-12.即m =-12时,复数z 为纯虚数.(2)当m =0时,z =-2+2i ,z 2z +5+2i =-8i 3+4i=-8i (3-4i )25=-3225-2425i.18.(本题满分12分)已知复数x 2+x -2+(x 2-3x +2)i(x ∈R )是复数4-20i 的共轭复数,求实数x 的值.[解析] 因为复数4-20i 的共轭复数为4+20i ,由题意得x 2+x -2+(x 2-3x +2)i =4+20i ,根据复数相等的充要条件,得⎩⎪⎨⎪⎧x 2+x -2=4, ①x 2-3x +2=20. ② 方程①的解为x =-3或x =2. 方程②的解为x =-3或x =6. 所以实数x 的值为-3.19.(本题满分12分)(2014·洛阳市高二期中)(1)已知复数z 在复平面内对应的点在第四象限,|z |=1,且z +z -=1,求z ;(2)已知复数z =5m 21-2i -(1+5i)m -3(2+i)为纯虚数,求实数m 的值.[解析] (1)设z =a +b i(a 、b ∈R ),由题意得⎩⎪⎨⎪⎧a 2+b 2=1,2a =1.解得a =12,b =±32.∵复数z 在复平面内对应的点在第四象限,∴b =-32. ∴z =12-32i.(2)z =5m 21-2i -(1+5i)m -3(2+i)=(m 2-m -6)+(2m 2-5m -3)i ,依题意,m 2-m -6=0,解得m =3或-2.∵2m 2-5m -3≠0.∴m ≠3. ∴m =-2.20.(本题满分12分)虚数z 满足|z |=1,z 2+2z +1z <0,求z .[解析] 设z =x +y i (x 、y ∈R ,y ≠0),∴x 2+y 2=1. 则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i=(x 2-y 2+3x )+y (2x +1)i. ∵y ≠0,z 2+2z +1z<0,∴⎩⎪⎨⎪⎧2x +1=0, ①x 2-y 2+3x <0, ②又x 2+y 2=1. ③由①②③得 ⎩⎨⎧x =-12,y =±32.∴z =-12±32i.21.(本题满分12分)满足z +5z 是实数,且z +3的实部与虚部是相反数的虚数z 是否存在?若存在,求出虚数z ,若不存在,请说明理由.[解析] 存在.设虚数z =x +y i(x 、y ∈R ,且y ≠0). z +5z =x +y i +5x +y i =x +5x x 2+y 2+⎝⎛⎭⎪⎫y -5y x 2+y 2i.由已知得⎩⎨⎧y -5yx 2+y2=0,x +3=-y .∵y ≠0,∴⎩⎪⎨⎪⎧ x 2+y 2=5,x +y =-3.解得⎩⎪⎨⎪⎧ x =-1,y =-2,或⎩⎪⎨⎪⎧x =-2,y =-1.∴存在虚数z =-1-2i 或z =-2-i 满足以上条件.22.(本题满分14分)将一颗质地均匀的正方体骰子(六个面的点数分别为1、2、3、4、5、6)先后抛掷两次,记第一次出现的点数为a ,第二次出现的点数为b .(1)设复数z =a +b i(i 为虚数单位),求事件“z -3i 为实数”的概率; (2)求点P (a ,b )落在不等式组⎩⎪⎨⎪⎧a -b +2≥0,0≤a ≤4,b ≥0.表示的平面区域内(含边界)的概率.[解析] (1)z =a +b i(i 为虚数单位),z -3i 为实数,则a +b i -3i =a +(b -3)i 为实数,则b =3.依题意得b 的可能取值为1、2、3、4、5、6,故b =3的概率为16.即事件“z -3i 为实数”的概率为16.(2)连续抛掷两次骰子所得结果如下表:1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)不等式组所表示的平面区域如图中阴影部分所示(含边界).由图知,点P (a ,b )落在四边形ABCD 内的结果有:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6),共18种.所以点P (a ,b )落在四边形ABCD 内(含边界)的概率为P =1836=12.1.设z 的共轭复数为z -,若z +z -=4,z ·z -=8,则z -z 等于( )A .iB .-iC .±1D .±i[答案] D[解析] 设z =a +b i(a ,b ∈R ),则z -=a -b i ,由条件可得⎩⎪⎨⎪⎧ 2a =4,a 2+b 2=8.解得⎩⎪⎨⎪⎧a =2,b =±2.因此⎩⎪⎨⎪⎧ z =2+2i ,z -=2-2i ,或⎩⎪⎨⎪⎧z =2-2i ,z -=2+2i.所以z -z =2-2i 2+2i =1-i 1+i =(1-i )2(1+i )(1-i )=-2i 2=-i ,或z -z =2+2i 2-2i =1+i 1-i =(1+i )2(1-i )(1+i )=2i 2=i , 所以z-z=±i.2.复数z =m -2i1+2i (m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] A[解析] z =m -2i 1+2i =(m -2i )(1-2i )(1+2i )(1-2i )=15[(m -4)-2(m +1)i],其实部为15(m -4),虚部为-25(m +1), 由⎩⎪⎨⎪⎧ m -4>0,-2(m +1)>0.得⎩⎪⎨⎪⎧m >4,m <-1.此时无解.故复数在复平面上对应的点不可能位于第一象限.3.已知i 为虚数单位,a 为实数,复数z =(1-2i)(a +i)在复平面内对应的点为M ,则“a >12”是“点M 在第四象限”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] z =(1-2i)(a +i)=a +2+(1-2a )i ,所以复数z 在复平面内对应的点M 的坐标为(a +2,1-2a ),所以点M 在第四象限的充要条件是a +2>0且1-2a <0,解得a >12,故选C.4.设z =log 2(1+m )+ilog 12(3-m )(m ∈R ).(1)若z 在复平面内对应的点在第三象限,求m 的取值范围; (2)若z 在复平面内对应的点在直线x -y -1=0上,求m 的值. [解析] (1)由已知,得⎩⎪⎨⎪⎧log 2(1+m )<0, ①log 12(3-m )<0, ②解①得-1<m <0. 解②得m <2.故不等式组的解集为{x |-1<m <0}, 因此m 的取值范围是{x |-1<m <0}.(2)由已知得,点(log 2(1+m ),log 12(3-m ))在直线x -y -1=0上,即log 2(1+m )-log 12(3-m )-1=0,路漫漫其修远兮,吾将上下而求索 - 百度文库11 整理得log 2(1+m )(3-m )=1.从而(1+m )(3-m )=2,即m 2-2m -1=0,解得m =1±2,且当m =1±2时都能使1+m >0,且3-m >0. 故m =1±2.5.设z 1、z 2∈C ,A =z 1·z -2+z -1·z 2,B =z 1·z -1+z 2·z -2,问A 与B 是否可以比较大小?为什么?[解析] 设z 1=a +b i ,z 2=c +d i(a 、b 、c 、d ∈R ),则z -1=a -b i ,z -2=c -d i , ∴A =z 1·z 2+z 2·z -1=(a +b i)(c -d i)+(c +d i)(a -b i)=ac -ad i +bc i -bd i 2+ac -bc i +ad i -bd i 2=2ac +2bd ∈R ,B =z 1·z -1+z 2·z -2=(a +bi )(a -bi )+(c +di )(c -di )=a 2+b 2+c 2+d 2∈R , ∴A 与B 可以比较大小.。
《成才之路》2014-2015学年高中数学(人教A版)选修2-1练习1.3.1且与或

