人教新课标七年级上第四章 图形的认识初步期末章节复习套题2

合集下载

七年级上第四章《图形的初步认识》复习测试题含答案

七年级上第四章《图形的初步认识》复习测试题含答案


B
A 西

54

D
西 B东
第 7题
第 8题
8. 如图所示 , 若 AB∥ CD,则∠ A+∠ M+∠ N+∠C=( C.540° )
第 9题
9. 如图所示 , 由 B 测 A 的方向是 (A. 北偏西 54° ) 10. 如图甲,用一块边长 10cm 的正方形 ABCD厚纸板,做了一套七巧板.将七巧板拼成一座桥(如图
七年级上第四章《图形的初步认识》复习测试题
(时间 120 分钟,满分 120 分) 一、选择题( 每题 3 分,满分 30 分) 1. 下列图形中 ,( A 2)(4)(5)) 不是多面体一
1
.
2
3
2. 如图所示 , 哪个图形不能折成一个正方体表面
4
.( b )
5
6
A

C
D
3. 下列语句中,正确的个数是( B.2 )个 ①两条直线相交 , 只有一个交点 . ②在∠ ABC的边 BC的延长线上取一点 D . ③若∠ 1+∠ 2+∠ 3=90° , 则∠ 1、∠ 2、∠ 3 互余 . ④一个角的余角比这个角的补角小 . 4. 在图中,不同的线段的条数是( C.10 )
∴AD∥ BC(同位角相等 , 两直线平行 )
A
B
25. (本题 12 分) 如图, ∠ 1=80°,∠ 2=100°,∠ BAD=60
(1)直线 AB与 CD是什么关系?请说明理由 .
( 2)求∠ D的度数 .
解 :(1)AB 与 CD平行 . ∵∠ 1=80°(已知)∴∠ ABE=80°(对顶角相等)
3
22
2
3

(期末复习)七年级上《第四章几何图形初步》单元试卷有答案(PDF版)

(期末复习)七年级上《第四章几何图形初步》单元试卷有答案(PDF版)

