2015-2016年江苏省无锡市北塘区九年级(上)期中数学试卷和答案

合集下载

江苏省无锡市新区2015届九年级上期中考试数学试题及答案

江苏省无锡市新区2015届九年级上期中考试数学试题及答案

2014-2015学年第一学期初三数学期中试卷一、选择题(本大题共8小题,每小题3分,共24分)1. 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两条弧是等弧.其中正确的有 ( )A .4个B .3个C . 2个D . 1个2. 用配方法解方程2250x x --=时,原方程应变形为 ( )A .()216x -= B .()216x += C .()229x += D .()229x -=3. 三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为 ( )A .12B .14C .12或14D .以上都不对4. 在Rt△ABC 中,∠C=90°,∠B=30°,BC =4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是 ( ) A .相离 B .相切 C .相交 D .相切或相交5. 如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是 ( ) A.k >14-B. 14k ≥-且0k ≠C.k <14-D. k >14-且0k ≠6.某厂一月份生产某机器300台,计划二、三月份共生产980台。

设二三月份每月的平均增长率为x ,根据题意列出的方程是 ( ) A .300(1+x )2=980 B .300(1-x )2=980C .300(1+x )+300(1+x )2=980D .300+300(1+x )+300(1+x )2=9807. 如图,将量角器按所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为 ( ) A .15︒ B .28︒ C .29︒ D .34︒8.如图,等边三角形ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了 ( )A .2周B . 3周C .4周D .5周 二、填空题(本大题共10小题,每空2分,共26分)9.将一元二次方程x 2+1=2x 化成一般形式可得 ,它的解是 . 10.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 .班级 姓名 学号 .……………………………………………………………装……………订……………线…………………………………………………………(第8题) O D AB C(第7题)11. 一元二次方程220x x +-=的两根之和是 ,两根之积是 .12. 方程x 2-6x +k =0的一根是4,则k = ,另一个根是______.13. 如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠OBC = °.14. 如图,ABCD 是⊙O 的内接四边形,AD 为直径,∠C =130°,则∠ADB 的度数为 .15.如图,直角坐标系中一条圆弧经过格点A ,B ,C ,其中B 点坐标为(3,4),则该弧所在圆心的坐标是 .16.若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m ﹣4,则ab= .17. 如图,一张圆心角为45°的扇形纸板按如图方式剪得一个正方形,正方形的边长为1,则扇形纸板的面积是 .18. 如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PB 切⊙O 于点B ,则PB 的最小值是 .三、解答题(本大题共7小题,共50分) 19(本题满分12分,每小题3分)解下列方程: (1)042=-x x (2)x 2-8x-10=0(配方法)(3)x 2+6x -1=0 (4)2x 2+5x -3=0(第13题)OB C D A(第14题) O x y A B C(第15题)(第17题) (第18题)A BC P O 20(本题满分6分)如图,已知:⊙O 的直径AB 与弦AC 的夹角∠A=30°,AC =CP . (1) 求证:CP 是⊙O 的切线;(2) 若PC =6,AB=43求图中阴影部分的面积.21(本题满分4分)如图,AB 是⊙O 直径,弦CD 与AB 相交于点E ,∠ACD =52°,∠ADC =26°.求∠CEB 的度数.22(本题满分4分)某商店经销一批小家电,每个小家电的成本为40元。

江苏省无锡市滨湖区2016届九年级上学期期中考试数学试题解析(解析版)

江苏省无锡市滨湖区2016届九年级上学期期中考试数学试题解析(解析版)

2015年秋学期期中考试试题初三数学一、选择题(本大题共10小题,每小题3分,共30分).1.关于x 的一元二次方程x 2+px -2=0的一个解为2,则p 的值……………………… ( ). A .1 B .2 C .-1 D .-2 【答案】C. 【解析】试题分析:把x=2代入此方程得:4+2P-2=0,解得:P=-1.故选C. 考点:一元二次方程解的意义.2.已知 a 2=b 5,则b -aa的值为……………………………………………………………… … ( ).A .32B .23C .25D .52【答案】A. 【解析】试题分析:由已知得:5a=2b ,将所求式子分子分母扩大5倍得:b -a a =a a b 55-5=5-2b 322b b =.故选A.考点:求代数式的值.3.已知等腰三角形的底和腰是方程x 2-6x +8=0的两根,则这个三角形的周长为…… ( ).A .8B .10C .8或10D .无法确定 【答案】B. 【解析】试题分析:先解方程x 2-6x +8=0得:(x-2)(x-4)=0,解得:x 1=2,x 2=4,因为2,2,4不符合三角形三边关系,所以三角形的三边应该是2,4,4,故周长为10.选B. 考点:1.三角形三边关系;2.解一元二次方程.4.如图,在△ABC 中,E 、F 分别是AB 、AC 上的点,EF ∥BC ,且AE EB =12,若△AEF 的面积为2,则四边形EBCF的面积为 ……………………………………………………………… ( ). A .4B .6C .16D .185.如图,添加下列一个条件,不能..使△ADE ∽△ACB 的是…………………………………( ). A .DE ∥BC B .∠AED =∠B C .AD AC =AEABD .∠ADE =∠C【答案】A. 【解析】试题分析:相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似。

江苏省无锡 九年级(上)期中数学试卷-(含答案)

江苏省无锡 九年级(上)期中数学试卷-(含答案)