第一章 1.3第1课时一、选择题1.下列语句:①3是无限循环小数;②x2>x;③△ABC的两角之和;④毕业班的学生.其中不是命题的是()A.①②③B.①②④C.①③④D.②③④[答案] D[解析]对于①能判断真假,对于②、③、④均不能判断真假.故①是命题,②、③、④均不是命题.2.已知命题p:1∈{x|(x+2)(x-3)<0},命题q:∅={0},则下列判断正确的是() A.p假q假B.“p或q”为真C.“p且q”为真D.p假q真[答案] B[解析]∵{x|(x+2)(x-3)<0}={x|-2<x<3},∴1∈{x|(x+2)(x-3)<0},∴p真.∵∅≠{0},∴q假.故“p或q”为真,“p且q”为假,故选B.3.若命题p:0是偶数,命题q:2是3的约数,则下列结论中正确的是()A.“p∨q”为假B.“p∨q”为真C.“p∧q”为真D.以上都不对[答案] B[解析]命题p为真命题,命题q为假命题,故“p∨q”为真命题.4.已知p:α为第二象限角,q:sinα>cosα,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析]当α为第二象限角时,sinα>0,cosα<0,∴sinα>cosα,但sinα>cosα不能推出α为第二象限角.5.以下四个命题正确的有()①“矩形既是平行四边形又是圆的内接四边形”是“p且q”的形式,该命题是真命题;②“菱形既是平行四边形又是圆的外切四边形”是“p且q”的形式,该命题是真命题;③“矩形是圆的外切四边形或是圆的内接四边形”是“p或q”的形式,该命题是真命题;④“菱形是圆的内接四边形或是圆的外切四边形”是“p或q”的形式,该命题是真命题.A.1个B.2个C.3个D.4个[答案] D[解析]∵矩形是平行四边形,也是圆的内接四边形,菱形是平行四边形,也是圆的外切四边形,但矩形不是圆的外切四边形,菱形不是圆的内接四边形,由p∨q,p∧q的定义知,①②③④都正确.6.已知命题p,q,则命题“p∨q为真”是命题“p∧q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] B[解析]p∧q为真⇒p真且q真⇒p∨q为真;p∨q为真⇒p真或q真⇒/ p∧q为真.二、填空题7.p:ax+b>0的解为x>-b a,q:(x-a)(x-b)<0的解为a<x<b.则p∧q是________命题(填“真”或“假”).[答案]假[解析]命题p与q都是假命题.8.设命题p:3≥2,q:32∉[23,+∞),则复合命题“p∨q”“p∧q”中真命题的是________.[答案]p∨q[解析]3≥2成立,∴p真,32∈[23,+∞),∴q假,故“p∨q”为真命题,“p ∧q”为假命题.9.已知命题p:∅⊆∅,q:{1}∈{1,2}.由它们构成的“p或q”、“p且q”形式的命题中真命题有________个.[答案] 1[解析]命题p为真,命题q为假,故“p或q”为真,“p且q”为假.三、解答题10.分别指出下列各组命题构成的“p∧q”、“p∨q”形式的命题的真假.(1)p:6<6,q:6=6;(2)p :梯形的对角线相等,q :梯形的对角线互相平分; (3)p :函数y =x 2+x +2的图象与x 轴没有公共点, q :不等式x 2+x +2<0无解;(4)p :函数y =cos x 是周期函数,q :函数y =cos x 是奇函数. [解析] (1)∵p 为假命题,q 为真命题, ∴p ∧q 为假命题,p ∨q 为真命题. (2)∵p 为假命题,q 为假命题, ∴p ∧q 为假命题,p ∨q 为假命题. (3)∵p 为真命题,q 为真命题, ∴p ∧q 为真命题,p ∨q 为真命题. (4)∵p 为真命题,q 为假命题, ∴p ∧q 为假命题,p ∨q 为真命题.一、选择题11.下列命题:①5>4或4>5;②9≥3;③“若a >b ,则a +c >b +c ”;④“菱形的两条对角线互相垂直”.其中假命题的个数为( )A .0B .1C .2D .3[答案] A[解析] ①②都是“p 或q ”形式的命题,都是真命题,③为真命题,④为真命题,故选A.12.下列命题:①方程x 2-3x -4=0的判别式大于或等于0;②周长相等的两个三角形全等或面积相等的两个三角形全等; ③集合A ∩B 是集合A 的子集,且是A ∪B 的子集. 其中真命题的个数是( ) A .0 B .1 C .2 D .3 [答案] C[解析] ①中,判别式Δ=9+16=25>0,故①中命题为真命题;②中,周长相等或面积相等的两个三角形不一定全等,故②中命题为假命题;③中,(A ∩B )⊆A ,(A ∩B )⊆(A ∪B ),故③中命题为真命题.故选C.13.在△ABC 中,“AB →·AC →=BA →·BC →”是“|AC →|=|BC →|”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 如图,在△ABC 中,过C 作CD ⊥AB ,则|AD →|=|AC →|·cos ∠CAB ,|BD →|=|BC →|·cos ∠CBA ,AB →·AC →=BA →·BC →⇔|AB →|·|AC →|·cos ∠CAB =|BA →|·|BC →|·cos ∠CBA ⇔|AC →|·cos ∠CAB =|BC →|·cos ∠CBA ⇔|AD →|=|BD →|⇔|AC →|=|BC →|,故选C.二、填空题14.分别用“p ∧q ”、“p ∨q ”填空.(1)命题“0是自然数且是偶数”是________形式. (2)命题“5小于或等于7”是________形式.(3)命题“正数或0的平方根是实数”是________形式. [答案] (1)p ∧q (2)p ∨q (3)p ∨q15.(2014·营口三中期中)设命题P :a 2<a ,命题Q :对任何x ∈R ,都有x 2+4ax +1>0,命题P ∧Q 为假,P ∨Q 为真,则实数a 的取值范围是________.[答案] -12<a ≤0或12≤a <1[解析] 由a 2<a 得0<a <1,∴P :0<a <1;由x 2+4ax +1>0恒成立知Δ=16a 2-4<0,∴-12<a <12,∴Q :-12<a <12,∵P ∧Q 为假,P ∨Q 为真,∴P 与Q 一真一假,P 假Q 真时,-12<a ≤0,P 真Q 假时,12≤a <1,∴实数a 的取值范围是-12<a ≤0或12≤a <1. 三、解答题16.已知命题p :方程2x 2-26x +3=0的两根都是实数;q :方程2x 2-26x +3=0的两根不相等,试写出由这组命题构成的“p 或q ”、“p 且q ”形式的复合命题,并指出其真假.[解析] “p 或q ”的形式:方程2x 2-26x +3=0的两根都是实数或不相等. “p 且q ”的形式:方程2x 2-26x +3=0的两根都是实数且不相等. ∵Δ=24-24=0,∴方程有两个相等的实根,故p 真,q 假. ∴p 或q 真,p 且q 假.17.已知命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;命题q :函数f (x )=-(5-2a )x 是减函数,若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.[解析] 设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0.所以-2<a <2,所以命题p :-2<a <2;又f (x )=-(5-2a )x 是减函数,则有5-2a >1,即a <2.所以命题q :a <2. ∵p ∨q 为真命题,p ∧q 为假命题,∴p 和q 一真一假.(1)若p 为真命题,q 为假命题,则⎩⎪⎨⎪⎧-2<a <2a ≥2,此不等式组无解.(2)若p 为假命题,q 为真命题,则⎩⎪⎨⎪⎧a ≤-2或a ≥2a <2,解得a ≤-2.综上,实数a 的取值范围是(-∞,-2].。
成才之路·人教A版数学选修课件2-3 1.2.1 第1课时

4.用0、1、2、3、4五个数字组成无重复数字的四位数的 个数是________个. [答案] 96 [解析] 分两步,第一步排首位共4种不同排法,第二步排
余下的三位共有 A=24种不同排法,由分步乘法计数原理得共
组成无重复数字的四位数4×24=96个.