人教版七年级初中数学上册:第四章几何图形初步单元检测试卷一.选择题(共10小题)1.下列几何体中,面的个数最少的是()A.B.C.D.2.下列几何体中,其面既有平面又有曲面的有()A.1个B.2个C.3个D.4个3.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,4 4.下列图形中,不可以作为一个长方体的展开图的是()A.B.C.D.5.如图,从A地到B地有三条路可走,为了尽快到达,人们通常选择其中的直路.能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有一条且只有一条直线垂直于已知直线6.兴隆通往半壁山的公路经过八品叶梁盘旋而上,现在要沿着山脚打山洞而过,这样通往两地的时间将大大缩短,在数学中也就是“把弯曲的公路改直,就能缩短路程”这其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间线段最短D.两点之间直线最短7.如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD8.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC=70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°9.下列说法正确的个数是()①射线AB与射线BA是同一条射线;②两点确定一条直线;③两条射线组成的图形叫做角;④两点之间直线最短;⑤若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个10.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.两条直线相交只有一点二.填空题(共7小题)11.如图,已知∠AOD=150°,OB、OC、OM、ON是∠AOD内的射线,若∠BOC=20°,∠AOB=10°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以3°/秒的速度逆时针旋转t秒时,当∠AOM:∠DON=3:4时,则t=.12.用橡皮泥做一个棱长为4cm的正方体.如图(1),在顶面中心位置处从上到下打一个边长为1cm的正方体通孔,再在正面中心位置处(按图(2)中的虚线)从前到后打一个边长为1cm的正方体通孔,那么打孔后的橡皮泥的表面积为cm2;(注意:图形(3)不用)13.下面的几何体中,属于柱体的有个.14.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是.15.如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是.16.已知线段AC=10m,BC=6m,且它们在同一条直线上,点M、N分别为线段AC和BC的中点,则线段MN的长为17.大雁迁徙时常排成人字形,这个人字形的一边与其飞行方向夹角是54°44′8″,从空气动力学角度看,这个角度对于大雁队伍飞行最佳,所受阻力最小.则54°44′8″的补角是.三.解答题(共5小题)18.把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)(1)该几何体中有小正方体?(2)其中两面被涂到的有个小正方体;没被涂到的有个小正方体;(3)求出涂上颜色部分的总面积.19.如图,已知线段AB=a,延长BA至点C,使AC=AB.点D为线段BC的中点.(1)画出线段AC;(2)求CD的长;(3)若AD=6cm,求a.20.如图,已知O为直线AD上一点,∠AOC与∠AOB互补,OM、ON分别是∠AOC、∠AOB的平分线,∠MON=56°.(1)∠COD与∠AOB相等吗?请说明理由;(2)求∠BOC的度数;(3)求∠AOB与∠AOC的度数.21.如图,点A,M,B,C,N,D在一条直线上,若AB:BC:CD=2:3:2,AB的中点M与CD的中点N的距离是11cm,求AD的长.22.如图,已知点O为直线AB上一点,将一直角三角板的直角顶点放在点O 处.(1)如图1,将三角板的一边ON与射线OB重合,过点O在三角板的内部,作射线OC,使∠NOC:∠MOC=2:1,求∠AOC的度数;(2)如图2,将三角板绕点O逆时针旋转一定角度到图2的位置,过点O在三角板MON的内部作射线OC,使得OC恰好是∠MOB对的角平分线,此时∠AOM与∠NOC满足怎样的数量关系?并说明理由.参考答案一.选择题(共10小题)1.下列几何体中,面的个数最少的是()A.B.C.D.【解答】解:三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥,故选:C.2.下列几何体中,其面既有平面又有曲面的有()A.1个B.2个C.3个D.4个【解答】解:球只有1个曲面;圆锥既有曲面又有平面;正方体只有平面;圆柱既有平面又有曲面;故选:B.3.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,4【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“0”是相对面,“B”与“3”是相对面,“C”与“﹣4”是相对面,∵相对面上的两数互为相反数,∴A、B、C内的三个数依次是0、﹣3、4.故选:A.4.下列图形中,不可以作为一个长方体的展开图的是()A.B.C.D.【解答】解:根据长方体展开图的特征,图A和图C、图D是长方体展开图,而图B不能折叠成长方体,不是长方体展开图.故选:B.5.如图,从A地到B地有三条路可走,为了尽快到达,人们通常选择其中的直路.能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有一条且只有一条直线垂直于已知直线【解答】解:从A地到B地有三条路可走,为了尽快到达,人们通常选择其中的直路,理由是两点之间线段最短,故选:A.6.兴隆通往半壁山的公路经过八品叶梁盘旋而上,现在要沿着山脚打山洞而过,这样通往两地的时间将大大缩短,在数学中也就是“把弯曲的公路改直,就能缩短路程”这其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间线段最短D.