九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列方程中是关于x的一元二次方程的是()A. B.C. D.2.如图,CD是⊙O的直径,弦DE∥OA,若∠D的度数是50°,则∠C的度数是()A.B.C.D.3.如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有()A. 0个B. 1个C. 2个D.3个4.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A. 6B. 5C. 4D. 35.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A. cmB.C. cmD. 1cm6.如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A. B.C. D.7.下列命题是真命题的是()A. 垂直于圆的半径的直线是圆的切线B. 经过半径外端的直线是圆的切线C. 直线上一点到圆心的距离等于圆的半径的直线是圆的切线D. 到圆心的距离等于圆的半径的直线是圆的切线8.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.9.如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.B.C.D.10.如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,若AD=2,线段CP的最小值是()A. B. C. D.二、填空题(本大题共8小题,共16.0分)11.已知=,则= ______ .12.近年来全国房价不断上涨,我市2013年的房价平均每平方米为7000元,经过两年的上涨,2015年房价平均每平方米为8500元,设这两年房价的年平均增长率均为x,则关于的方程为______ .13.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是______.14.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA= ______ °.15.小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为______ .16.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是______.17.如图,平面直角坐标系中,⊙A的圆心在x轴上,坐标为(a,0),半径为1,直线l为y=2x-2,若⊙A沿x轴向右运动,当⊙A与直线l有公共点时,点A横坐标a 的取值范围是______ .18.如图,在平面直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,点B落在点D的位置,且AD交y轴于点E,那么点D的坐标为______ .三、解答题(本大题共10小题,共84.0分)19.(1)3y(y-1)=2(y-1)(2)(x-1)(x+2)=70(3)2y2-3=4y(配方法)20.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米?(注意:根据光的反射定律:反射角等于入射角).21.在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.22.如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)请找出该圆弧所在圆的圆心O的位置;(2)请在(1)的基础上,完成下列问题:①⊙O的半径为______ (结果保留根号);②的长为______ (结果保留π);③试判断直线CD与⊙O的位置关系,并说明理由.23.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.24.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,以BC为直径的半圆交AB于点D,以A为圆心,AC为半径的扇形交AB 于点E.(1)以BC为直径的圆与AC所在的直线有何位置关系?请说明理由;(2)求图中阴影部分的面积(结果保留根号和π).25.某公司销售一种进价为20(元/个)的计算器,其销售量y(万个)与销售价格x(元/个)之间为一次函数关系,其变化如下表:40万元的净利润,且尽可能让顾客得到实惠,那么销售价格应定为多少?(注:净利润=总销售额-总进价-其他开支)26.如图,在平面直角坐标系中,矩形AOBC的边长为AO=6,BO=8,(1)如图①,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动,求当P、Q、C三点构成等腰三角形时点P的坐标.(2)如图②,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC 内部,延长AF交BC于点G.求点G的坐标.27.如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E 点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度;(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.28.对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C 在点D的左侧.(1)当r=4时,①在P1(0,-3),P2(4,6),P3(4,2)中可以成为正方形ABCD的“等距圆”的圆心的是______;②若点P在直线y=-x+2上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为______;(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P在y轴上截得的弦长;②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是______.答案和解析1.【答案】C【解析】解:A、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;B、当a=0时.该方程不是一元二次方程.故本选项错误;C、由原方程得到x2-x-1=0,符合一元二次方程的定义,故本选项正确;D、该方程中含有两个未知数.故本选项错误;故选C.本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.【答案】A【解析】解:∵DE∥OA,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°,故选:A.根据平行线的性质可得∠AOD=∠D,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.【答案】D【解析】解:∵等边三角形ABC的边长为2,DE是它的中位线,∴DE=1,DE∥AB,∴△CDE∽△CAB,∴DE:AB=1:2,∴△CDE的面积与△CAB的面积之比为1:4.故选D.由题意即可推出DE∥AB,推出DE=1,△CDE∽△CAB,△CDE的面积与△CAB 的面积之比为相似比的平方,即为1:4.本题主要考查相似三角形的判定与性质、等边三角形的性质、三角形中位线定理,关键在于推出DE∥AB.4.【答案】B【解析】解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.5.【答案】A【解析】解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC==120°,∴∠ABD=×120°=60°,∴∠BAD=30°,AD=AB•cos30°=2×=,∴a=2cm.故选A.连接AC,作BD⊥AC于D;根据正六边形的特点求出∠ABC的度数,再由等腰三角形的性质求出∠BAD的度数,由特殊角的三角函数值求出AD的长,进而可求出AC的长.此题比较简单,解答此题的关键是作出辅助线,根据等腰三角形及正六边形的性质求解.6.【答案】B【解析】解:依题意,设金色纸边的宽为xcm,则(80+2x)(50+2x)=5400.故选:B.根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(树叶画的长+2个纸边的宽度)×(树叶画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.此题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.7.【答案】D【解析】解:A、应经过此半径的外端,故本选项错误;B、应该垂直于此半径,故本选项错误.C、应是圆心到直线的距离等于圆的半径,故本选项错误;D、根据切线的判定方法,故本选项正确;故选D.要正确理解切线的定义:和圆有唯一公共点的直线是圆的切线.掌握切线的判定:①经过半径的外端,且垂直于这条半径的直线,是圆的切线;②到圆心的距离等于半径的直线是该圆的切线.本题考查了命题和定理,知识点有:切线的判定方法.8.【答案】D【解析】解:∵∠C=∠E,且∠BDE=∠ADC,∴△BDE∽△ADC,∴=,∵BC=8,BD:DC=5:3,∴BD=5,DC=3,AD=4,∴=,解得DE=,故选:D.由条件可证明△BDE∽△ADC,且可求得BD和DC的长度,利用相似三角形的对应边的比相等可求得DE.本题主要考查了相似三角形的判定与性质,解题时注意:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.9.【答案】B【解析】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,它的面积是.则这张圆形纸片“不能接触到的部分”的面积是4×(1-)=4-π.故选:B.这张圆形纸片“不能接触到的部分”的面积是就是小正方形的面积与扇形的面积的差的4倍.本题主要考查了轨迹、正方形和圆的面积的计算公式,正确记忆公式是关键.10.【答案】B【解析】解:∵动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴∠DAE=∠CDF,∵∠CDF+∠ADF=∠ADC=90°,∴∠ADF+∠DAE=90°,∴∠APD=90°,取AD的中点O,连接OP,则OP=AD=×2=1(不变),根据两点之间线段最短得C、P、O三点共线时线段CP的值最小,在Rt△COD中,根据勾股定理得,CO===,所以,CP=CO-OP=-1.故选B.根据点E、F的运动速度判断出DE=CF,然后利用“边角边”证明△ADE和△DCF全等,根据全等三角形对应角相等可得∠DAE=∠CDF,然后求出∠APD=90°,取AD的中点O,连接OP,根据直角三角形斜边上的中线等于斜边的一半可得点P到AD的中点的距离不变,再根据两点之间线段最短可得C、P、O三点共线时线段CP的值最小,然后根据勾股定理列式求出CO,再求解即可.本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,确定出点P到AD的中点的距离是定值是解题的关键,也是本题的难点.11.【答案】【解析】解;由=,得=.由合比性质,得=.=,故答案为:.根据比例的性质,可得y:x的值,再根据倒数的意义,可得答案.本题是基础题,考查了比例的基本性质,比较简单12.【答案】7000(1+x)2=8500【解析】解:设这两年房价的年平均增长率均为x,根据题意,可列方程:7000(1+x)2=8500,故答案为:7000(1+x)2=8500.由于设这两年房价的平均增长率均为x,那么2014年房价平均每平方米为7000(1+x)元,2015年的房价平均每平方米为7000(1+x)(1+x)元,然后根据2015年房价平均每平方米为8500元即可列出方程.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.13.【答案】k>且k≠1【解析】解:根据题意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故答案为:k>且k≠1.根据一元二次方程的定义和判别式的意义得到k-1≠0且△=22-4(k-1)×(-2)>0,然后求出两个不等式的公共部分即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.【答案】67.5【解析】解:∵PD切⊙O于点C,∴∠OCD=90°;又∵CO=CD,∴∠COD=∠D=45°;∴∠A=∠COD=22.5°(同弧所对的圆周角是所对的圆心角的一半),∵OA=OC,∴∠A=∠ACO=22.5°(等边对等角),∴∠PCA=180°-∠ACO-∠OCD=67.5°.故答案是:67.5°.根据切线的性质知∠OCD=90°,然后在等腰直角三角形OCD中∠COD=∠D=45°;再由圆周角定理求得∠ACO=22.5°;最后由平角的定义即可求得∠PCA的度数.本题考查了圆的切线.解题的关键是根据切线的定义推知∠OCD=90°.15.【答案】216°【解析】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.利用勾股定理计算出母线长=15,设该扇形薄纸板的圆心角为n°,利用弧长公式得到2π•9=,解得n=216.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.【答案】4π【解析】解:弧CD的长是=,弧DE的长是:=,弧EF的长是:=2π,则曲线CDEF的长是:++2π=4π.故答案为:4π.弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3,利用弧长的计算公式可以求得三条弧长,三条弧的和就是所求曲线的长.本题考查了弧长的计算公式,理解弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3是解题的关键.17.