第一章
1.2
1.2.1
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章
计数原理
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
1
自主预习学案
2
典例探究学案
3
巩固提高学案
4
备 选 练 习
第一章
1.2
1.2.1
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
自主预习学案
第一章
1.2
1.2.1
第1课时
第一章
1.2
1.2.1
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
排列数公式
求解下列问题:
4 2A5 + 7A 8 8 (1)计算 8 5 ; A8-A9 3 (2)解方程:A4 2x+1=140Ax .
[分析]
(1)主要用排列数公式转化为连乘积再化简计算;
经过 5 次传球后,球仍回到甲手中,则不同的传球方式共有 ( ) A.6种 C.8种 B.10种 D.16种 记另外两人为乙、丙,若甲第一次把球传给乙,
[答案] B
[解析] 则不同的传球方式有
第一章
1.2
1.2.1
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
《成才之路》2014-2015学年高中数学(人教A版)选修2-1练习3章反馈练习

反馈练习一、选择题1.若向量a =(1,λ,2),b =(2,-1,2),a ,b 夹角的余弦值为89,则λ等于( )A .2B .-2C .-2或255D .2或-255[答案] C[解析] cos 〈a ,b 〉=a ·b|a ||b |=2-λ+4λ2+5×9=89,所以λ=-2或255. 2.若a 、b 、c 是非零空间向量,则下列命题中的真命题是( ) A .(a·b )c =(b·c )a B .若a·b =-|a |·|b |,则a ∥b C .若a·c =b·c ,则a ∥b D .若a·a =b·b ,则a =b[答案] B[解析] (a ·b )c 是与c 共线的向量,(b ·c )a 是与a 共线的向量,a 与c 不一定共线,故A 假;若a ·b =-|a |·|b |,则a 与b 方向相反, ∴a ∥b ,故B 真;若a ·c =b ·c ,则(a -b )·c =0,即(a -b )⊥c ,不能得出a ∥b ,故C 假; 若a ·a =b ·b ,则|a |=|b |,方向不确定, 故得不出a =b ,∴D 假.3.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A .2,12B .-13,12C .-3,2D .2,2[答案] A[解析] ∵a ∥b ,∴存在实数k ,使b =k a ,即(6,2μ-1,2λ)=(kλ+k,0,2k ),∴⎩⎪⎨⎪⎧ kλ+k =6,2μ-1=0,2λ=2k ,∴⎩⎪⎨⎪⎧ μ=12,λ=2,k =2,或⎩⎪⎨⎪⎧μ=12,λ=-3,k =-3.故选A .4.同时垂直于a =(2,2,1),b =(4,5,3)的单位向量是( ) A .⎝⎛⎭⎫13,-23,23 B .⎝⎛⎭⎫-13,23,-23 C .⎝⎛⎭⎫13,-13,23 D .⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23 [答案] D[解析] 设所求向量为c =(x ,y ,z ), 则⎩⎪⎨⎪⎧2x +2y +z =0,4x +5y +3z =0,x 2+y 2+z 2=1,检验知选D .[点评] 检验时,先检验A(或B),若A 不满足,则排除A 、D ;再检验B ,若A 满足,则排除B ,C ,只要看D 是否成立.5.已知矩形ABCD ,P A ⊥平面ABCD ,则以下等式中可能不成立的是( ) A .DA →·PB →=0 B .PC →·BD →=0 C .PD →·AB →=0 D .P A →·CD →=0[答案] B[解析] ①⎭⎪⎬⎪⎫DA ⊥AB DA ⊥P A ⇒DA ⊥平面P AB ⇒DA ⊥PB ⇒DA →·PB →=0;②同①知AB →·PD →=0;③P A ⊥平面ABCD ⇒P A ⊥CD ⇒P A →·CD →=0; ④若BD →·PC →=0,则BD ⊥PC ,又BD ⊥P A ,∴BD ⊥平面P AC ,故BD ⊥AC , 但在矩形ABCD 中不一定有BD ⊥AC ,故选B .6.已知ABCD 是四面体,O 是△BCD 内一点,则AO →=13(AB →+AC →+AD →)是O 为△BCD重心的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件 [答案] C[解析] 设E 为CD 中点,AO →=13(AB →+AC →+AD →)=13AB →+13(BC →-BA →+BD →-BA →)=13AB →+13(BC →+BD →)-23BA →=AB →+23BE →, ∴BO →=23BE →.即O 为△BCD 的重心.反之也成立.7.如图所示,在正方体ABCD -A 1B 1C 1D 1中,以D 为原点建立空间直角坐标系,E 为BB 1的中点,F 为A 1D 1的中点,则下列向量中能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4,1,-2)C .(2,-2,1)D .(1,2,-2)[答案] B[解析] 设平面AEF 的法向量n =(x ,y ,z ),正方体ABCD -A 1B 1C 1D 1的棱长为1,则A (1,0,0),E (1,1,12),F (12,0,1).故AE →=(0,1,12),AF →=(-12,0,1).由⎩⎪⎨⎪⎧AE →·n =0,AF →·n =0,即⎩⎨⎧y +12z =0,-12x +z =0,所以⎩⎪⎨⎪⎧y =-12z ,x =2z .当z =-2时,n =(-4,1,-2),故选B .8.a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值是( ) A .55B .555C .355D .115[答案] C[解析] b -a =(1+t,2t -1,0), ∵|b -a |2=(1+t )2+(2t -1)2=5t 2-2t +2 =5⎝⎛⎭⎫t -152+95≥95,∴|b -a |min =355. 9.如图ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( )A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1 D .异面直线AD 与CB 1所成的角为60°[答案] D[解析] 正方体中,BD ∥B 1D 1,且BD ⊄面CB 1D 1,知BD ∥平面CB 1D 1,A 正确;AC 1在面ABCD 内的射影为AC ,又AC ⊥BD ,由三垂线定理知AC 1⊥BD .故B 正确;同理可得AC 1⊥B 1D 1,AC 1⊥CD 1,且B 1D 1∩CD 1=D 1,∴AC 1⊥平面CB 1D 1,故C 正确;由AD ∥BC 知,∠B 1CB 为AD 与CB 1所成的角,应为45°,故D 错误.10.已知△ABC 的顶点A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 的长等于( )A .3B .4C .5D .6 [答案] C[解析] 解法一:设D (x ,y ,z ),则AD →=(x -1,y +1,z -2),BD →=(x -5,y +6,z -2),AC →=(0,4,-3),∵AD →∥AC →,且BD →⊥AC →,∴⎩⎪⎨⎪⎧ x -1=0,4y +1=-3z -2,4(y +6)-3(z -2)=0,∴⎩⎨⎧x =1,y =-215,z =225.∴|BD →|=5.