【答案】1-≤a≤1+【解析】解:如图:当⊙A在直线L的左侧,⊙A与直线L相切时,△BOD∽△ABC,∵直线l为y=2x-2,∴B(1,0),D(0,-2),∴OB=1,OD=2,∴,即,∴BC=,∴AB=,当⊙A在直线L的右侧,⊙A与直线L相切时,同理A′B=,∴A横坐标a的取值范围是1-≤a≤1+,故答案为:1-≤a≤1+.根据⊙A与L有公共点从左相切开始,到相交,到右相切,所以A移动的距离是左相切到右相切时的距离.此题主要考查了坐标与图形的性质和直线与圆的位置关系,关键是知道点A 移动距离.18.【答案】(-,)【解析】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3-x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3-x)2=x2+12,∴x=.又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3-=,∴==,即==.∴DF=,AF=.∴OF=-1=.∴点D的坐标为(-,).故答案为:(-,).如图,过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3-x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.19.【答案】解:(1)∵3y(y-1)=2(y-1),∴(y-1)(3y-2)=0,∴y-1=0或3y-2=0,∴y1=1,y2=;(2)∵(x-1)(x+2)=70,∴x2+x-2=70,∴x2+x-72=0,∴(x+9)(x-8)=0,∴x+9=0或x-8=0,∴x1=-9,x2=8;(3)∵2y2-3=4y,∴2(y2-2y+1-1)-3=0,∴2(y-1)2=5,y=1±,y1=1+,y2=1-.【解析】(1)移项将方程右边化简为0,然后在提取公因式即可求解;(2)将方程左边去括号然后再化简成x2+x-72=0,利用因式分解即可求解;(3)移项然后在利用配方法即可求解.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.20.【答案】解:根据题意可得:∠AEB=∠CED,∠BAE=∠DCE=90°,(2分)∴△ABE∽△CDE,(5分)∴,(7分)∴,(8分)∴AB=13.44(米).(11分)答:教学大楼的高度AB是13.44米.(12分)【解析】根据反射定律,∠1=∠2,又因为FE⊥EC,所以∠3=∠4,再根据垂直定义得到∠BAE=∠DCE,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.21.【答案】解:∵关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,∴△=(b+2)2-4(6-b)=0,即b2+8b-20=0;解得b=2,b=-10(舍去);①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;②当b为底,a为腰时,则5-2<5<5+2,能够构成三角形;此时△ABC的周长为:5+5+2=12;答:△ABC的周长是12.【解析】若一元二次方程有两个相等的实数根,则根的判别式△=0,据此可求出b的值;进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.此题考查了根与系数的关系、等腰三角形的性质及三角形三边关系定理;在求三角形的周长时,不能盲目的将三边相加,而应在三角形三边关系定理为前提条件下分类讨论,以免造成多解、错解.22.【答案】2;π【解析】解:(1)如图所示:连接AC,作线段AC的垂线OE,交正方形网格于点O,则O点即为⊙O的圆心;(2)①在Rt△OCF中,∵CF=2,OF=4,∴OC===2;②在Rt△OAG与Rt△OCF中,AG=OF=4,OG=CF=2,OA=OC=2,∴∠OAG=∠COF,∠AOG=∠OCF,∵∠OAG+∠AOG=90°,∠OCF+∠COF=90°,∴∠AOG+∠COF=90°,∴∠AOC=90°,∴===π;③直线DC与⊙O相切.理由:∵连接CD,在△DCO中,CD=,CO=2,DO=5,∴CD2+CO2=25=DO2.∴∠DCO=90°,即CD⊥OC.∴CD与⊙O相切.(1)连接AC,作AC的垂直平分线,由垂径定理可知OE与网格的交点即为⊙O的圆心;(2)①直接根据正方形网格的特点及勾股定理求出OC的长即为⊙O的半径;②先根据直角三角形的性质得出∠AOC=90°,再根据弧长公式求出的度数;③连接CD,根据勾股定理得出CD、OD的长,由勾股定理的逆定理判断出△OCD的形状即可.本题考查的是垂径定理的应用、勾股定理、直线与圆的位置关系、勾股定理的逆定理及弧长的计算,在解答此题时要先根据垂径定理作出圆心,再根据勾股定理的相关知识进行解答.23.【答案】(1)证明:连接OA.∵AE是⊙O切线,∴OA⊥AE,∴∠OAE=90°,∴∠EAD+∠OAD=90°,∵∠ADO=∠ADE,OA=OD,∴∠OAD=∠ODA=∠ADE,∴∠EAD+∠ADE=90°,∴∠AED=90°,∴AE⊥CD;(2)解:过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形.∴OF=AE=4cm.又∵OF⊥CD,∴DF=CD=3cm.在Rt△ODF中,OD==5cm,即⊙O的半径为5cm.【解析】(1)欲证明AE⊥CD,只要证明∠EAD+∠ADE=90°即可;(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE,根据垂径定理得出DF=CD,在Rt△ODF中,根据勾股定理即可求得⊙O的半径.本题考查了等腰三角形的性质,垂径定理,平行线的判定和性质,切线的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.24.【答案】解:(1)相切,理由是:∵∠ACB=90°,BC为半圆的直径,∴以BC为直径的圆与AC所在的直线相切;(2)在Rt△ACB中,∠B=30°,∴∠A=90°-30°=60°,AC=AB=×4=2,由勾股定理得:BC==2,∴S阴影=S半圆-(S△ABC-S扇形AEC),=π-×2×+,=-2,答:图中阴影部分的面积是-2.【解析】(1)切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,满足这两个条件,则与圆相切;(2)先根据条件求直角三角形的各边长和锐角∠A的度数,再利用差求阴影部分的面积.本题考查了直线和圆的位置关系、勾股定理及扇形的面积,属于常考题型,难度不大;熟练掌握直线和圆的位置关系,在求阴影部分面积时,要注意利用和或差来求解.25.【答案】解:设y与x的解析式为:y=ax+b,则,解得:,∴y=-0.1x+8,根据题意,得:(x-20)(-0.1x+8)-40=40,∴x1=40,x2=60,∵尽可能让顾客得到实惠,∴价格应定为40元.答:价格应定为40元.【解析】设y与x的解析式为:y=ax+b,将表格中的数代入解析式,求出a、b的值,求出解析式,然后表示出利润,根据利润为40万元,求出销售价格.本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.26.【答案】解:(1)设运动的时间为t秒,由勾股定理得,OC==10,当CQ=CP时,2t=10-4t,解得,t=,此时CP=2×=,∴AP=8-=,P点坐标为(,6),当PC=PQ时,如图①,过点Q作AC的垂线交AC于点E,CQ=10-4t,CP=2t.∵△CEQ∽△CAO,∴EQ=CQ=(10-4t)=6-t,PE=(10-4t)-2t=8-t-2t=8-t,由勾股定理得,(6-t)2+(8-t)2=(2t)2,整理得:36t2-140t+125=0,解得,t1=,t2=(舍去),此时,AP=8××2=,∴P点坐标为(,6),当QC=PQ时,如图②,过点Q作AC的垂线交AC于点F,CQ=10-4t,CP=2t,∵△CFQ∽△CAO,∴QF═(10-4t)=6-t,PF=2t-(10-4t)=t-8,则(6-t)2+(t-8)2=(10-4t)2,整理得,21t2-40t=0,解得,t1=,t2=0(舍去),此时,AP=8-×2=,则P点坐标为(,6),综上所述,P点坐标为(,6),(,6),(,6);(2))如图③,连接EG,由题意得:△AOE≌△AFE,∴∠EFG=∠OBC=90°,∵E是OB的中点,∴EG=EG,EF=EB=4,在Rt△EFG和Rt△EBG中,,∴Rt△EFG≌Rt△EBG(HL)∴∠FEG=∠BEG,∠AOB=∠AEG=90°,∴△AOE∽△AEG,∴AE2=AO•AG,即36+16=6×AG,解得,AG=,由勾股定理得,CG==,∴BG=6-=,G的坐标为(8,).【解析】(1)分CQ=CP、PC=PQ和QC=PQ三种情况,根据等腰三角形的性质计算即可;(2)连接EG,由翻转变换的性质得到△AOE≌△AFE,根据全等三角形的性质得到∠EFG=∠OBC=90°,证明Rt△EFG≌Rt△EBG得到∠FEG=∠BEG,∠AOB=∠AEG=90°,得到△AOE∽△AEG,根据相似三角形的性质列出比例式,计算即可.本题考查的是翻转变换的性质、等腰三角形的性质、相似三角形的判定和性质,掌握翻转变换的性质、灵活运用分情况讨论思想是解题的关键.27.【答案】解:(1)∵BE=AB=15,在直角△BCE中,CE===9∴DE =6,∵∠EAD +∠BAE =90°,∠BAE =∠BEF ,∴∠EAD +∠BEF =90°,∵∠BEF +∠F =90°,∴∠EAD =∠F∵∠ADE =∠FBE∴△ADE ∽△FBE ,∴ ,, ∴BF =30;(2)①如图1,将矩形ABCD 和直角△FBE 以CD 为轴翻折,则△AMH 即为未包裹住的面积,∵Rt △F ′HN ∽Rt △F ′EG ,∴ ′ ′ = ,即 ,解得:HN =3,∴S △AMH = •AM •MH = ×12×24=144; ②如图2,将矩形ABCD 和Rt △ECF 以AD 为轴翻折,∵Rt △GBE ∽Rt △GB ′C ′,∴ ′ ′ ′,即′ ′ ,解得:GB ′=24, ∴S △B ′C ′G = •B ′C ′•B ′G = ×12×24=144, ∴按照两种包裹方法的未包裹面积相等.【解析】(1)先证明△ADE ∽△FBE ,利用相似的性质得BF ;(2)①利用相似三角形的判定,证明Rt △F′HN ∽Rt △F′EG ,利用相似三角形的性质,求得HN ,利用三角形的面积公式得结果;②利用相似三角形的判定,证明Rt △F′HN ∽Rt △F′EG ,利用相似三角形的性质,求得HN ,利用三角形的面积公式得结果.本题主要考查了相似三角形的判定和性质及翻折变化,以动态(平移和旋转)的形式考查了分类讨论的思想、函数的知识和直角三角形是解答此题的关键.28.【答案】P 2,P 3;(4,-2)或P (-4,6);0<r < 或r >2 +2【解析】解:(1)①连接AC和BD,交于点M,∵四边形ABCD是正方形,∴M到正方形ABCD四条边距离都相等∴⊙P一定通过点M,∵A(2,4)∴M(0,2)设⊙P的圆心坐标是(x,y),∴r=4时,∴x2+(y-2)2=(4)2,即,x2+(y-2)2=32,把P1(0,-3),P2(4,6),P3(4,2)代入,只有P2,P3成立,∴可以成为正方形ABCD的“等距圆”的圆心的是P2,P3,故答案为:P2,P3;②∵点P在直线y=-x+2上,且⊙P是正方形ABCD的“等距圆”,∴把y=-x+2代入x2+(y-2)2=32,得x2+x2=32,解得x=±4,∴y=-2或6,∴P(4,-2)或P(-4,6).故答案为:(4,-2)或P(-4,6).(2)如下图:①∵⊙P同时为正方形ABCD与正方形EFGH的“等距圆”,∴⊙P同时过正方形ABCD的对称中心E和正方形EFGH的对称中心I.∴点P在线段EI的中垂线上.∵A(2,4),正方形ABCD的边CD在x轴上;F(6,2),正方形EFGH的边HE 在y轴上,∴E(0,2),I(3,5)∴∠IEH=45°,设线段EI的中垂线与y轴交于点L,与x轴交于点M,∴△LIE为等腰直角三角形,LI⊥y轴,∴L(0,5),∴△LOM为等腰直角三角形,LO=OM∴M(5,0),∴P在直线y=-x+5上,∴设P(p,-p+5)过P作PQ⊥直线BC于Q,连结PE,∵⊙P与BC所在直线相切,∴PE=PQ,∴p2+(-p+5-2)2=(p+2)2,解得:P1=5+2,P2=5-2,∴P1(5+2,-2),P2(5-2,2),∵⊙P过点E,且E点在y轴上,∴⊙P在y轴上截得的弦长为2|-2-2|=4或2|2-2|=4-4.②如图2,连接DH,作DT⊥HF,以D为圆心,DE为半径作圆,交DT于点E1,交HD于E2,当0<r<DT-DE1时,线段HF上没有一个点能成为它的“等距圆”的圆心.∵HF所在的直线为:y=-x+8,DT所在的直线为:y=x-2,∴T(5,3),∵D(2,0),∴DT==3,∵DE=DE1∴DT-DE=DT-DE=3-2=,1∴当0<r<时,线段HF上没有一个点能成为它的“等距圆”的圆心.当r>HE2时,线段HF上没有一个点能成为它的“等距圆”的圆心.∵HE2=HD+DE2,DE2=DE,∴HE=HD+DE=+2=2+2,2∴当r>2+2时,线段HF上没有一个点能成为它的“等距圆”的圆心.综上可知当0<r<或r>2+2时线段HF上没有一个点能成为它的“等距圆”的圆心,故答案为:0<r<或r>2+2.(1)①连接AC和BD,交于点M,设⊙P的圆心坐标是(x,y),列出圆心到M的关系式,把P1(0,-3),P2(4,6),P3(4,2)代入,看是否成立来逆定,②把y=-x+2代入x2+(y-2)2=32,求出x和y的值,再写出坐标.(2)①先求出△LIE为等腰直角三角形,得到L(0,5),进而得出△LOM为等腰直角三角形,设P(p,-p+5)据关系列出方程求了圆心,的坐标,最后得出弦长.②连接DH,作DT⊥HF,以D为圆心,DE为半径作圆,交DT于点E1,交HD于E2,当0<r<DT-DE1时,线段HF上没有一个点能成为它的“等距圆”的圆心.当r>HE2时,线段HF上没有一个点能成为它的“等距圆”的圆心.据此求解.本题考查圆的综合题,解题的关键是明确题意,根据题目给出的条件,作出合适的辅助线,找出所求问题需要的条件,利用数形结合的思想解答问题.此外对本题中的“等距圆”的定义正确理解也是解题的关键.。