解法二:设AD →=λAC →,D (x ,y ,z ),则(x -1,y +1,z -2)=λ(0,4,-3), ∴x =1,y =4λ-1,z =2-3λ. ∴BD →=(-4,4λ+5,-3λ), 又AC →=(0,4,-3),AC →⊥BD →,∴4(4λ+5)-3(-3λ)=0, ∴λ=-45,∴BD →=⎝⎛⎭⎫-4,95,125, ∴|BD →|=(-4)2+⎝⎛⎭⎫952+⎝⎛⎭⎫1252=5.11.已知正方体ABCD -A ′B ′C ′D ′中,点F 是侧面CDD ′C ′的中心,若AF →=AD →+xAB →+yAA ′→,则x -y 等于( )A .0B .1C .12D .-12[答案] A[解析] 如图所示,AF →=AD →+DF →, ∴DF →=xAB →+yAA ′→, ∴12DC ′→=xAB →+yAA ′→, ∵12AB ′→=12AB →+12AA ′→ AB ′→=DC ′→, ∴x =y =12,x -y =0.12.(2014·开滦二中期中)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =2,BC =3,D 、E 分别是AC 1和BB 1的中点,则直线DE 与平面BB 1C 1C 所成的角为( )A .π6B .π4C .π3D .π2[答案] A[解析] 取AC 中点F ,则DF 綊BE ,∴DE ∥BF ,∴BF 与平面BB 1C 1C 所成的角为所求, ∵AB =1,BC =3,AC =2,∴AB ⊥BC ,又AB ⊥BB 1,∴AB ⊥平面BCC 1B 1,作GF ∥AB 交BC 于G ,则GF ⊥平面BCC 1B 1,∴∠FBG 为直线BF 与平面BCC 1B 1所成的角,由条件知BG =12BC =32,GF =12AB =12,∴tan ∠FBG =GF BG =33,∴∠FBG =π6. 二、填空题13.|a |=|b |=|c |=1,a +b +c =0,则a ·c +b·c +a·b =__________. [答案] -32[解析] 设a ·c +b ·c +a ·b =x , 则2x =(a +b )·c +(b +c )·a +(c +a )·b =-|c |2-|a |2-|b |2=-3,∴x =-32.14.给出命题:①在▱ABCD 中,AB →+AD →=AC →;②在△ABC 中,若AB →·AC →>0,则△ABC 是锐角三角形;③在梯形ABCD 中,E 、F 分别是两腰BC 、DA 的中点,则FE →=12(AB →+DC →);④在空间四边形ABCD 中,E 、F 分别是边BC 、DA 的中点,则FE →=12(AB →+DC →).以上命题中,正确命题的序号是______________.[答案] ①③④[解析] 本题考查向量的有关运算.①满足向量运算的平行四边形法则,①正确;AB →·AC →=|AB →|·|AC →|·cos A >0⇒∠A <90°,但∠B 、∠C 无法确定,△ABC 是否是锐角三角形无法确定,②错误;③符合梯形中位线,正确;④如图:DC →=DA →+AC →;DC →+AB →=DA →+AB →+AC →=DA →+2AE →=2(F A →+AE →)=2FE →,则FE →=12(AB →+DC →).15.如图所示,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,点E 是棱CC 1的中点,则异面直线D 1E 与AC 所成角的余弦值是__________.[答案]105[解析] 如图,建立空间直角坐标系,则A (4,0,0),C (0,4,0),D 1(0,0,4),E (0,4,2),AC →=(-4,4,0),D 1E →=(0,4,-2).cos 〈AC →,D 1E →〉=1632×20=105.∴异面直线D 1E 与AC 所成角的余弦值为105. 16.若△ABC 中,∠ACB =90°,∠BAC =60°,AB =8,PC ⊥平面ABC ,PC =4,M 是AB 上一点,则PM 的最小值为__________.[答案] 27[解析] 由条件知PC 、AC 、BC 两两垂直,设CA →=a ,CB →=b ,CP →=c ,则a ·b =b ·c =c ·a=0,∵∠BAC =60°,AB =8,∴|a |=CA =8cos60°=4,|b |=CB =8sin60°=43.|c |=PC =4, 设AM →=xAB →=x (b -a ),则PM →=PC →+CA →+AM →=-c +a +x (b -a )=(1-x )a +x b -c ,|PM →|2=(1-x )2|a |2+x 2|b |2+|c |2+2(1-x )x a ·b -2x b ·c -2(1-x )a ·c =16(1-x )2+48x 2+16=32(2x 2-x +1)=64⎝⎛⎭⎫x -142+28, ∴当x =14时,|PM →|2取最小值28,∴|PM →|min =27.三、解答题17.如图,正方体ABCD -A ′B ′C ′D ′中,点E 是上底面A ′B ′C ′D ′的中心,用DA →,DC →,DD ′→表示向量BD ′→,AE →.[解析] (1)BD ′→=DD ′→-DB →=-DA →-DC →+DD ′→. (2)AE →=AA ′→+A ′E →=DD ′→+12A ′C ′→=DD ′→+12AC →=DD ′→+12(DC →-DA →)=-12DA →+12DC →+DD ′→.18.如图所示,已知空间四边形ABCD ,P 、Q 分别是△ABC 和△BCD 的重心.求证:PQ ∥平面ACD .[证明] ∵P 、Q 分别是△ABC 和△BCD 的重心. ∴PQ →=EQ →-EP →=13ED →-13EA →=13(ED →-EA →)=13AD →. ∴PQ →∥AD →,即PQ ∥AD ,又PQ ⊄平面ACD ,AD ⊂平面ACD ,∴PQ ∥平面ACD .19.在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点.(1)求证:AC ⊥BC 1; (2)求证:AC 1∥平面CDB 1; (3)求AC 1与CB 1所成角的余弦值.[解析] ∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直.如图所示,以C 为坐标原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (32,2,0).(1)∵AC →=(-3,0,0),BC 1→=(0,-4,4). ∴AC →·BC 1→=0,∴AC ⊥BC 1.(2)设CB 1与C 1B 的交点为E ,连接DE ,则E (0,2,2). ∵DE →=(-32,0,2),AC 1→=(-3,0,4).∴DE →=12AC 1→,∴DE ∥AC 1.∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(3)∵AC 1→=(-3,0,4),CB 1→=(0,4,4), ∴cos 〈AC 1→·CB 1→〉=AC 1→·CB 1→|AC 1→|·|CB 1→|=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.20.长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =6,AA 1=4,M 是A 1C 1的中点,P 在线段BC 上,且CP =2,Q 是DD 1的中点,求:(1)M 到直线PQ 的距离; (2)M 到平面AB 1P 的距离.[解析] 如图,建立空间直角坐标系B -xyz ,则A (4,0,0),M (2,3,4),P (0,4,0),Q (4,6,2).(1)∵QM →=(-2,-3,2),QP →=(-4,-2,-2), ∴QM →在QP →上的射影为QM →·QP →|QP →|=(-2)×(-4)+(-3)×(-2)+2×(-2)(-4)2+(-2)2+(-2)2=566,故M 到PQ 的距离为 |QM →|2-⎝⎛⎭⎫5662=17-256=4626.(2)设n =(x ,y ,z )是平面AB 1P 的法向量,则n ⊥AB 1→,n ⊥AP →, ∵AB 1→=(-4,0,4),AP →=(-4,4,0),∴⎩⎪⎨⎪⎧-4x +4z =0,-4x +4y =0.