无锡市新区2016届九年级上期中数学试卷含答案解析

无锡市新区2016届九年级上期中数学试卷含答案解析

江苏省无锡市新区2016届九年级上学期期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.方程x2+3=4x用配方法解时,应先化成()A.(x﹣2)2=7 B.(x+2)2=1 C.(x+2)2=2 D.(x﹣2)2=12.下列说法正确的是()A.经过三点可以作一个圆B.三角形的外心到这个三角形的三边距离相等C.等弧所对的圆心角相等D.相等的圆心角所对的弧相等3.关于x的一元二次方程(a﹣1)x2+2ax+1﹣a2=0有一个根是0,则a=()A.1 B.﹣1 C.±1 D.04.若圆的半径是5,圆心的坐标是(0,0),点P的坐标是(﹣4,3),则点P与⊙O的位置关系是()A.点P在⊙O外 B.点P在⊙O内C.点P在⊙O上 D.点P在⊙O外或⊙O上5.如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是()A.m>2 B.m<2 C.m>2且m≠1 D.m<2且m≠16.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1827.已知实数a、b满足(a2+b2)2﹣2(a2+b2)=8,则a2+b2的值为()A.﹣2 B.4 C.4或﹣2 D.﹣4或28.如图,矩形ABCD中,AB=2,BC=3,以A为圆心,1为半径画⊙A,E是圆⊙A上一动点,P 是BC上一动点,则PE+PD最小值是()A.2 B.3 C.4 D.2二、填空题(本大题共10小题,每空2分,共24分)9.把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是,它的一次项系数是.10.若圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为cm2.(结果保留π)11.已知关于x的方程mx2﹣3x+6=0的一个根是﹣2,则m=,方程的另一个根是.12.网民小李的QQ群里共有若干个好友,每个好友都分别给群里其他好友发送了一条消息,这样共有90条消息,设小李的QQ群里共有好友x个,可列方程为:.13.如图,AB是⊙O直径,∠AOC=130°,则∠D=°.14.如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为cm.15.某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是.16.已知一个三角形的两边长分别为2和9,第三边的长为一元二次方程x2﹣14x+48=0的一个根,则这个三角形的周长为.17.如图,在△ABC中,∠C=90°,AC=BC,AB=2,点O为AB的中点,以点O为圆心作半圆与边AC相切于点D.则图中阴影部分的面积为.18.如图,△ABC内接于⊙O,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H.若BC=6,AH=4,则⊙O的半径为.三、解答题(本大题共7小题,共50分)19.解下列方程:(1)(x﹣2)2=3(x﹣2)(2)x(x﹣3)=10(3)4y2=8y+1.(用配方法解)(4)x2+3x﹣2=0.)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是队.21.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.22.如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.(2)请在(1)的基础上,以点O为原点、水平方向所在直线为x轴、竖直方向所在直线为y轴,建立平面直角坐标系,完成下列问题:①(2,0)⊙D的半径为(结果保留根号);②若用扇形ADC围成一个圆锥的侧面,则该圆锥的底面圆半径是;③若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.23.今年圣诞节前夕,小明、小丽两位同学到某超市调研一种袜子的销售情况,这种袜子的进价为每双1元,请根据小丽提供的信息解决小明提出的问题.24.如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以3cm/s速度运动.P、Q分别从点A、C同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t s,问:(1)t为何值时,P、Q两点之间的距离为10cm?(2)t分别为何值时,直线PQ与⊙O相切?相离?相交?25.在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.江苏省无锡市新区2016届九年级上学期期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.方程x2+3=4x用配方法解时,应先化成()A.(x﹣2)2=7 B.(x+2)2=1 C.(x+2)2=2 D.(x﹣2)2=1【考点】解一元二次方程-配方法.【分析】在本题中,把一次项、常数项2分别移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:由原方程,得x2﹣4x=﹣3,配方,得x2﹣4x+4=﹣3+4,即(x﹣2)2=1故选:D.【点评】此题配方法解一元二次方程,掌握配方法的一般步骤是本题的关键,配方法的一般步骤是(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.2.下列说法正确的是()A.经过三点可以作一个圆B.三角形的外心到这个三角形的三边距离相等C.等弧所对的圆心角相等D.相等的圆心角所对的弧相等【考点】确定圆的条件;圆心角、弧、弦的关系;三角形的外接圆与外心.【分析】根据确定圆的条件对A进行判断;根据三角形外心的定义对B进行判断;根据圆心角、弦、弧的关系对C、D进行判断.【解答】解:A、经过不共线的三点可以作一个圆,所以A选项错误;B、三角形的外心到这个三角形的三个顶点的距离相等,所以B选项错误;C、等弧所对的圆心角相等,所以C选项正确;D、在同圆或等圆中,相等的圆心角所对的弧相等,所以D选项错误.故选C.【点评】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.原式考查了圆心角、弦、弧的关系和三角形的外接圆.3.关于x的一元二次方程(a﹣1)x2+2ax+1﹣a2=0有一个根是0,则a=()A.1 B.﹣1 C.±1 D.0【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=0代入原方程得到1﹣a2=0,解得:a=±1,∵a﹣1≠0,∴a≠1,故选B.【点评】本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.4.若圆的半径是5,圆心的坐标是(0,0),点P的坐标是(﹣4,3),则点P与⊙O的位置关系是()A.点P在⊙O外 B.点P在⊙O内C.点P在⊙O上 D.点P在⊙O外或⊙O上【考点】点与圆的位置关系;坐标与图形性质.【分析】求得OP的长,与圆的半径进行比较即可确定.【解答】解:OP==5,则OP等于圆的半径,则点P在⊙O上.故选C.【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.5.如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是()A.m>2 B.m<2 C.m>2且m≠1 D.m<2且m≠1【考点】根的判别式;一元二次方程的定义.【专题】计算题.【分析】根据一元二次方程的定义和判别式的意义得到m﹣1≠0且△=22﹣4(m﹣1)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得m﹣1≠0且△=22﹣4(m﹣1)>0,解得m<2且m≠1.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.6.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.7.已知实数a、b满足(a2+b2)2﹣2(a2+b2)=8,则a2+b2的值为()A.﹣2 B.4 C.4或﹣2 D.﹣4或2【考点】换元法解一元二次方程.【分析】设a2+b2=x,则原方程变为x2﹣2x=8,解这个方程即可求得的a2+b2值.【解答】解:设a2+b2=x,原方程变为:x2﹣2x=8,x2﹣2x﹣8=0,(x﹣4)(x+2)=0,解得:x1=4,x2=﹣2,因为平方和是非负数,所以a2+b2的值为4;故选B.【点评】考查了换元法解一元二次方程,换元法是解方程时常用方法之一,它能够把一些方程化繁为简,化难为易,对此应注意总结能用换元法解的方程的特点,寻找解题技巧.8.如图,矩形ABCD中,AB=2,BC=3,以A为圆心,1为半径画⊙A,E是圆⊙A上一动点,P 是BC上一动点,则PE+PD最小值是()A.2 B.3 C.4 D.2【考点】轴对称-最短路线问题.【分析】以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆A′,连接A′D交BC于P,则DE′就是PE+PD最小值;根据勾股定理求得A′D的长,即可求得PE+PD最小值.【解答】解:如图,以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆A′,连接A′D交BC 于P,则DE′就是PE+PD最小值;∵矩形ABCD中,AB=2,BC=3,圆A的半径为1,∴A′D′=BC=3,DD′=2DC=4,AE′=1,∴A′D=5,∴DE′=5﹣1=4∴PE+PD=PE′+PD=DE′=4,故答案为4.【点评】本题考查了轴对称﹣最短路线问题,勾股定理的应用等,作出对称图形是本题的关键.二、填空题(本大题共10小题,每空2分,共24分)9.把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是3x2﹣10x﹣4=0,它的一次项系数是﹣10.【考点】一元二次方程的一般形式.【分析】首先把方程化成一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),再确定一次项系数.【解答】解:3x(x﹣2)=4(x+1),3x2﹣6x=4x+4,3x2﹣10x﹣4=0,一次项系数是﹣10,故答案为:3x2﹣10x﹣4=0;﹣10.【点评】此题主要考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.10.若圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为24πcm2.(结果保留π)【考点】圆锥的计算.【专题】计算题.【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为3,则底面周长=6π,侧面面积=×6π×5=15π;底面积为=9π,全面积为:15π+9π=24π.故答案为24π.【点评】本题利用了圆的周长公式和扇形面积公式求解.11.已知关于x的方程mx2﹣3x+6=0的一个根是﹣2,则m=﹣3,方程的另一个根是1.【考点】一元二次方程的解.【分析】将方程的根代入求得m的值,然后代入求解方程即可求得另一根.【解答】解:∵关于x的方程mx2﹣3x+6=0的一个根是﹣2,∴4m+6+6=0解得:m=﹣3,∴方程变为x2+x﹣2=0,解得:x=﹣2或x=1,故答案为:﹣3,1.【点评】考查了一元二次方程的解的定义,解题的关键是能够将方程的解代入并求解m的值,也可利用根与系数的关系求解.12.网民小李的QQ群里共有若干个好友,每个好友都分别给群里其他好友发送了一条消息,这样共有90条消息,设小李的QQ群里共有好友x个,可列方程为:x(x﹣1)=90.【考点】由实际问题抽象出一元二次方程.【分析】每个好友都有一次发给QQ群其他好友消息的机会,即每两个好友之间要互发一次消息;设有x个好友,每人发x﹣1条消息,则发消息共有x(x﹣1)条.【解答】解:设有x个好友,依题意,x(x﹣1)=90,故答案为:x(x﹣1)=90.【点评】本题考查了由实际问题抽象出一元二次方程,类似于几名同学互赠明信片,每两名同学之间会产生两张明信片,即:可重复;与每两名同学之间握手有区别.13.如图,AB是⊙O直径,∠AOC=130°,则∠D=25°°.【考点】圆周角定理.【分析】由AB是⊙O直径,∠AOC=130°,根据邻补角的定义,即可求得∠BOC的度数,然后根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠D的度数.【解答】解:∵AB是⊙O直径,∠AOC=130°,∴∠BOC=180°﹣∠AOC=50°,∴∠D=∠BOC=25°.故答案为:25.【点评】此题考查了圆周角定理.此题比较简单,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.14.如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为cm.【考点】切线的性质;勾股定理;垂径定理.【分析】根据垂径定理得BE的长,再根据勾股定理列方程求解即可.【解答】解:作OE垂直AB于E,交⊙O于D,设OB=r,根据垂径定理,BE=AB=×6=3cm,根据题意列方程得:(r﹣2)2+9=r2,解得r=,∴该圆的半径为cm.【点评】此题很巧妙,将垂径定理和勾股定理不露痕迹的镶嵌在实际问题中,考查了同学们的转化能力.15.某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是 1.6.【考点】方差.【专题】计算题.【分析】根据平均数的计算公式先求出x的值,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],代入计算即可.【解答】解:∵这组数据的平均数是10,∴(10+10+12+x+8)÷5=10,解得:x=10,∴这组数据的方差是×[3×(10﹣10)2+(12﹣10)2+(8﹣10)2]=1.6;故答案为:1.6.【点评】此题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].16.已知一个三角形的两边长分别为2和9,第三边的长为一元二次方程x2﹣14x+48=0的一个根,则这个三角形的周长为19.【考点】解一元二次方程-因式分解法;三角形三边关系.【专题】综合题.【分析】易得方程的两根,那么根据三角形的三边关系,得到符合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣14x+48=0得第三边的边长为6或8,依据三角形三边关系,不难判定边长2,6,9不能构成三角形,2,8,9能构成三角形,∴三角形的周长=2+8+9=19.故答案为:19.【点评】综合考查了解一元二次方程﹣因式分解法和三角形三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.17.如图,在△ABC中,∠C=90°,AC=BC,AB=2,点O为AB的中点,以点O为圆心作半圆与边AC相切于点D.则图中阴影部分的面积为1﹣.【考点】切线的性质;扇形面积的计算.【分析】遇切线,想直角;根据切线,可得∠ADO=90°,根据AB的长,求出AO的长度;解直角三角形,求出半径OD的长度;根据阴影部分的面积=2×(三角形的面积减扇形的面积),计算即可.【解答】解:如右图,连接OD,∵AC与⊙O相切,∴∠ADO=90°,∵∠C=90°,CA=CB,∴∠A=∠B=45°,∴∠AOD=45°,∵O是AB的中点,AB=,∴OA=,在Rt△AOD中,∠A=45°,OA=,∴OD=cos45°•OA==1,∴.故答案为:1﹣.【点评】本题是切线的性质、等腰三角形的性质、解直角三角形、三角形的面积、扇形的面积的综合应用,根据已知条件求出圆的半径是解决此题的关键.18.如图,△ABC内接于⊙O,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H.若BC=6,AH=4,则⊙O的半径为.【考点】平行四边形的判定与性质;勾股定理;垂径定理;圆周角定理.【分析】作直径CM,连接MB、MA,做OF⊥BC于F,推出∠MAC=∠MBC=90°,求出平行四边形MBHA,求出BM,求出OF,根据垂径定理求出CF,根据勾股定理求出OC即可.【解答】解:作直径CM,连接MB、MA,作OF⊥BC于F,∵CM为直径,∴∠MBC=∠MAC=90°,又∵∠ADC=∠BEC=90°∴∠MBC=∠ADC,∠MAC=∠BEC,∴MB∥AD,MA∥BE,∴四边形MBHA为平行四边形,∴MB=AH=4,又∵OF⊥BC,OF过O,∴根据垂径定理:CF=FB=BC=3;又∵CO=OM,∴OF=MB=2,∴在Rt△COF中,OC2=OF2+CF2=22+32=13,∴OC=.故答案为:.【点评】本题考查的是平行四边形的判定与性质,涉及到圆周角定理,勾股定理,垂径定理,平行四边形的性质和判定等知识点的综合应用.三、解答题(本大题共7小题,共50分)19.解下列方程:(1)(x﹣2)2=3(x﹣2)(2)x(x﹣3)=10(3)4y2=8y+1.(用配方法解)(4)x2+3x﹣2=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【专题】计算题.【分析】(1)先把方程变形为(x﹣2)2﹣3(x﹣2)=0,再利用因式分解法解方程;(2)先把方程化为一般式为x2﹣3x﹣10=0,然后利用因式分解法解方程;(3)利用配方法得到(y﹣1)2=,然后利用直接开平方法解方程;(4)利用求根公式法解方程.【解答】解:(1)(x﹣2)2﹣3(x﹣2)=0,(x﹣2)(x﹣2﹣3)=0,x﹣2=0或x﹣2﹣3=0,所以x1=2,x2=5;(2)x2﹣3x﹣10=0,(x﹣5)(x+2)=0,x﹣5=0或x+2=0,所以x1=5,x2=﹣2;(3)y2﹣2y=,y2﹣2y+1=+1,(y﹣1)2=,y﹣1=±,所以y1=1+,y2=1﹣;(4)△=32﹣4×1×(﹣2)=17,x=,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法和公式法解一元二次方程.)甲队成绩的中位数是9.5分,乙队成绩的众数是10分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是乙队.【考点】方差;加权平均数;中位数;众数.【专题】计算题;图表型.【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点评】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.21.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.【考点】根的判别式;一元二次方程的解;勾股定理.【分析】(1)根据关于x的方程x2﹣(m+2)x+(2m﹣1)=0的根的判别式的符号来证明结论;(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,由勾股定理得斜边的长度为:;②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理得该直角三角形的另一直角边为;再根据三角形的周长公式进行计算.【解答】(1)证明:∵△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即△>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的周长为1+3+2=4+2.【点评】本题综合考查了勾股定理、根的判别式、一元二次方程解的定义.解答(2)时,采用了“分类讨论”的数学思想.22.如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.(2)请在(1)的基础上,以点O为原点、水平方向所在直线为x轴、竖直方向所在直线为y轴,建立平面直角坐标系,完成下列问题:①(2,0)⊙D的半径为2(结果保留根号);②若用扇形ADC围成一个圆锥的侧面,则该圆锥的底面圆半径是;③若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.【考点】圆的综合题.【分析】(1)根据题意建立平面直角坐标系,然后作出弦AB的垂直平分线,以及BC的垂直平分线,两直线的交点即为圆心D,连接AD,CD;(2)①根据第一问画出的图形即可得出C及D的坐标;②在直角三角形AOD中,由OA及OD的长,利用勾股定理求出AD的长,即为圆O的半径;③直线CE与圆O的位置关系是相切,理由为:由圆的半径得出DC的长,在直角三角形CEF中,由CF及FE的长,利用勾股定理求出CE的长,再由DE的长,利用勾股定理的逆定理得出三角形DCE为直角三角形,即EC垂直于DC,可得出直线CE为圆O的切线.【解答】解:(1)根据题意画出相应的图形,如图所示:(2)①在Rt△AOD中,OA=4,OD=2,根据勾股定理得:AD==2,则⊙D的半径为2;②AC==2,CD=2,AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧长==π,圆锥的底面的半径=;③直线EC与⊙D的位置关系为相切,理由为:在Rt△CEF中,CF=2,EF=1,根据勾股定理得:CE==,在△CDE中,CD=2,CE=,DE=5,∵CE2+CD2=()2+(2)2=5+20=25,DE2=25,∴CE2+CD2=DE2,∴△CDE为直角三角形,即∠DCE=90°,则CE与圆D相切.【点评】此题考查了直线与圆的位置关系,涉及的知识有:坐标与图形性质,垂径定理,勾股定理及逆定理,切线的判定,利用了数形结合的思想,根据题意画出相应的图形是解本题的关键.23.今年圣诞节前夕,小明、小丽两位同学到某超市调研一种袜子的销售情况,这种袜子的进价为每双1元,请根据小丽提供的信息解决小明提出的问题.【考点】一元二次方程的应用.【专题】销售问题.【分析】设每双袜子的定价为x元,由于每天的利润为800元,根据利润=(定价﹣进价)×销售量,列出方程求解即可.【解答】解:设每双袜子的定价为x元时,每天的利润为800元.根据题意,得(x﹣1)(500﹣10×)=800,解得x1=3,x2=5.∵售价不能超过进价的300%,∴x≤1×300%.即x≤3.∴x=3.答:每双袜子的定价为3元时,每天的利润为800元.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以3cm/s速度运动.P、Q分别从点A、C同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t s,问:(1)t为何值时,P、Q两点之间的距离为10cm?(2)t分别为何值时,直线PQ与⊙O相切?相离?相交?【考点】圆的综合题.【分析】(1)根据速度乘时间,可得AP,BQ,根据线段的和差,可得OE的长,根据勾股定理,可得答案;(2)根据PQ从相交到相切,由相切到相离,由相离到相切,再到相交,根据相切,可得PQ=AP+BQ,根据勾股定理,可得t值;根据小于第一次相切时相交,大于第一次相切的时间,小于第二次相切的时间时相离,根据大于第二次相切时再次相交,可得答案.【解答】解:(1)AP=t,BQ=26﹣3t,如图1:作PE⊥BC于E,.QE=26﹣4t.由勾股定理,得(26﹣4t)2+64=100,解得t=5或8;(2)当PQ与⊙O相切时,如图2,,由相切,得PQ=AP+BQ=26﹣2t,BE=26﹣4t,PE=8,(26﹣4t)2+64=(26﹣2t)2直线PQ与⊙O相切,t=8或;当26÷3=,当t=时运动停止,相交0≤t<或8<t≤;相离<t<8.【点评】本题考查了圆的综合题,利用了勾股定理,理解直线由相交到相切,再到相切,最后相交是解题关键.25.在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为5cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.【考点】正多边形和圆.【专题】压轴题;探究型.【分析】(1)(Ⅰ)连接正方形的对角线BD,利用勾股定理求出BD的长即可;(Ⅱ)利用勾股定理求出小正方形对角线的长即可;(Ⅲ)找出过A、B、C三点的圆的圆心及半径,利用勾股定理求解即可;(2)连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10﹣x,再根据勾股定理解答.【解答】解:(1)(Ⅰ)连接BD,∵AD=3×5=15cm,AB=5cm,∴BD==cm;。