因此可取n =(1,1,1),由于MA →=(2,-3,-4), 那么点M 到平面AB 1P 的距离为d =|MA →·n ||n |=|2×1+(-3)×1+(-4)×1|3=533, 故M 到平面AB 1P 的距离为533. [点评] 求点P 到直线l 的距离时,在直线l 上任取一点Q ,则QP →在l 上射影的长度为m =|QP →|·|cos 〈QP →,n 〉|(n 为直线l 的一个方向向量),即m =|QP →·n ||n |, 于是P 到l 的距离d =|QP ―→|2-m 2.21.(2014·浙江理,20)如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC =2.(1)证明:DE ⊥平面ACD ;(2)求二面角B -AD -E 的大小.[解析] (1)在直角梯形BCDE 中,∵DE =BE =1,CD =2,∴BD =BC =2,在三角形ABC 中,AB =2,BC =2,AC =2,∴AC ⊥BC .∵平面ABC ⊥平面BCOE ,而平面ABC ∩平面BCDE =BCAC ⊥BC ,∴AC ⊥平面BCDE ,∴AC ⊥DE ,又∵DE ⊥DC ,∴DE ⊥平面ACD .(2)由(1)知分别以CD →、CA →为x 轴、z 轴正方向.过C 作CM ∥DE ,以CM 为y 轴建立空间直角坐标系.则B (1,1,0),A (0,0,2),D (2,0,0),E (2,1,0)∴AB →=(1,1,-2),AD →=(2,0,-2),DE →=(0,1,0)设平面ABD 的法向量n 1=(x 1,y 1,z 1),由n 1·AB →=n 1·AD →=0,解得n 1=(1,1,2).设平面ADE 的法向量n 2=(x 2,y 2,z 2),则n 2·AE →=n 2·AD →=0,解得:n 2=(1,0,2)设二面角B -AD -E 的大小为θ,易知θ为锐角,cos θ=|cos 〈n 1,n 2〉|=1+0+26×3=32, ∴二面角B -AD -E 的平面角为π6. 22.(2014·浙北名校联盟联考)已知在长方体ABCD -A ′B ′C ′D ′中,点E 为棱CC ′上任意一点,AB =BC =2,CC ′=1.(1)求证:平面ACC ′A ′⊥平面BDE ;(2)若点P 为棱C ′D ′的中点,点E 为棱CC ′的中点,求二面角P -BD -E 的余弦值.[解析] (1)∵ABCD 为正方形,∴AC ⊥BD ,∵CC ′⊥平面ABCD ,∴BD ⊥CC ′,又CC ′∩AC =C ,∴BD ⊥平面ACC ′A ′,∵BD ⊂平面BDE ,∴平面BDE ⊥平面ACC ′A ′.(2)以DA 为x 轴,以DC 为y 轴,以DD ′为z 轴建立空间直角坐标系,则D (0,0,0),B (2,2,0),E (0,2,12),P (0,1,1),设平面BDE 的法向量为m =(x ,y ,z ),∵DB →=(2,2,0),DE →=(0,2,12), ∴⎩⎨⎧ m ·DB →=2x +2y =0,m ·DE →=2y +12z =0,令x =1,则y =-1,z =4,∴m =(1,-1,4), 设平面PBD 的法向量为n =(x ,y ,z ),∵DP →=(0,1,1),∴⎩⎪⎨⎪⎧ n ·DB →=2x +2y =0,n ·DP →=y +z =0, 令x =1,则y =-1,z =1,∴n =(1,-1,1),∴cos 〈m ,n 〉=m ·n |m |·|n |=63, ∴二面角P -BD -E 的余弦值为63.。
《成才之路》2014-2015学年高中数学(人教A版)选修2-1练习1.2.2充要条件习题课

第一章 1.2 第2课时一、选择题1.“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件[答案] C[解析] 当a =1时,直线x -ay =0化为直线x -y =0,∴直线x +y =0与直线x -y =0垂直;当直线x +y =0和直线x -ay =0互相垂直时,有1-a =0,∴a =1,故选C. 2.m =3是直线3x -y +m =0与圆x 2+y 2-2x -2=0相切的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A[解析] 由圆心(1,0)到直线3x -y +m =0距离d =|3+m |2=3得,m =3或-33,故选A.3.设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] C[解析] 因为A ∪B =C ,故“x ∈A ∪B ”是“x ∈C ”的充要条件. 4.“a +c >b +d ”是“a >b 且c >d ”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 [答案] A[解析] 如a =1,c =3,b =2,d =1时,a +c >b +d , 但a <b ,故由“a +c >b +d ”⇒/ “a >b 且c >d ”, 由不等式的性质可知,若a >b 且c >d ,则a +c >b +d , ∴“a +c >b +d ”是“a >b 且c >d ”的必要不充分条件.5.设命题甲为:0<x <5,命题乙为:|x -2|<3,那么甲是乙的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 解不等式|x -2|<3得-1<x <5, ∵0<x <5⇒-1<x <5但-1<x <5⇒/ 0<x <5, ∴甲是乙的充分不必要条件,故选A.6.(2014·南昌市高二期中)设l ,m ,n 均为直线,其中m ,n 在平面α内,则“l ⊥α”是“l ⊥m 且l ⊥n ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] A[解析] ∵l ⊥α,m ⊂α,n ⊂α,∵l ⊥m 且l ⊥n ,故充分性成立;又l ⊥m 且l ⊥n 时,m 、n ⊂α,不一定有m 与n 相交,∴l ⊥α不一定成立,∴必要性不成立,故选A.二、填空题7.平面向量a 、b 都是非零向量,a ·b <0是a 与b 夹角为钝角的________条件. [答案] 必要不充分[解析] 若a 与b 夹角为钝角,则a ·b <0,反之a ·b <0时,如果a 与b 方向相反,则a 与b 夹角不是钝角.8.已知三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0,则l 1、l 2、l 3构不成三角形的充要条件是k ∈集合________.[答案] {-5,5,-10}[解析] ①l 1∥l 3时,k =5;②l 2∥l 3时,k =-5; ③l 1、l 2、l 3相交于同一点时,k =-10. 三、解答题9.方程mx 2+(2m +3)x +1-m =0有一个正根和一个负根的充要条件是什么? [解析] 由题意知⎩⎪⎨⎪⎧(2m +3)2-4m (1-m )>0,1-m m <0.∴m >1或m <0,即所求充要条件是m >1或m <0.10.已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.[证明] 充分性:当q =-1时,a 1=p -1,当n ≥2时,a n =S n -S n -1=p n -1(p -1),当n =1时也成立. 于是a n +1a n =p n (p -1)p n -1(p -1)=p ,即数列{a n }为等比数列.必要性:当n =1时,a 1=S 1=p +q . 当n ≥2时,a n =S n -S n -1=p n -1(p -1), ∵p ≠0且p ≠1,∴a n +1a n =p n (p -1)p n -1(p -1)=p ,∵{a n }为等比数列,∴a 2a 1=a n +1a n =p ,即p (p -1)p +q =p , ∴p -1=p +q ,∴q =-1.综上所述,q =-1是数列{a n }为等比数列的充要条件.一、选择题11.