江苏省无锡市九年级(上)期中数学试卷

江苏省无锡市九年级(上)期中数学试卷

江苏省无锡市九年级(上)期中数学试卷一、精心选一选(本大题共10小题,每小题3分,共30分,每题的四个选项中,只有一个符合题意)1.(3分)(2015秋•无锡期中)下列方程①7x2﹣8x=1 ②2x2﹣5xy+6y2=0 ③5x2﹣﹣1=0 ④=3y中是一元二次方程的为()A.①②B.①③C.①④D.①②③2.(3分)(2015秋•无锡期中)下列方程中两根之和等于1的是()A.x2+x+1=0 B.x2﹣x=﹣1 C.x2﹣x﹣100=0 D.3.(3分)(2015秋•无锡期中)在平面直角坐标系中,以O为圆心的圆过点A(0,﹣4),则点B(﹣2,3)与⊙O的位置关系是()A.在圆内B.在圆外C.在圆上D.无法确定4.(3分)(2010•芜湖)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠55.(3分)(2015秋•无锡期中)如图,△ABC中,DE∥BC,且DE:BC=2:3,则下列结论一定正确的是()A.AD:DE=2:3 B.AD:BD=2:3 C.AD:AE=2:3 D.AD:AB=2:3 6.(3分)(2011•海南)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对B.2对C.3对D.4对7.(3分)(2015秋•无锡期中)已知一个点到圆上的点的最大距离是5,最小距离是1,则这个圆的半径是()A.6 B.2 C.2或3 D.4或68.(3分)(2016•湘潭一模)如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.9.(3分)(2015秋•无锡期中)如图,四边形PAOB是扇形OMN的内接矩形,顶点P在弧MN上,且不与M,N重合,当P点在弧MN上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值()A.变大 B.变小 C.不变 D.不能确定10.(3分)(2012•南京)如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为()A.B.C.D.二、仔细填一填(本大题共8小题,每空2分,共16分)11.(2分)(2015•东莞)若两个相似三角形的周长比为2:3,则它们的面积比是______.12.(2分)(2015•兰州)如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=______.13.(2分)(2014•泰州一模)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______.14.(2分)(2011秋•香河县期末)已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值等于______.15.(2分)(2015秋•宜兴市校级期末)若a,b是方程x2+x﹣2015=0的两实数根,则a2+2a+b=______.16.(2分)(2011•津南区一模)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为______cm.17.(2分)(2015•永春县校级自主招生)如图,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是______cm.18.(2分)(2015•宿迁)如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为______.三、精心做一做(本大题共9小题,满分84分)19.(16分)(2015秋•无锡期中)用适当的方法解下列方程(1)4x2﹣1=0(2)x2﹣4x+1=0(配方法)(3)5(x+2)=4x(x+2)(4)x2﹣2x﹣3=0.20.(8分)(2015秋•揭阳校级期末)已知x=﹣1是方程x2+mx﹣5=0的一个根,求m的值及方程的另一个根.21.(8分)(2015•枣庄)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是______;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是______;(3)△A2B2C2的面积是______平方单位.22.(8分)(2015秋•无锡期中)如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3.(1)求⊙O的半径;(2)若点P是AB上的一动点,试求线段OP的取值范围.23.(8分)(2015•泰安)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.24.(8分)(2015秋•无锡期中)万圣节两周前,某商店购进1000个万圣节面具,进价为每个6元,第一周以每个10元的价格售出200个;随着万圣节的临近,预计第二周若按每个10元的价格销售可售出400个,但商店为了尽快减少库存,决定单价降价x元销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价);节后,商店对剩余面具清仓处理,以第一周售价的四折全部售出.(1)当单价降低2元时,计算第二周的销售量和售完这批面具的总利润;(2)如果销售完这批面具共获利1300元,问第二周每个面具的销售价格为多少元?25.(8分)(2014•防城港)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.26.(10分)(2002•陕西)阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)解答问题:(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1______S2(填“>”“=”或“<”).(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画______个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出______个,利用图④把它画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?27.(10分)(2015•南通)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.江苏省无锡市九年级(上)期中数学试卷参考答案与试题解析一、精心选一选(本大题共10小题,每小题3分,共30分,每题的四个选项中,只有一个符合题意)1.(3分)(2015秋•无锡期中)下列方程①7x2﹣8x=1 ②2x2﹣5xy+6y2=0 ③5x2﹣﹣1=0 ④=3y中是一元二次方程的为()A.①②B.①③C.①④D.①②③【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①7x2﹣8x=1是一元二次方程,②2x2﹣5xy+6y2=0 是二元二次方程,③5x2﹣﹣1=0是分式方程,④=3y是一元二次方程,故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.(3分)(2015秋•无锡期中)下列方程中两根之和等于1的是()A.x2+x+1=0 B.x2﹣x=﹣1 C.x2﹣x﹣100=0 D.【分析】根据根的判别式对A、B、D进行判断;根据根与系数的关系对C进行判断.【解答】解:A、△=12﹣4×1<0,方程没有实数解,所以A选项错误;B、x2﹣x+1=0,△=(﹣1)2﹣4×1<0,方程没有实数解,所以B选项错误;C、x1+x2=1,所以C选项正确;D、△=12﹣4×<0,方程没有实数解,所以D选项错误.故选C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.3.(3分)(2015秋•无锡期中)在平面直角坐标系中,以O为圆心的圆过点A(0,﹣4),则点B(﹣2,3)与⊙O的位置关系是()A.在圆内B.在圆外C.在圆上D.无法确定【分析】由已知条件可知圆的半径为4,再根据勾股定理可求出OB的长,和圆的半径4比较大小即可判断点B和⊙O的位置关系.【解答】解:∵以O为圆心的圆过点A(0,﹣4),∴圆的半径r=4,∵点B(﹣2,3),∴OB==<4,∴点B(﹣2,3)与⊙O的位置关系是在圆内,故选A.【点评】本题考查了点与圆的位置关系的判断.解决此类题目的关键是首先确定点与圆心的距离,然后与半径进行比较,进而得出结论.4.(3分)(2010•芜湖)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.5.(3分)(2015秋•无锡期中)如图,△ABC中,DE∥BC,且DE:BC=2:3,则下列结论一定正确的是()A.AD:DE=2:3 B.AD:BD=2:3 C.AD:AE=2:3 D.AD:AB=2:3 【分析】由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵DE∥BC,∴=,∴AD:AB=2:3,故选:D.【点评】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,由平行线得出比例式是解题的关键.6.(3分)(2011•海南)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对B.2对C.3对D.4对【分析】根据相似三角形的判定定理及已知即可得到存在的相似三角形.【解答】解:∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽△CBD,△ABC∽△CBD,所以有三对相似三角形.故选C.【点评】本题主要考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.7.(3分)(2015秋•无锡期中)已知一个点到圆上的点的最大距离是5,最小距离是1,则这个圆的半径是()A.6 B.2 C.2或3 D.4或6【分析】点应分为位于圆的内部与外部两种情况讨论:①当点在圆内时,直径=最小距离+最大距离;②当点在圆外时,直径=最大距离﹣最小距离.【解答】解:分为两种情况:①当点M在圆内时,如图1,∵点到圆上的最小距离MB=1,最大距离MA=5,∴直径AB=1+5=6,∴半径r=3;②当点M在圆外时,如图2,∵点到圆上的最小距离MB=1,最大距离MA=5,∴直径AB=5﹣1=4,∴半径r=2.故选C.【点评】本题主要考查了点与圆的位置关系,注意到分两种情况进行讨论是解决本题的关键.8.(3分)(2016•湘潭一模)如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】设小正方形的边长为1,根据已知可求出△ABC三边的长,同理可求出阴影部分的各边长,从而根据相似三角形的三边对应成比例即可得到答案.【解答】解:∵小正方形的边长均为1∴△ABC三边分别为2,,同理:A中各边的长分别为:,3,;B中各边长分别为:,1,;C中各边长分别为:1、2,;D中各边长分别为:2,,;∵只有B项中的三边与已知三角形的三边对应成比例,且相似比为故选B.【点评】此题主要考查学生对相似三角形的判定方法的理解及运用.9.(3分)(2015秋•无锡期中)如图,四边形PAOB是扇形OMN的内接矩形,顶点P在弧MN上,且不与M,N重合,当P点在弧MN上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值()A.变大 B.变小 C.不变 D.不能确定【分析】连接OP,根据勾股定理以及矩形的性质定理即可求解.【解答】解:∵直角△PAB中,AB2=PA2+PB2,又∵矩形PAOB中,OP=AB,∴PA2+PB2=AB2=OP2.故选C.【点评】本题考查的是圆的认识,涉及到矩形的性质定理以及勾股定理,正确作出辅助线是关键.10.(3分)(2012•南京)如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D 分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为()A.B.C.D.【分析】首先延长DC与A′D′交于点M,由四边形ABCD是菱形与折叠的性质,易求得△BCM是等腰三角形,△D′FM是含30°角的直角三角形,然后设CF=x,D′F=DF=y,利用正切函数的知识,即可求得答案.【解答】解:延长DC与A′D′,交于点M,∵在菱形纸片ABCD中,∠A=60°,∴∠DCB=∠A=60°,∵AB∥CD,∴∠D=180°﹣∠A=120°,根据折叠的性质,可得∠A′D′F=∠D=120°,∴∠FD′M=180°﹣∠A′D′F=60°,∵D′F⊥CD,∴∠D′FM=90°,∠M=90°﹣∠FD′M=30°,∵∠BCM=180°﹣∠BCD=120°,∴∠CBM=180°﹣∠BCM﹣∠M=30°,∴∠CBM=∠M=30°,∴BC=CM,设CF=x,D′F=DF=y,则BC=CM=CD=CF+DF=x+y,∴FM=CM+CF=2x+y,在Rt△D′FM中,tanM=tan30°==,∴x=y,∴==.故选:A.【点评】此题考查了折叠的性质、菱形的性质、等腰三角形的判定与性质以及直角三角形的性质.此题难度较大,注意掌握辅助线的作法,注意折叠中的对应关系,注意数形结合思想的应用.二、仔细填一填(本大题共8小题,每空2分,共16分)11.(2分)(2015•东莞)若两个相似三角形的周长比为2:3,则它们的面积比是4:9.【分析】根据相似三角形周长的比等于相似比求出相似比,再根据相似三角形面积的比等于相似比的平方求解即可.【解答】解:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:9.故答案为:4:9.【点评】本题考查了相似三角形的性质,是基础题,熟记性质是解题的关键.12.(2分)(2015•兰州)如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=3.【分析】根据等比性质,可得答案.【解答】解:由等比性质,得k===3,故答案为:3.【点评】本题考查了比例的性质,利用了等比性质:===k⇒k==.13.(2分)(2014•泰州一模)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是20%.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.【点评】本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.14.(2分)(2011秋•香河县期末)已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值等于4.【分析】首先把x2+y2当作一个整体,设x2+y2=k,方程即可变形为关于k的一元二次方程,解方程即可求得k即x2+y2的值.【解答】解:设x2+y2=k∴(k+1)(k﹣3)=5∴k2﹣2k﹣3=5,即k2﹣2k﹣8=0∴k=4,或k=﹣2又∵x2+y2的值一定是非负数∴x2+y2的值是4.故答案为:4.【点评】此题注意把x2+y2看作一个整体,然后运用因式分解法解方程,最后注意根据式子的形式分析值的取舍.15.(2分)(2015秋•宜兴市校级期末)若a,b是方程x2+x﹣2015=0的两实数根,则a2+2a+b= 2014.【分析】先根据一元二次方程的解的定义得到a2+a﹣2015=0,即a2+a=2015,则a2+2a+b可化为a2+a+a+b=2015+a+b,然后利用根与系数的关系得到a+b=﹣1,再利用整体代入的方法计算即可.【解答】解:∵a是方程x2+x﹣2015=0的根,∴a2+a﹣2015=0,即a2+a=2015,∴a2+2a+b=a2+a+a+b=2015+a+b,∵a,b是方程x2+x﹣2015=0的两个实数根,∴a+b=﹣1,∴a2+2a+b=2015+(﹣1)=2014.故答案为:2014.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.16.(2分)(2011•津南区一模)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为cm.【分析】已知小正方形的面积即可求得边长,在直角△ACE中,利用勾股定理即可求解.【解答】解:如图,圆心为A,设大正方形的边长为2x,圆的半径为R,∵正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE=BC=x,CE=2x;∵小正方形的面积为16cm2,∴小正方形的边长EF=DF=4,由勾股定理得,R2=AE2+CE2=AF2+DF2,即x2+4x2=(x+4)2+42,解得,x=4,∴R=4cm,故答案为:4【点评】本题考查了勾股定理的运用和正方形的性质,解题的关键是正确的做出辅助线构造直角三角形.17.(2分)(2015•永春县校级自主招生)如图,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是cm.【分析】本题的综合性质较强,根据全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,直角梯形的性质可知.【解答】解:如图,作AE⊥CD,垂足为E,OF⊥AD,垂足为F,则四边形AECB是矩形,CE=AB=2cm,DE=CD﹣CE=4﹣2=2cm,∵∠AOD=90°,AO=OD,所以△AOD是等腰直角三角形,AO=OD,∠OAD=∠ADO=45°,BO=CD,∵AB∥CD,∴∠BAD+∠ADC=180°∴∠ODC+∠OAB=90°,∵∠ODC+∠DOC=90°,∴∠DOC=∠BAO,∵∠B=∠C=90°∴△ABO≌△OCD,∴OC=AB=2cm,OB=CD=4cm,BC=BO+OC=AE=6cm,由勾股定理知,AD2=AE2+DE2,得AD=2cm,∴AO=OD=2cm,S△AOD=AO•DO=AD•OF,∴OF=cm.【点评】本题利用了全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,直角梯形的性质求解.18.(2分)(2015•宿迁)如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案.【解答】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴=,即:,所以可得:PM=.【点评】本题主要考查了垂线段最短,以及三角形相似的性质与判定等知识点,是综合性比较强的题目,注意认真总结.三、精心做一做(本大题共9小题,满分84分)19.(16分)(2015秋•无锡期中)用适当的方法解下列方程(1)4x2﹣1=0(2)x2﹣4x+1=0(配方法)(3)5(x+2)=4x(x+2)(4)x2﹣2x﹣3=0.【分析】(1)通过移项,化二次项系数为1,利用直接开平方法解方程;(2)解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数;(3)方程移项分解后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(4)等式的左边利用“十字相乘法”进行因式分解.【解答】解:(1)由原方程,得4x2=1,x2=,解得x1=,x2=﹣;(2)方程变形得:x2﹣4x=﹣1,配方得:x2﹣4x+4=3,即(x﹣2)2=3,开方得:x﹣2=±,则x1=2+,x2=2﹣.(3)移项得:5(x+2)﹣4x(x+2)=0,分解因式得:(5﹣4x)(x+2)=0,可得5﹣4x=0或x+2=0,解得:x1=,x2=﹣2.(4)x2﹣2x﹣3=0,(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x1=3,x2=﹣1.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.20.(8分)(2015秋•揭阳校级期末)已知x=﹣1是方程x2+mx﹣5=0的一个根,求m的值及方程的另一个根.【分析】根据一元二次方程的解的定义,将x=﹣1代入关于x的一元二次方程x2+mx﹣5=0,求得m的值;利用根与系数的关系求得方程的另一根.【解答】解:设方程的另一根为x2.∵关于x的一元二次方程x2+mx﹣5=0的一个根是﹣1,∴x=﹣1满足关于x的一元二次方程x2+mx﹣5=0,∴(﹣1)2﹣m﹣5=0,解得m=﹣4;又由韦达定理知﹣1×x2=﹣5,解得x2=5.即方程的另一根是5.【点评】本题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.21.(8分)(2015•枣庄)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.【分析】(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.【解答】解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.【点评】此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.22.(8分)(2015秋•无锡期中)如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3.(1)求⊙O的半径;(2)若点P是AB上的一动点,试求线段OP的取值范围.【分析】(1)作OC⊥AB于点C,构造直角三角形,利用勾股定理求得半径即可;(2)最长等于半径,最小等于弦心距.【解答】解:(1)作OC⊥AB于点C,∵圆心O到AB的距离为3,∴OC=3,∵弦AB的长为8,∴AC=BC=4,∴OA==5,∴⊙O的半径为5;(2)∵点P是AB上的一动点,∴3≤PO≤5.【点评】本题考查了垂径定理的知识,平分弦的直径平分这条弦,并且平分弦所对的两条弧,需要同学们熟练掌握.23.(8分)(2015•泰安)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【分析】(1)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.【解答】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴=.∵AB=10,BC=12,∴=,∴BP=.【点评】本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.24.(8分)(2015秋•无锡期中)万圣节两周前,某商店购进1000个万圣节面具,进价为每个6元,第一周以每个10元的价格售出200个;随着万圣节的临近,预计第二周若按每个10元的价格销售可售出400个,但商店为了尽快减少库存,决定单价降价x元销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价);节后,商店对剩余面具清仓处理,以第一周售价的四折全部售出.(1)当单价降低2元时,计算第二周的销售量和售完这批面具的总利润;(2)如果销售完这批面具共获利1300元,问第二周每个面具的销售价格为多少元?【分析】(1)第二周的销售量=400+100x.利润=售价﹣成本价;(2)根据纪念品的进价和售价以及销量分别表示出两周的总利润,进而得出等式求出即可.【解答】解:(1)第二周的销售量为:400+100x=400+100x=400+100×2=600.总利润为:200×(10﹣6)+(8﹣6)×600+200(4﹣6)=1600.答:当单价降低2元时,第二周的销售量为600和售完这批面具的总利润1600;(2)由题意得出:200×(10﹣6)+(10﹣x﹣6)(400+100x)+(4﹣6)[(1000﹣200)﹣(400+100x)]=1300,整理得:x2﹣2x﹣3=0,解得:x1=3;x2=﹣1(舍去),∴10﹣3=7(元).答:第二周的销售价格为7元.【点评】此题主要考查了一元二次方程的应用,根据已知表示出两周的利润是解题关键.25.(8分)(2014•防城港)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.【分析】(1)根据正方形的性质可得AB=BC,∠ABC=∠C,然后利用“边角边”证明△ABM 和△BCP全等,根据全等三角形对应边相等可得AM=BP,∠BAM=∠CBP,再求出AM⊥BP,从而得到MN∥BP,然后根据一组对边平行且相等的四边形是平行四边形证明即可;(2)根据同角的余角相等求出∠BAM=∠CMQ,然后求出△ABM和△MCQ相似,根据相似三角形对应边成比例可得=,再求出△AMQ∽△ABM,根据相似三角形对应边成比例可得=,从而得到=,即可得解.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABC=∠C,在△ABM和△BCP中,,∴△ABM≌△BCP(SAS),∴AM=BP,∠BAM=∠CBP,∵∠BAM+∠AMB=90°,∴∠CBP+∠AMB=90°,∴AM⊥BP,∵AM并将线段AM绕M顺时针旋转90°得到线段MN,∴AM⊥MN,且AM=MN,∴MN∥BP,∴四边形BMNP是平行四边形;(2)解:BM=MC.理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,∴∠BAM=∠CMQ,又∵∠ABC=∠C=90°,∴△ABM∽△MCQ,∴=,∵△MCQ∽△AMQ,∴△AMQ∽△ABM,∴=,∴=,∴BM=MC.【点评】本题考查了相似三角形的判定与性质,正方形的性质,全等三角形的判定与性质,平行四边形的判定,(1)求出两个三角形全等是解题的关键,(2)根据相似于同一个三角形的两个三角形相似求出△AMQ∽△ABM是解题的关键.26.(10分)(2002•陕西)阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)解答问题:(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1=S2(填“>”“=”或“<”).(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画1个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出3个,利用图④把它画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?【分析】(1)易得原有三角形都等于所画矩形的一半,那么这两个矩形的面积相等.(2)可仿照图2矩形ABFE的画法得到矩形.由于∠C非直角,所以只有一种情况.(3)可让原锐角三角形的任意一边为矩形的一边,另一顶点在矩形的另一边的对边上,可得三种情况.(4)根据三个矩形的面积相等,利用求差法比较三个矩形的周长即可.【解答】解:(1)=(2)1(3)3(4)以AB为边长的矩形周长最小,设矩形BCED,ACHQ,ABGF的周长分别为L1,L2,L3,BC=a,AC=b,AB=c.易得三个矩形的面积相等,设为S,∴L1=+2a;L2=+2b;L3=+2c.∵L1﹣L2=2(a﹣b)而a﹣b>0,ab﹣s>0,ab>0∴L1﹣L2>0,∴L1>L2,同理可得L2>L3∴以AB为边长的矩形周长最小.【点评】注意运用类比的方法画图;要比较两个数或式子的大小,一般采用求差法.27.(10分)(2015•南通)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.【分析】(1)先根据勾股定理求出AC的长,再由相似三角形的判定定理得出△PQC∽△BAC,由相似三角形的性质得出∠CPQ=∠B,由此可得出结论;(2)连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=12﹣4x,故可得出x的值,进而得出结论;(3)当点E在AB上时,根据等腰三角形的性质求出x的值,再分0<x≤;<x<3两种情况进行分类讨论.【解答】(1)证明:∵在Rt△ABC中,AB=15,BC=9,∴AC===12.∵==,==,∴=.∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B,∴PQ∥AB;(2)解:连接AD,∵PQ∥AB,∴∠ADQ=∠DAB.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ.在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12﹣4x,∴12﹣4x=2x,解得x=2,∴CP=3x=6.(3)解:当点E在AB上时,∵PQ∥AB,∴∠DPE=∠PGB.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PGB,∴PB=PG=5x,∴3x+5x=9,解得x=.①当0<x≤时,T=PD+DE+PE=3x+4x+5x=12x,此时0<T≤;②当<x<3时,设PE交AB于点G,DE交AB于F,作GH⊥FQ,垂足为H,∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,∴==.∵PG=PB=9﹣3x,∴==,∴GH=(9﹣3x),PH=(9﹣3x),∴FG=DH=3x﹣(9﹣3x),∴T=PG+PD+DF+FG=(9﹣3x)+3x+(9﹣3x)+[3x﹣(9﹣3x)]=x+,此时,<T<18.∴当0<x<3时,T随x的增大而增大,∴T=12时,即12x=12,解得x=1;T=16时,即x+=16,解得x=.∵12≤T≤16,∴x的取值范围是1≤x≤.【点评】本题考查的是几何变换综合题,涉及到勾股定理、相似三角形的判定与性质等知识,在解答(3)时要注意进行分类讨论.。

无锡市北塘区2015-2016年初三上数学期末试卷及答案

无锡市北塘区2015-2016年初三上数学期末试卷及答案

) )) 2015~2016学年度第一学期期末考试九年级数学(试题卷) 2016.1一、选择题(本大题共10小题,每题3分,共30分.)1.如果一个一元二次方程的根是x 1=x 2=1,那么这个方程是……………………………………(▲) A .(x +1)2=0 B .(x -1) 2=0 C .x 2=1D .x 2+1=02.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是(▲)A .平均数是80B .极差是15C .中位数是75D .方差是25 3.已知⊙O 的半径是5,直线l 是⊙O 的切线,P 是l 上的任一点,那么下列结论正确的是……(▲) A . 0<OP <5 B . OP =5 C . OP >5D . OP ≥54.二次函数y =x 2-2x +3的图像的顶点坐标是………………………………………………………(▲)A .(1,2)B .(1,6)C .(-1,6)D .(-1,2)5.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是…………………………………(▲) A .30πcm 2B .15πcm 2C .15π2 cm 2D .10πcm 26.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是………………………(▲) A .k >-1B .k ≥-1C .k <-1D .k ≤-17.如图,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,下列结论正确的是……………………(▲) A .sin A =32B .tan A =12C .cos B =32D .tan B = 38.如图,⊙O 的直径CD =5cm ,弦AB ⊥CD ,垂足为M ,OM ︰OD =3︰5.则AB 的长是……(▲) A .23cm B .3cm C .4cm D .25cm9.如图,正方形ABCD 的边长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B →C 和A →D →C 的路径向点C 运动,设运动时间为x (单位:s),四边形PBDQ 的面积为y (单位:cm 2),则y 与x (0≤x ≤8)之间的函数关系可用图象表示为……………………………………………………(▲)A .B .C .D . 10.如图,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC的延长线上,且∠CBF =12∠A ,tan ∠CBF =13,则CF 的长为……………………………………(▲)A .52B .12 3C .125D . 5AB CA (第7题) (第8题)(第9题) (第10题)条形统计图 扇形统计图 二、填空题(本大题共8小题,每题2分,共16分.) 11.方程x 2=2x 的根为 ▲ .12.一元二次方程x 2-3x -1=0的两根是x 1,x 2,则x 1+x 2= ▲ . 13.如图,△ABC 中,DE ∥BC ,DE =2,AD =4,DB =6,则BC = ▲ .14.某水库堤坝的横断面如图所示,迎水坡AB 的坡度是1︰3,堤坝高BC =50m ,则AB = ▲ m . 15.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 的度数为 ▲ .16.若二次函数y =ax 2-3x +a 2-1的图象开口向下且经过原点,则a 的值是 ▲ .17.如图,四边形OABC 为菱形,点B 、C 在以点O 为圆心的 ⌒EF 上,若OA =1cm ,∠1=∠2,则 ⌒EF 的长为 ▲ cm .18.△ABC 中,∠ACB =120°,AC =BC =3,点D 为平面内一点,满足∠ADB =60°,若CD 的长度为整数,则所有满足题意的CD 的长度的可能值为 ▲ .三、解答题(本大题共10小题,共84分.) 19.(本题8分)解下列方程:(1) (x +3)2=5(x +3); (2) x 2+4x -2=0.20.(本题8分)为了解学生参加户外活动的情况,某校对初三学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题: (1)将条形统计图补画完整.(2)求每天参加户外活动时间达到2小时的学生所占调查学生的百分比.(3)这批参加调查的初三学生参加户外活动的平均时间是多少.21.(本题8分)小张、小王和另两名同学一起去看电影《寻龙诀》,小张买到4张座位相连的电影票,座位号顺次为8排3、4、5、6座.现在小张和小王从中随机各抽取一张电影票,求小张和小王抽取的电影票正好是相邻座位的概率(请通过画树状图或列表法写出分析过程).(第15题) (第17题)A(第13题) (第14题)A B22.(本题8分)如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F . (1)△ABE 与△ADF 相似吗?请说明理由.(2)若AB =6,AD =12,BE =8,求DF 的长.23.(本题8分)如图,AB 是⊙O 的直径,AC 、DC 为弦,∠ACD =60°, P 为AB 延长线上的点,∠APD =30°. (1)求证:DP 是⊙O 的切线.(2)若⊙O 的半径为3cm ,求图中阴影部分的面积.24.( 本题8分)如图,小明从P 处出发,沿北偏东60°方向行驶200米 到达A 处,接着向正南方向行驶一段时间到达B 处.在B 处观测到 出发时所在的P 处在北偏西37°方向上,这时P 、B 两点相距多少米? (精确到1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41,3≈1.73)25.(本题8分)如图,Rt △ABC 中,∠C =90o ,O 为AB 上一点,以O 为 圆心,OB 长为半径的圆,交BC 边于点D ,与AC 边相切于点E . (1)求证:BE 平分∠ABC ;(2)若CD ︰BD =1︰2,AC =4,求CD 的长.26.(本题8分)某饰品店以20元/件的价格采购了一批今年新上市的饰品进行了为期30天的销售,销售结束后,得知日销售量P (件)与销售时间x (天)之间有如下关系:P =-2x +80(1≤x ≤30);又知前20天的销售价格Q 1(元/件)与销售时间x (天)之间有如下关系:Q 1=12x +30(1≤x ≤20),后10天的销售价格Q 2则稳定在45元/件.(1)试分别写出该商店前20天的日销售利润R 1(元)和后10天的日销售利润R 2(元)与销售时间x (天)之间的函数关系式;(2)请问在这30天的销售期中,哪一天的日销售利润最大?并求出这个最大利润值. (注:销售利润=销售收入-购进成本)27.(本题10分)如图,点A(-10,0),B(-6,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P从点Q(8,0)出发,沿x轴向左以每秒1个单位长的速度向点A匀速运动,运动时间为t秒.(1) 求点C的坐标.(2) 当∠BCP=15°时,求t的值.(3) 以PC为直径作圆,当该圆与四边形ABCD的边28.(本题10分)如图,一抛物线经过点A(−2,0),点B(0,4)和点C(4,0),该抛物线的顶点为D.(1)求该抛物线的函数关系式及顶点D坐标.(2) 如图,若P为线段CD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAB的面积的最大值和此时点(3)过抛物线顶点DE有公共点,求3 45 6 4 3 5 6 5 3 4 6 63 4 5小张抽取:小王抽取: 2015~2016学年第一学期九年级数学期末考试答案及评分标准2016.1一、选择题:(本大题共10小题,每小题3分,共30分.)1.B2.C3. D4. A5. B 6 .C 7. D 8.C 9. B 10. A 二、填空题:(本大题共8小题,每小题2分,共16分.) 11. x 1=0,x 2=212.313.514.100 15.32° 16.-1 17.2π318.3、4、5、6三、解答题:(本大题共10小题,共84分.) 19. (1)解:(x +3)(x +3-5)=0……2分(2)解:x =-4±16+82……………………2分x 1=-3,x 2=2………4分 x 1=-2+6,x 2=-2- 6 …………4分 20. (1)画图正确………………………………………………………………………………2分 (2)8÷50×100%=16%.……………………………………………………………… 4分(3)户外活动的平均时间=10×0.5+20×1+12×1.5+8×250=1.18(小时).……… 8分21. 用画树状图法表示:……………………4分结果为(3,4)(3,5)(3,6)(4,3)(4,5)(4,6)(5,3)(5,4)(5,6)(6,3)(6,4)(6,5)共有12种不同的情况,其中相邻的座位为(3,4)(4,3)(4,5)(5,4)(5,6)(6,5)共6种. ……6分∴P (相邻座位)=612=12…………………………………………………………………8分1分2分 3分 4分 5分7分8分………………………………… 1分 ∵∠APD =30° ∴∠ODP =90° 即PD ⊥OD …………………………………… 2分 ∴PD 是⊙O 的切线. ………………………………………………………………… 3分(2) ∵在Rt △POD 中,OD =3cm , ∠APD =30° ∴PD =3 3 ……………… 4分∴图中阴影部分的面积=12×3×33-16×π×32………………………………… 6分=932-32π. ……………………………………………… 8分24.解:过点P 作PH ⊥AB 于H ,……………………………………………………… 1分 在Rt △APH 中,AP =200,∠P AH =60°,∴PH =100 3 ……………………4分在Rt △PBH 中,PH =1003,∠B =37°,∴ sin37°=PHPB……………………5分∴PB =PHsin37°≈100×1.730.60≈288(米)………………………………………………7分答:P 、B 两点相距约288米. ……………………………………………………8分 1分 2分3分 4分 5分 6分7分8分R 1=P (Q 1-20)=(-2x +80)[(12x +30)-20]=-x 2+20x +800 …………………… 2分R 2=P (Q 2-20)=(-2x +80)(45-20)=-50x +2000…………………………………4分 (2)当1≤x ≤20时,R 1=-(x -10)2+900,∴当x =10时,R 1的最大值为900,…… 5分 当21≤x ≤30时,R 2=-50x +2000,………………………………………………… 6分 ∵R 2的值随x 值的增大而减小,∴当x =21时,R 2的最大值是950,…………… 7分 ∵950>900,∴在第21天时,日销售利润最大,最大利润为950元.………… 8分27.(1)∵∠BOC =90°,∠CBO =45°,∴∠BCO =∠CBO =45°,……………………… 1分∵B (-6,0),∴OC =OB =6,∴C (0,6);……………………………………… 2分 (2)①当点P 在点B 右侧时, ∵∠BCO =45°,∠BCP =15°,∴∠POC =30°,∴OP =2 3 ∴t 1=8+2 3 ………………………………………………………… 4分 ②当点P 在点B 左侧时, ∵∠BCO =45°,∠BCP =15°,∴∠POC =60°,∴OP =6 3 ∴t 2=8+6 3 6分综上所述:t 的值为8+23或8+(3)由题意知,若该圆与四边形ABCD ①当该圆与BC 相切于点C 时,有∠BCP =90°,从而∠OCP =45°,得到OP =6,此时PQ =2,∴t =2; ………………………… 7分 ②当该圆与CD 相切于点C 时,有PC ⊥CD ,即点P 与点O 重合,此时PQ =8,∴t =8; ………………………………………………………………… 8分③当该圆与AD 相切时,设P (8-t ,0),设圆心为M ,则M (8-t 2,3),半径r =(8-t 2)2+32作MH ⊥AD 于点H ,则MH =8-t 2-(-10)=14-t2,当MH 2=r 2时,得(14-t2)2=(8-t 2)2+32,解得t =17.1………………………………… 10分1分分分分分分7分(3)设该圆圆心为G (m 2,2),则r =m 4+4. ①当点F 在点E 左侧且该圆与DE 相切时,d =1-m 2,由d =r 得(1-m 2)2=m 24+4,解得m =-3. ……………………………… 8分②当点F 在点E 右侧且该圆经过点D 时,过点G 作GK ⊥y 轴,交DE 、y 轴于点H 、K ,由GK 2+KB 2=r 2=GH 2+GD 2得(m 2)2+22=(m 2-1)2+(52)2,解得m =134,…………9分综上,m 10分。