设{a n }是等比数列,则“a 1<a 2<a 3”是“数列{a n }是递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件[答案] C[解析] 若a 1<a 2<a 3,则a 1<a 1q <a 1q 2,若a 1>0,则q >1,此时为递增数列,若a 1<0,则0<q <1,同样为递增数列,故充分性成立,必要性显然成立.12.(2013·安徽理)“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 [答案] C[解析] 本题考查了函数单调性与充分必要条件的判断.若a =0,则f (x )=|x |在(0,+∞)内单调递增,若“a <0”,则f (x )=|(ax -1)x |=|ax 2-x |其图象如图所示,在(0,+∞)内递增;反之,若f (x )=|(ax -1)x |在(0,+∞)内递增,从图中可知a ≤0,故选C. 13.下列命题中的真命题有( )①两直线平行的充要条件是两直线的斜率相等;②△ABC 中,AB →·BC →<0是△ABC 为钝角三角形的充要条件; ③2b =a +c 是数列a 、b 、c 为等差数列的充要条件;④△ABC 中,tan A tan B >1是△ABC 为锐角三角形的充要条件. A .1个 B .2个 C .3个D .4个[解析] 两直线平行不一定有斜率,①假.由AB →·BC →<0只能说明∠ABC 为锐角,当△ABC 为钝角三角形时,AB →·BC →的符号也不能确定,因为A 、B 、C 哪一个为钝角未告诉,∴②假;③显然为真.由tan A tan B >1,知A 、B 为锐角,∴sin A sin B >cos A cos B , ∴cos(A +B )<0,即cos C >0.∴角C 为锐角, ∴△ABC 为锐角三角形.反之若△ABC 为锐角三角形,则A +B >π2,∴cos(A +B )<0,∴cos A cos B <sin A sin B , ∵cos A >0,cos B >0,∴tan A tan B >1,故④真.14.设a 、b 是两条直线,α、β是两个平面,则a ⊥b 的一个充分条件是( ) A .a ⊥α,b ∥β,α⊥β B .a ⊥α,b ⊥β,α∥β C .a ⊂α,b ⊥β,α∥β D .a ⊂α,b ∥β,α⊥β[答案] C[解析] 对选项A 如图①所示,由图可知a ∥b ,故排除A ;对选项B 如图②所示,由图可知a ∥b ,故排除B ;对选项D 如图③所示,其中a ∥l ,b ∥l ,由图可知a ∥b ,故排除D.二、填空题15.函数f (x )的定义域为I ,p :“对任意x ∈I ,都有f (x )≤M ”.q :“M 为函数f (x )的最大值”,则p 是q 的________条件.[答案] 必要不充分[解析] 只有当(1)对于任意x ∈I ,都有f (x )≤M ,(2)存在x 0∈I ,使f (x 0)=M ,同时成立时,M 才是f (x )的最大值,故p ⇒/ q ,q ⇒p ,∴p 是q 的必要不充分条件.16.f (x )=|x |·(x -b )在[0,2]上是减函数的充要条件是______________________. [答案] b ≥4[解析] f (x )=⎩⎪⎨⎪⎧x (x -b ) x ≥0,-x (x -b ) x <0.若b ≤0,则f (x )在[0,2]上为增函数,∴b >0, ∵f (x )在[0,2]上为减函数,∴b2≥2,∴b ≥4.17.求关于x 的方程ax 2+2x +1=0至少有一个负的实根的充要条件. [解析] ①a =0时适合.②当a ≠0时,显然方程没有零根,若方程有两异号的实根,则a <0;若方程有两个负的实根,则必须满足⎩⎪⎨⎪⎧1a >0-2a <0Δ=4-4a ≥0,解得0<a ≤1.综上可知,若方程至少有一个负的实根,则a ≤1;反之,若a ≤1,则方程至少有一个负的实根,因此,关于x 的方程ax 2+2x +1=0至少有一个负的实根的充要条件是a ≤1.[点评] ①a =0的情况不要忽视;②若令f (x )=ax 2+2x +1,由于f (0)=1≠0,从而排除了方程有一个负根,另一个根为零的情况.18.已知p :x +210-x ≥0,q :x 2-2x +1-m 2≤0(m <0),且p 是q 的必要条件,求实数m的取值范围.[解析] 由x +210-x ≥0,解得-2≤x <10,令A ={x |-2≤x <10}.由x 2-2x +1-m 2≤0可得[x -(1-m )].[x -(1+m )]≤0,而m <0,∴1+m ≤x ≤1-m ,令B ={x |1+m ≤x ≤1-m }.∵p 是q 的必要条件,∴q ⇒p 成立,即B ⊆A .则⎩⎪⎨⎪⎧1+m ≥-21-m <10m <0,解得-3≤m <0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列说法中不正确的是( )A .平面α的法向量垂直于与平面α共面的所有向量B .一个平面的所有法向量互相平行C .如果两个平面的法向量垂直,那么这两个平面也垂直D .如果a 、b 与平面α共面且n ⊥a ,n ⊥b ,那么n 就是平面α的一个法向量 [答案] D[解析] 只有当a 、b 不共线且a ∥α,b ∥α时,D 才正确.2.已知a =(cos α,1,sin α),b =(sin α,1,cos α) ,且a ∥ b 则向量a +b 与a -b 的夹角是( )A .90°B .60°C .30°D .0°[答案] A[解析] ∵|a |2=2,|b |2=2, (a +b )·(a -b )=|a |2-|b |2=0, ∴(a +b )⊥(a -b ).3.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14 [答案] D[解析] AB →=(-2,-6,-2),AC →=(-1,6,λ-3), ∵AB →⊥AC →,∴AB →·AC →=2×1-6×6-2(λ-3)=0, 解得λ=-14,故选D .4.(2013·北师大附中月考)若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a -b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +b [答案] C[解析] 因为a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D ;故选C .5.若直线l 的方向向量为a ,平面α的法向量为n ,则能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)[答案] D[解析] ∵l ∥α,∴a ·n =0,经检验知选D .6.(2013·清华附中月考)已知a ,b 是两异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a ,b 所成的角为( )A .30°B .60°C .90°D .45°[答案] B[解析] 由于AB →=AC →+CD →+DB →,则AB →=AC →+CD →+DB →, ∴AB →·CD →=(AC →+CD →+DB →)·CD →=CD →2=1.cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12⇒〈AB →,CD →〉=60°,故选B .7.(2013·安徽省合肥一中期末)已知正方体ABCD -A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m ,n 的值分别为( )A .12,-12B .-12,-12C .-12,12D .12,12[答案] A[解析] 由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故选A .8.已知A (-1,1,2),B (1,0,-1),设D 在直线AB 上,且AD →=2DB →,设C (λ,13+λ,1+λ),若CD ⊥AB ,则λ的值为( )A .116B .-116C .12D .13[答案] B[解析] 设D (x ,y ,z ),则AD →=(x +1,y -1,z -2),AB →=(2,-1,-3),DB →=(1-x ,-y ,-1-z ),∵AD →=2DB →,∴⎩⎪⎨⎪⎧x +1=2(1-x ),y -1=-2y ,z -2=-2-2z .∴⎩⎪⎨⎪⎧x =13,y =13,z =0.∴D (13,13,0),CD →=(13-λ,-λ,-1-λ),∵CD →⊥AB →,∴CD →·AB →=2(13-λ)+λ-3(-1-λ)=0,∴λ=-116.9.(2013·河南省开封月考)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E 、F 分别是面A 1B 1C 1D 1、面BCC 1B 1的中心,则E 、F 两点间的距离为()A .1B .52C .62D .32[答案] C[解析] 以点A 为原点,建立如图所示的空间直角坐标系,则E (1,1,2),F (2,1,22),所以|EF |=(1-2)2+(1-1)2+(2-22)2=62,故选C .10. (2013·陕西省高新一中期末)如图,在空间直角坐标系中有长方体ABCD -A 1B 1C 1D 1,AB =1,BC =2,AA 1=3,则点B 到直线A 1C 的距离为( )A .27B .2357C .357D .1[答案] B[解析] 过点B 作BE 垂直A 1C ,垂足为E ,设点E 的坐标为(x ,y ,z ),则A 1(0,0,3),B (1,0,0),C (1,2,0),A 1C →=(1,2,-3),A 1E →=(x ,y ,z -3),BE →=(x -1,y ,z ).因为⎩⎪⎨⎪⎧A 1E →∥A 1C→BE →·A 1C →=0,所以⎩⎪⎨⎪⎧x 1=y 2=z -3-3x -1+2y -3z =0,解得⎩⎪⎨⎪⎧x =57y =107z =67,所以BE →=(-27,107,67),所以点B 到直线A 1C 的距离|BE →|=2357,故选B .11.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12B .22C .13D .16[答案] C[解析] 如图,以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,则D 1(0,0,1),E (1,1,0),A (1,0,0),C (0,2,0).从而D 1E →=(1,1,-1),AC →=(-1,2,0),AD 1→=(-1,0,1), 设平面ACD 1的法向量为n =(a ,b ,c ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-a +2b =0,-a +c =0,得⎩⎪⎨⎪⎧a =2b ,a =c .令a =2,则n =(2,1,2). 所以点E 到平面ACD 1的距离为 h =|D 1E →·n ||n |=2+1-23=13.12.如图所示,正方体ABCD -A1B 1C 1D 1中,E ,F 分别是正方形ADD 1A 1和ABCD 的中心,G 是CC 1的中点,设GF ,C 1E 与AB 所成的角分别为α,β,则α+β等于( )A .120°B .60°C .75°D .90°[答案] D[解析] 建立坐标系如图,设正方体的棱长为2,则B (2,0,0),A (2,2,0),G (0,0,1),F (1,1,0),C 1(0,0,2),E (1,2,1).则BA →=(0,2,0),GF →=(1,1,-1),C 1E →=(1,2,-1),∴cos 〈BA →,GF →〉=|BA →·GF →||BA →|·|GF →|=13,cos 〈BA →,C 1E →〉=|BA →·C 1E →||BA →|·|C 1E →|=23,∴cos α=13,sin α=23,cos β=23,sin β=13,cos(α+β)=0,∴α+β=90°. 二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知A (1,2,0),B (0,1,-1),P 是x 轴上的动点,当AP →·BP →取最小值时,点P 的坐标为__________.[答案] (12,0,0)[解析] 设P (x,0,0),则AP →=(x -1,-2,0),BP →=(x ,-1,1), AP →·BP →=x (x -1)+2=(x -12)2+74,∴当x =12时,AP →·BP →取最小值74,此时点P 的坐标为(12,0,0).14.已知正四棱台ABCD -A 1B 1C 1D 1中,上底面A 1B 1C 1D 1边长为1,下底面ABCD 边长为2,侧棱与底面所成的角为60°,则异面直线AD 1与B 1C 所成角的余弦值为__________.[答案] 14[解析] 设上、下底面中心分别为O 1、O ,则OO 1⊥平面ABCD ,以O 为原点,直线BD 、AC 、OO 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.∵AB =2,A 1B 1=1,∴AC =BD =22,A 1C 1=B 1D 1=2, ∵平面BDD 1B 1⊥平面ABCD ,∴∠B 1BO 为侧棱与底面所成的角,∴∠B 1BO =60°,设棱台高为h ,则tan60°=h 2-22,∴h =62, ∴A (0,-2,0),D 1(-22,0,62),B 1(22,0,62),C (0,2,0), ∴AD 1→=(-22,2,62),B 1C →=(-22,2,-62),∴cos 〈AD 1→,B 1C →〉=AD 1→·B 1C →|AD 1→|·|B 1C →|=14,故异面直线AD 1与B 1C 所成角的余弦值为14.15.三棱锥P -ABC 中,P A =PB =PC =AB =AC =1,∠BAC =90°,则直线P A 与底面ABC 所成角的大小为________________.[答案] 45°[解析] 由条件知,AB =AC =1,∠BAC =90°,∴BC =2,∵PB =PC =1,∴∠BPC =90°, 取BC 边中点E ,则 PE =22,AE =22, 又P A =1,∴∠PEA =90°,故∠P AE =45°,∵E 为BC 中点,∴PE ⊥BC ,AE ⊥BC , ∴BC ⊥平面P AE , ∴平面P AE ⊥平面ABC ,∴∠P AE 为直线P A 与平面ABC 所成角.16.已知矩形ABCD 中,AB =1,BC =3,将矩形ABCD 沿对角线AC 折起,使平面ABC 与平面ACD 垂直,则B 与D 之间的距离为__________.[答案]102[解析] 过B ,D 分别向AC 作垂线,垂足分别为M ,N .则可求得AM =12,BM =32,CN =12,DN =32,MN =1.由于BD →=BM →+MN →+ND →,∴|BD →|2=(BM →+MN →+ND →)2=|BM →|2+|MN →|2+|ND →|2+2(BM →·MN →+MN →·ND →+BM →·ND →)=(32)2+12+(32)2+2(0+0+0)=52, ∴|BD →|=102.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)若e 1、e 2、e 3是三个不共面向量,则向量a =3e 1+2e 2+e 3,b =-e 1+e 2+3e 3,c =2e 1-e 2-4e 3是否共面?请说明理由.[解析] 设c =λ1a +λ2b ,则 ⎩⎪⎨⎪⎧3λ1-λ2=22λ1+λ2=-1λ1+3λ2=-4⇒λ1=15,λ2=-75.即c =15a -75b .∴a 、b 、c 共面.18.(本小题满分12分)在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →.[解析] ∵BG =2GD , ∴BG →=23BD →.又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , ∴PG →=PB →+BG →=b +23(a +c -2b )=23a -13b +23c . 