无锡市北塘区第一学期初三数学期末试卷及答案

无锡市北塘区第一学期初三数学期末试卷及答案

2015~2016学年度第一学期期末考试九年级数学(试题卷)、选择题(本大题共10小题,每题3分,共30分.) 那么这个方程是C . x 2= 1 2016.11. 如果一个一元二次方程的根是 X 1 = X 2= 1 , 2 2 A . (x + 1) = 0 B . (x — 1) = 02. 某班抽取6名同学参加体能测试,成绩如下: A .平均数是 80 B .极差是153. 已知O O 的半径是5,直线I 是O O 的切线,A . 0 v OP v 5B . OP = 54. 二次函数y = x 2— 2x + 3的图像的顶点坐标是…A . (1, 2)B . (1, 6)C . (— 1, 6) 5. 已知圆锥的底面半径为 3cm ,母线为5cm ,则圆锥的侧面积是 15 n2 C . cm 80, 90, 75, 75, C .中位数是75P 是I 上的任一点, C . OP > 5 (▲)D . x 2 + 1 =80, 80 .下列表述错误的是D .方差是25那么下列结论正确的是……D . OP > 5D • (—1, 2) (▲)2 A . 30 n cm15 n cm 2 D . 10n cm 26.若关于x 的一兀二次方程 x 2— 2x — k = 0没有实数根,则k 的取值范围是 A . k >— 1 B . 7.如图,在 Rt △ ABC 中,/ ACB = 90° 1B . tanA = 2A . sinA =— 8•如图,O O 的直径 A . 2 3cm k>— 1 C . k v — 1 D . k w — 1 BC = 1, AB = 2,下列结论正确的是 ..... ~2C . cosB =D . tanB = , 3 CD = 5cm ,弦AB 丄CD ,垂足为 M , OM : OD = 3 : 5.贝U AB 的长是 D . 2 5cm A 出发,以1cm/s 的速度分别沿A T B T C s )B . 3cmC . 4cm 9.如图,正方形ABCD 的边长为4cm ,动点P 、Q 同时从点 和A T D T C 的路径向点C 运动,设运动时间为x(单位:s),四边形PBDQ 的面积为y(单位:cm 2), 则y 与x(0< x < 8)之间的函数关系可用图象表示为 ............................................. (▲) 10.如图,在 △ ABC 中,AB = AC = 10,以AB 为直径的O O 分别交AC 、BC 于点D 、E ,点F 在AC 1 1CBF = / A , tan / CBF = 3,贝V CF 的长为 的延长线上,且/ A .I 12 C. T (第 7 题)D (第8题) (第 9 题)D . .5二、填空题(本大题共8小题,每题2分,共16分.)11. 方程x2= 2x的根为▲.12. 一元二次方程X2—3x— 1 = 0 的两根是X!, X2,则X! + X2= ▲.13•如图,△ ABC 中,DE // BC, DE = 2, AD = 4, DB = 6,贝U BC = ▲.14•某水库堤坝的横断面如图所示,迎水坡AB的坡度是1 : .3,堤坝高BC = 50m,则AB = ▲m .15•如图,AB是O O的直径,CD是O O的弦,/ ABD = 58 °则/ BCD的度数为▲.16•若二次函数y= ax2—3x+ a2—1的图象开口向下且经过原点,贝V a的值是▲.17. 如图,四边形OABC为菱形,点B、C在以点0为圆心的ElF上,若0A = 1cm, / 1 = / 2,则EF 的长为▲ cm.18. A ABC 中,/ ACB = 120 ° AC= BC = 3,点D 为平面内一点,满足/三、解答题(本大题共10小题,共84分.)19. (本题8分)解下列方程:2 2(1) (x + 3) = 5(x+ 3); (2) x + 4x—2 = 0.20. (本题8分)为了解学生参加户外活动的情况,某校对初三学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1) 将条形统计图补画完整.(2) 求每天参加户外活动时间达到2小时的学生所占调查学生的百分比.(3) 这批参加调查的初三学生参加户外活动的平均时间是多少.时冋21. (本题8分)小张、小王和另两名同学一起去看电影座位号顺次为8排3、4、5、6座.现在小张和小王从中随机各抽取一张电影票,求小张和小王抽取的电影票正好是相邻座位的概率(请通过画树状图或列表法写出分ADB = 60 °若CD的长度条形统计图20 -1H •16・《寻龙诀》,小张买到4张座位相连的电影票,▲.为整数,则所有满足题意的CD的长度的可能值为(第14题)(第15题)(第17题)扇形统计图析过程)22. (本题8分)如图,矩形ABCD中,E为BC上一点,DF丄AE于F.(1)△ ABE与厶ADF相似吗?请说明理由.⑵若AB = 6, AD = 12 , BE= 8,求DF 的长.23. (本题8分)如图,AB是O O的直径,AC、DC为弦,/ P为AB延长线上的点,/ APD = 30 °(1)求证:DP是O O的切线.⑵若O O的半径为3cm,求图中阴影部分的面积.24. (本题8分)如图,小明从P处出发,沿北偏东60方向到达A处,接着向正南方向行驶一段时间到达B处.在出发时所在的P处在北偏西37°方向上,这时P、B两点(精确到1米,参考数据:sin37 760, cos37°P.80, 迄勺.41,寸3胡.73)25. (本题8分)如图,Rt△ ABC中,/ C= 90°,O为AB上一点,以O为圆心,OB长为半径的圆,交BC边于点D,与AC边相切于点E.(1)求证:BE平分/ ABC;⑵若CD : BD = 1 : 2,AC = 4,求CD 的长.26. (本题8分)某饰品店以20元/件的价格采购了一批今年新上市的饰品进行了为期30天的销售,销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=- 2x+ 80(1 w x w 30);又1知前20天的销售价格Q1(元/件)与销售时间x(天)之间有如下关系:Q1= ?x+ 30(1 w x w 20),后10 天的销售价格Q2则稳定在45元/件.(1)试分别写出该商店前20天的日销售利润R1(元)和后10天的日销售利润R2(元)与销售时间x (天)之间的函数关系式;⑵请问在这30天的销售期中,哪一天的日销售利润最大?并求出这个最大利润值.(注:销售利润=销售收入—购进成本)104627. (本题 10 分)如图,点 A( — 10,0), B(-6, 0),点 C 在 y 轴的正半轴上,/ CBO = 45 ° CD // AB , / CDA = 90°点P 从点Q(8, 0)出发,沿x 轴向左以每秒1个单位长的速度向点 A 匀速运动,运 动时间为t 秒.(1) 求点C 的坐标.(2) 当/ BCP = 15。

无锡市北塘区2015-2016学年九年级上期中数学试题及答案

无锡市北塘区2015-2016学年九年级上期中数学试题及答案
8.如图,⊙O 的半径为 3,点 O 到直线 l 的距离为 4,点 P 是直线 l 上的一个动点,PQ 切⊙O 于点 Q,
则 PQ 的最小值为……………………………………………………………………………( ▲ )
与⊙O 的位置关系,并证明你的结论.
(第 21 题)
关系是 ▲ .
15.如图,点 O 是△ABC 的内切圆的圆心,若∠A=80°,则∠BOC 为 ▲ .
16.将一条长为 20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方
形面积之和的最小值是 ▲ cm2.
17.在 Rt△AБайду номын сангаасC 中,∠C=90°,AC=3,BC=4,以 C 为圆心,r 为半径作⊙C.若⊙C 与斜边 AB 有两个
公共点,则 r 的取值范围是 ▲ .
18.如图,在△ABC 中,AB=AC= 5,BC=2,在 BC 上有 100 个不同的点 P1、P2、P3…P100(BC 中点
点 C 以 1cm/s 的速度运动,另一动点 Q 同时从点 C 出发沿 CB 边向点 B 以 2cm/s 的速度运动.问:(1)
运动几秒时,△CPQ 的面积是 8cm2?(2)运动几秒时,△CPQ 与△ABC 相似?
除外),过这 100 个点分别作△ABC 的内接矩形 P1E1F1G1,P2E2F2G2…P100E100F100G100,设每个内接
矩形的周长分别为 L1、L2…L100,则 L1+L2+…+L100= ▲ .
二.填空题 (本大题共 10 小题,每小题 2 分,共 20 分.)
9.若关于 x 的方程 x2+3x+a=0 有一个根是-1,则 a= ▲ .
10.若 x∶y=2∶3,那么 x∶(x+y)= ▲ .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省无锡市北塘区九年级(上)期中数学试卷一.选择题(本大题共8小题,每小题3分,共24分.)1.(3分)请判别下列哪个方程是一元二次方程()A.x+2y=1 B.x2+5=0 C.2x+=8 D.3x+8=6x+22.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k 的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠03.(3分)(易错题)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对 B.2对 C.3对 D.4对4.(3分)如图,△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是()A.1:6 B.1:5 C.1:4 D.1:25.(3分)如图,Rt△ABC中,∠C=90°,D是AC边上一点,AB=5,AC=4,若△ABC∽△BDC,则CD=()A.2 B.C.D.6.(3分)下列命题:①圆周角的度数等于圆心角度数的一半;②90°的圆周角所对的弦是直径;③三个点确定一个圆;④同圆或等圆中,同弧所对的圆周角相等.其中正确的是()A.①②B.②③C.②④D.①④7.(3分)如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,则∠ABD=()A.20°B.46°C.55°D.70°8.(3分)如图,⊙O的半径为3,点O到直线l的距离为4,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A.B.C.4 D.5二.填空题(本大题共10小题,每小题2分,共20分.)9.(2分)若关于x的一元二次方程x2+3x+a=0有一个根是﹣1,则a=.10.(2分)若x:y=2:3,那么x:(x+y)=.11.(2分)若关于x的方程(m﹣3)x|m|﹣1+2x﹣7=0是一元二次方程,则m=.12.(2分)已知一个扇形的弧长为10πcm,其圆心角度数是150°,则该扇形的半径为cm.13.(2分)如图,要得到△ABC∽△ADE,只需要再添加一个条件是.14.(2分)若⊙O的半径是方程(2x+1)(x﹣4)=0的一个根,圆心O到直线l 的距离为3,则直线l与⊙O的位置关系是.15.(2分)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=(填度数).16.(2分)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2.17.(2分)在Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,r为半径作⊙C.若⊙C与斜边AB有两个公共点,则r的取值范围是.18.(2分)如图,在△ABC中,AB=AC=,BC=2.在BC边上有100个不同的点P1,P2,P3,……,P100,过这100个点分别作△ABC的内接矩形P1E1F1G1,P2E2F2G2,……,P100E100F100G100,设每个矩形的周长分别为L1,L2,……,L100,则L1+L2+……+L100=.三.解答题(本大题共7小题,共56分.)19.(16分)解方程:(1)(1+x)2=9;(2)2(x﹣1)2=(x﹣1);(3)x2+2x﹣1=0;(4)x(x+2)=5x+10.20.(6分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.21.(6分)已知:如图,AB是⊙O的直径,PB与⊙O相切于B点,C为⊙O上的点,OP∥AC.试判断PC与⊙O的位置关系,并证明你的结论.22.(6分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.23.(6分)如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A 出发沿边AC向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?24.(8分)如图,在△ABC中,AD为∠BAC的平分线,点E在BC的延长线上,且∠EAC=∠B,以DE为直径的半圆交AD于点F,交AE于点M.(1)判断AF与DF的数量关系,并说明理由.(2)只用无刻度的直尺画出△ADE的边DE上的高AH(不要求写作法,保留作图痕迹).(3)若EF=8,DF=6,求DH的长.25.(8分)如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC 中,∠ACB=90°,∠ABC=30°,BC=12cm半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.(1)当t=8(s)时,试判断点A在半圆O的位置关系;(2)当t为何值时,直线AB与半圆O所在的圆相切;(3)在(2)的条件下,如果半圆面与△ABC三边围成的区域有重叠部分,求半圆面与△ABC重叠部分的面积.2015-2016学年江苏省无锡市北塘区九年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共8小题,每小题3分,共24分.)1.(3分)请判别下列哪个方程是一元二次方程()A.x+2y=1 B.x2+5=0 C.2x+=8 D.3x+8=6x+2【解答】解:A、x+2y=1是二元一次方程,故A选项错误;B、x2+5=0是一元二次方程,故B选项正确;C、2x+=8是分式方程,故C选项错误;D、3x+8=6x+2是一元一次方程,故D选项错误.故选:B.2.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k 的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠0【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选:B.3.(3分)(易错题)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对 B.2对 C.3对 D.4对【解答】解:∵∠ADE=∠ACD=∠ABC∴DE∥BC∴△ADE∽△ABC,∵DE∥BC∴∠EDC=∠DCB,∵∠ACD=∠ABC,∴△EDC∽△DCB,同理:∠ACD=∠ABC,∠A=∠A,∴△ABC∽△ACD,∵△ADE∽△ABC,△ABC∽△ACD,∴△ADE∽△ACD∴共4对故选:D.4.(3分)如图,△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是()A.1:6 B.1:5 C.1:4 D.1:2【解答】解:∵△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,∴两图形的位似之比为1:2,则△DEF与△ABC的面积比是1:4.故选:C.5.(3分)如图,Rt△ABC中,∠C=90°,D是AC边上一点,AB=5,AC=4,若△ABC∽△BDC,则CD=()A.2 B.C.D.【解答】解:∵∠C=90°,AB=5,AC=4∴BC=3∵△ABC∽△BDC∴∴∴CD=.故选:D.6.(3分)下列命题:①圆周角的度数等于圆心角度数的一半;②90°的圆周角所对的弦是直径;③三个点确定一个圆;④同圆或等圆中,同弧所对的圆周角相等.其中正确的是()A.①②B.②③C.②④D.①④【解答】解:在同圆或等圆中,同弧或等弧所对的圆周角的度数等于它所对的圆心角度数的一半,所以①选项错误;90°的圆周角所对的弦是直径,所以②正确;不共线的三个点确定一个圆,所以③错误;同圆或等圆中,同弧所对的圆周角相等,所以④正确.故选:C.7.(3分)如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,则∠ABD=()A.20°B.46°C.55°D.70°【解答】解:连接BC,∵OC=OB,∴∠OBC=∠OCB===55°,∵AB⊥CD,∴=,∴∠ABD=∠OBC=55°.故选:C.8.(3分)如图,⊙O的半径为3,点O到直线l的距离为4,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A.B.C.4 D.5【解答】解:∵PQ切⊙O于点Q,∴∠OQP=90°,∴PQ2=OP2﹣OQ2,而OQ=3,∴PQ2=OP2﹣32,即PQ=,当OP最小时,PQ最小,∵点O到直线l的距离为4,∴OP的最小值为4,∴PQ的最小值为=.故选:A.二.填空题(本大题共10小题,每小题2分,共20分.)9.(2分)若关于x的一元二次方程x2+3x+a=0有一个根是﹣1,则a=2.【解答】解:∵关于x的一元二次方程x2+3x+a=0有一个根是﹣1,∴(﹣1)2+3×(﹣1)+a=0,解得a=2,故答案为:2.10.(2分)若x:y=2:3,那么x:(x+y)=2:5.【解答】解:∵=,∴==.故答案为2:5.11.(2分)若关于x的方程(m﹣3)x|m|﹣1+2x﹣7=0是一元二次方程,则m=﹣3.【解答】解:由题意得:|m|﹣1=2,且m﹣3≠0,解得:m=﹣3,故答案为:﹣3.12.(2分)已知一个扇形的弧长为10πcm,其圆心角度数是150°,则该扇形的半径为12cm.【解答】解:由题意得,l=10πcm,n=150°,故可得:10π=,解得:R=12cm.故答案为:12.13.(2分)如图,要得到△ABC∽△ADE,只需要再添加一个条件是DE∥BC(答案不唯一).【解答】解:由图可得,∠BAC=∠DAE,根据三角形的判定:两角对应相等,两三角形相似.可添加条件:DE∥BC,则∠ABC=∠ADE,则△ADE∽△ABC,故答案为:DE∥BC(答案不唯一).14.(2分)若⊙O的半径是方程(2x+1)(x﹣4)=0的一个根,圆心O到直线l 的距离为3,则直线l与⊙O的位置关系是相交.【解答】解:∵(2x+1)(x﹣4)=0,∴2x+1=0或x﹣4=0,解得:x1=﹣(不合题意舍去),x2=4,∵⊙O的半径是方程(2x+1)(x﹣4)=0的一个根,∴该圆的半径是4,∵圆心O到直线l的距离为3,∴4>3,∴直线l与圆相交.故答案是:相交15.(2分)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=130°(填度数).【解答】解:∵∠BAC=80°,∴∠ABC+∠ACB=180°﹣80°=100°,∵点O是△ABC的内切圆的圆心,∴BO,CO分别为∠ABC,∠BCA的角平分线,∴∠OBC+∠OCB=50°,∴∠BOC=130°.故答案为:130°.16.(2分)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是12.5cm2.【解答】解:设一段铁丝的长度为x,另一段为(20﹣x),则边长分别为x,(20﹣x),则S=x2+(20﹣x)(20﹣x)=(x﹣10)2+12.5,∴由函数当x=10cm时,S最小,为12.5cm2.故填:12.5.17.(2分)在Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,r为半径作⊙C.若⊙C与斜边AB有两个公共点,则r的取值范围是<r≤3.【解答】解:作CD⊥AB于D,如图所示:∵∠C=90°,AC=3,BC=4,∴AB==5,∵△ABC的面积=AB•CD=AC•BC,∴CD==,即圆心C到AB的距离d=,∵AC<BC,∴以C为圆心,r=4为半径所作的圆与斜边AB只有一个公共点,∴若⊙C与斜边AB有两个公共点,则r的取值范围是<r≤3.故答案为:<r≤3.18.(2分)如图,在△ABC中,AB=AC=,BC=2.在BC边上有100个不同的点P1,P2,P3,……,P100,过这100个点分别作△ABC的内接矩形P1E1F1G1,P2E2F2G2,……,P100E100F100G100,设每个矩形的周长分别为L1,L2,……,L100,则L1+L2+……+L100=400.【解答】解:过点A作AH⊥BC于H,∵AB=AC=,BC=2.∴BH=BC=1,∴AH==2,∵四边形P1E1F1G1是矩形,∴E1P1=F1G1,E1F1=P1G1,E1P1⊥BC,∴E1P1∥AH,∴,即,∴E1P1=2BP1,同理:F1G1=2CG1,∴矩形P1E1F1G1的周长为:E1P1+E1F1+P1G1+F1G1=2P1G1+2BP1+2CG1=2(P 1G1+BP1+CG1)=2BC=4,∴L1=4,同理:L2=L3=…=L100=4,∴L1+L2+……+L100=4×100=400.故答案为:400.三.解答题(本大题共7小题,共56分.)19.(16分)解方程:(1)(1+x)2=9;(2)2(x﹣1)2=(x﹣1);(3)x2+2x﹣1=0;(4)x(x+2)=5x+10.【解答】解:(1)1+x=±3,所以x1=2,x2=﹣4;(2)2(x﹣1)2﹣(x﹣1)=0,(x﹣1)(2x﹣2﹣1)=0,x﹣1=0或2x﹣2﹣1=0,所以x1=1,x2=;(3)x2+2x=1,x2+2x+1=2,(x+1)2=2,x+1=±,所以x1=﹣1+,x2=﹣1﹣;(4)x(x+2)﹣5(x+2)=0,(x+2)(x﹣5)=0,x+2=0或x﹣5=0,所以x1=﹣2,x2=5.20.(6分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.【解答】解:(1)△ABC是等腰三角形.理由如下:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)△ABC是直角三角形.理由如下:∵方程有两个相等的实数根,∴△=(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形.21.(6分)已知:如图,AB是⊙O的直径,PB与⊙O相切于B点,C为⊙O上的点,OP∥AC.试判断PC与⊙O的位置关系,并证明你的结论.【解答】解:(1)直线PC与⊙O相切.理由如下:连接OC.∵AC∥OP,∴∠1=∠2,∠3=∠4.∵OA=OC,∴∠1=∠3.∴∠2=∠4.∵在△POC与△POA中,,∴△POC≌△POA(SAS),∴∠PCO=∠PBO.∵PB切⊙O于点B,AB是⊙O的直径,∴∠PBO=90°,∴∠PCO=90°,∴PC与⊙O相切.22.(6分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.【解答】解:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x ﹣80)元,根据题意得=,解得x=400.经检验,x=400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y,根据题意得400(1﹣y)2=324,解得:y1=0.1,y2=1.9(不合题意,舍去).答:平均每次降价10%.23.(6分)如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A 出发沿边AC向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?【解答】解:(1)设x秒后,可使△CPQ的面积为8cm2.由题意得,AP=xcm,PC=(6﹣x)cm,CQ=2xcm,则(6﹣x)•2x=8,整理,得x2﹣6x+8=0,解得x1=2,x2=4.则P、Q同时出发,2秒或4秒后可使△CPQ的面积为8cm2(2)设运动y秒时,△CPQ与△ABC相似.若△CPQ∽△CAB,则=,即=,解得y=2.4秒;若△CPQ∽△CBA,则=,即=,解得y=秒.综上所述,运动2.4秒或秒时,△CPQ与△ABC相似.24.(8分)如图,在△ABC中,AD为∠BAC的平分线,点E在BC的延长线上,且∠EAC=∠B,以DE为直径的半圆交AD于点F,交AE于点M.(1)判断AF与DF的数量关系,并说明理由.(2)只用无刻度的直尺画出△ADE的边DE上的高AH(不要求写作法,保留作图痕迹).(3)若EF=8,DF=6,求DH的长.【解答】解:(1)AF=DF,理由如下:∵AD平分∠BAC,∴∠BAD=∠CAD.又∵∠B=∠CAE,∴∠BAD+∠B=∠CAD+∠CAE.即∠ADE=∠DAE,∴AE=DE,∵DE是直径,∴EF⊥AD,∴AF=DF;(2)如图:连接DM,DM交EF于G,作射线AG交DE于H,此时AH是高.(3)在△EFD中,EF=8,DF=6,由勾股定理得,DE=AE=10,∵AH是DE边上的高,∴∠AHD=90°,∵∠EFD=90°,∴∠AHD=∠EFD,∵∠ADH=∠EDF,∴△ADH∽△EDF,∴=,∴=,解得DH=.25.(8分)如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC 中,∠ACB=90°,∠ABC=30°,BC=12cm半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.(1)当t=8(s)时,试判断点A在半圆O的位置关系;(2)当t为何值时,直线AB与半圆O所在的圆相切;(3)在(2)的条件下,如果半圆面与△ABC三边围成的区域有重叠部分,求半圆面与△ABC重叠部分的面积.【解答】解:(1)当t=8时,如图,此时OC=8,在Rt△ACO中,AC=4,则AO=4>6,所以点A在半圆外;(2)①如图1,过C点作CF⊥AB,交AB于F点;∵∠ABC=30°,BC=12cm,∴FO=6cm;当半圆O与△ABC的边AB相切时,又∵圆心O到AB的距离等于6cm,且圆心O又在直线BC上,∴O与C重合,即当O点运动到C点时,半圆O与△ABC的边AB相切;此时点O运动了8cm,所求运动时间为t==4(s),②当点O运动到B点的右侧,且OB=12cm时,如图2,过点O作OQ⊥直线AB,垂足为Q.在Rt△QOB中,∠OBQ=30°,则OQ=6cm,即OQ与半圆O所在的圆相切.此时点O运动了32cm.所求运动时间为:t=32÷2=16s,综上可知当t=4s或16s时,AB与半圆O所在的圆相切;(3)当半圆O与AB边相切于M时,如图1,S=π×62=9π.第21页(共21页)。

相关文档
最新文档