19.(本小题满分12分)如图所示,在四面体ABCD 中,AB ,BC ,CD 两两互相垂直,且BC =CD =1.(1)求证:平面ACD ⊥平面ABC ; (2)求二面角C -AB -D 的大小;(3)若直线BD 与平面ACD 所成的角为30°,求线段AB 的长度. [解析] 解法一:(1)∵CD ⊥AB ,CD ⊥BC , ∴CD ⊥平面ABC . 又∵CD ⊂平面ACD , ∴平面ACD ⊥平面ABC .(2)∵AB ⊥BC ,AB ⊥CD ,∴AB ⊥平面BCD , ∴AB ⊥BD .∴∠CBD 是二面角C -AB -D 的平面角. ∵在Rt △BCD 中,BC =CD ,∴∠CBD =45°. ∴二面角C -AB -D 的大小为45°.(3)过点B 作BH ⊥AC ,垂足为H ,连接DH .∵平面ACD ⊥平面ABC , ∴BH ⊥平面ACD ,∴∠BDH 为BD 与平面ACD 所成的角.∴∠BDH =30°. 在Rt △BHD 中,BD =2, ∴BH =22. 又∵在Rt △BHC 中,BC =1, ∴∠BCH =45°,∴在Rt △ABC 中,AB =1. 解法二:(1)同解法一.(2)设AB =a ,建立如图所示的空间直角坐标系B -xyz ,则B (0,0,0),A (0,0,a ),C (0,1,0),D (1,1,0),BD →=(1,1,0),BA →=(0,0,a ).平面ABC 的法向量CD →=(1,0,0),设平面ABD 的一个法向量为n =(x ,y ,z ),则有BD →·n =x +y =0,BA →·n =az =0,∴z =0,取y =1,则x =-1, ∴n =(-1,1,0).∴cos 〈CD →,n 〉=CD →·n |CD →||n |=-22,由图可知二面角C -AB -D 为锐角,∴二面角C -AB -D 的大小为45°.(3)AC →=(0,1,-a ),CD →=(1,0,0),BD →=(1,1,0).设平面ACD 的一个法向量是m =(x ′,y ′,z ′),则AC →·m =y ′-az ′=0,CD →·m =x ′=0,令z ′=1,∴y ′=a ,则m =(0,a,1). ∵直线BD 与平面ACD 所成角为30°,∴cos 〈BD →,m 〉=BD →·m |BD →||m |=a a 2+1·2=cos60°,解得a =1,∴AB =1.20.(本小题满分12分)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,已知AB =2,AA 1=5,E 、F 分别为D 1D 、B 1B 上的点,且DE =B 1F =1.(1)求证:BE ⊥平面ACF ; (2)求点E 到平面ACF 的距离.[解析] (1)证明:以D 为原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立如图所示空间直角坐标系,则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),D 1(0,0,5),E (0,0,1),F (2,2,4).∴AC →=(-2,2,0),AF →=(0,2,4),BE →=(-2,-2,1),AE →=(-2,0,1). ∵BE →·AC →=0,BE →·AF →=0,∴BE ⊥AC ,BE ⊥AF ,且AC ∩AF =A .∴BE ⊥平面ACF .(2)解:由(1)知,BE →为平面ACF 的一个法向量, ∴点E 到平面ACF 的距离d =|AE →·BE →||BE →|=53.故点E 到平面ACF 的距离为53.21.(本小题满分12分)(2014·浙江文,20)如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC =2.(1)证明:AC ⊥平面BCDE ;(2)求直线AE 与平面ABC 所成的角的正切值. [解析] (1)取CD 中点G ,连结BG . ∵∠CDE =∠BED =90°,∴BE ∥CD . 又CD =2,BE =1,∵BE 綊DG ,∴四边形DEBG 为矩形, ∴BG =DE =1,∠BGC =90° 又GC =12CD =1,∴BC =2.又AC =2,AB =2, ∴AB 2=AC 2+BC 2, 即AC ⊥BC .又∵平面ABC ⊥平面BCDE 且交线为BC , AC ⊂平面ABC ,∴AC ⊥平面BCDE .(2)解法1:过点E 作EF ⊥BC 交BC 延长线于F , 由(1)知EF ⊥AC ,AC ∩BC =C ,∴EF ⊥平面ABC ,连结AF ,则∠EAF 即为AE 与平面ABC 所成的角.由已知得∠GBC =45°,∴∠EBF =45°∴BF =EF ,又BE =1∴BF =EF =22, 在Rt △AFC 中,AC =2,CF =BC +BF =2+22=322, ∴AF =2+184=262, ∴tan ∠EAF =EF AF =22262=1313, ∴直线AE 与平面ABC 所成角的正切值为1313. 解法2:过C 作DE 的平行线CG ,以C 为原点,CD 、CG、CA 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图.则C (0,0,0),A (0,0,2),B (1,1,0),E (2,1,0),∴AE →=(2,1,-2),AB →=(1,1,-2),CA →=(0,0,2),设平面ABC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AB →=0,n ·CA →=0,∴⎩⎨⎧x +y -2z =0,2z =0, 令x =1得n =(1,-1,0).设AE 与平面ABC 所成的角为α,则sin α=cos 〈n ,AE →〉=|n ·AE →||n |·|AE →|=114,∴tan α=1313. 22.(本小题满分14分) (2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)如图,四边形ABCD 与BDEF 均为菱形,设AC 与BD 相交于点O ,若∠DAB =∠DBF =60°,且F A =FC .(1)求证:FC ∥平面EAD ;(2)求二面角A -FC -B 的余弦值.[解析] (1)证明:∵四边形ABCD 与BDEF 均为菱形,∴AD ∥BC ,DE ∥BF .∵AD ⊄平面FBC ,DE ⊄平面FBC ,∴AD ∥平面FBC ,DE ∥平面FBC ,又AD ∩DE =D ,AD ⊂平面EAD ,DE ⊂平面EAD ,∴平面FBC ∥平面EAD ,又FC ⊂平面FBC ,∴FC ∥平面EAD .(2)连接FO 、FD ,∵四边形BDEF 为菱形,且∠DBF =60°,∴△DBF 为等边三角形, ∵O 为BD 中点.所以FO ⊥BD ,O 为AC 中点,且F A =FC ,∴AC ⊥FO ,又AC ∩BD =O ,∴FO ⊥平面ABCD ,∴OA 、OB 、OF 两两垂直,建立如图所示的空间直角坐标系O -xyz ,设AB =2,因为四边形ABCD 为菱形,∠DAB =60°,则BD =2,OB =1,OA =OF =3,∴O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),F (0,0,3),∴CF →=(3,0,3),CB →=(3,1,0),设平面BFC 的一个法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧ n ·CF →=0,n ·CB →=0,∴⎩⎨⎧3x +3z =0,3x +y =0, 令x =1,则n =(1,-3,-1),∵BD ⊥平面AFC ,∴平面AFC 的一个法向量为OB →=(0,1,0).∵二面角A -FC -B 为锐二面角,设二面角的平面角为θ,∴cos θ=|cos 〈n ,OB →〉|=|n ·OB →||n |·|OB →|=⎪⎪⎪⎪⎪⎪-35=155, ∴二面角A -FC -B 的余弦值为155.。