两点之间直线最短【解答】解:由线段的性质可知,“把弯曲的公路改直,就能缩短路程”这其中蕴含的数学道理是:两点之间线段最短.故选:C.7.如图,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD【解答】解:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠AOD=∠COD,∠EOC=∠BOE,又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选:C.8.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC=70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°【解答】解:∵OD是∠AOC的平分线,∴∠AOC=2∠COD=140°,∴∠BOC=180°﹣∠AOC=40°,∵OE是∠COB的平分线,∴∠BOE=∠BOC=20°,故选:D.9.下列说法正确的个数是()①射线AB与射线BA是同一条射线;②两点确定一条直线;③两条射线组成的图形叫做角;④两点之间直线最短;⑤若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个【解答】解:①射线AB与射线BA不是同一条射线,故①错误;②两点确定一条直线,故②正确;③两条端点重合的射线组成的图形叫做角,故③错误;④两点之间线段最短,故④错误;⑤若AB=BC,则点B不一定是AC的中点,故⑤错误.故选:A.10.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.两条直线相交只有一点【解答】解:建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是:两点确定一条直线.故选:A.二.填空题(共7小题)11.如图,已知∠AOD=150°,OB、OC、OM、ON是∠AOD内的射线,若∠BOC=20°,∠AOB=10°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以3°/秒的速度逆时针旋转t秒时,当∠AOM:∠DON=3:4时,则t=.【解答】解:∵射线OB从OA逆时针以3°每秒的旋转t秒,∠BOC=20°,∴∠AOC=∠AOB+∠COB=3t°+10°+20°=3t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=150°,∴∠BOD=140°﹣3t.∵射线ON平分∠BOD,∴∠DON=∠BOD=70°﹣t°.又∵∠AOM:∠DON=3:4,∴(t+15):(70﹣t)=3:4,解得t=.故答案是:.12.用橡皮泥做一个棱长为4cm的正方体.如图(1),在顶面中心位置处从上到下打一个边长为1cm的正方体通孔,再在正面中心位置处(按图(2)中的虚线)从前到后打一个边长为1cm的正方体通孔,那么打孔后的橡皮泥的表面积为118cm2;(注意:图形(3)不用)【解答】解:表面积S1=96﹣2+4×4=110(cm2);表面积S2=S1﹣4+4×1.5×2=118(cm2);故答案为118.13.下面的几何体中,属于柱体的有4个.【解答】解:柱体分为圆柱和棱柱,所以柱体有圆柱、正方体、六棱柱,三棱柱共4个.故答案为:4.14.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是60°.【解答】解:∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°﹣150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.15.如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是和.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与“社”在相对面上的字是和.故答案为:和.16.已知线段AC=10m,BC=6m,且它们在同一条直线上,点M、N分别为线段AC和BC的中点,则线段MN的长为2cm或8cm【解答】解:1、如图1,当点B在线段AC上时,由AC=10m,BC=6m,点M、N分别是AC、BC的中点,得MC=AC=×10=5m,NC=BC=×6=3m,由线段的和差,得MN=MC﹣NC=5﹣3=2m;2、如图2,点B在线段AC的延长线上,,当点B在线段AC的延长线上时,由AC=10m,BC=6m,点M、N分别是AC、BC的中点,得MC=AC=×10=5m,NC=BC=×6=3m,由线段的和差,得MN=MC+NC=5+3=8m.故答案为:2m或8m.17.大雁迁徙时常排成人字形,这个人字形的一边与其飞行方向夹角是54°44′8″,从空气动力学角度看,这个角度对于大雁队伍飞行最佳,所受阻力最小.则54°44′8″的补角是125°15′52″.【解答】解:180°﹣54°44′8″=179°59'60''﹣54°44'8''=125°15'52'',故答案为:125°15'52''.三.解答题(共6小题)18.把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)(1)该几何体中有14个小正方体?(2)其中两面被涂到的有4个小正方体;没被涂到的有1个小正方体;(3)求出涂上颜色部分的总面积.【解答】解;(1)由图可得,该几何体中有:1+4+9=14(个)小正方体,故答案为:14个;(2)由图可得,中两面被涂到的有4个小正方体;没被涂到的有1个小正方体,故答案为:4,1;(3)涂上颜色部分的总面积为:1×1×(12+9+8+4)=33cm2,即涂上颜色部分的总面积为33cm2.19.如图,已知线段AB=a,延长BA至点C,使AC=AB.点D为线段BC的中点.(1)画出线段AC;(2)求CD的长;(3)若AD=6cm,求a.【解答】解:(1)如图,线段AC即为所求.;(2)∵AB=a,AC=AB,∴AC=a,∴BC=AC+AB=a,∵点D为线段BC的中点,∴CD=BC=a;(3)∵AD=6,AD=CD﹣AC,由(2)可知:AC=a,CD=a,∴a﹣a=6,解得:a=24.20.如图,已知O为直线AD上一点,∠AOC与∠AOB互补,OM、ON分别是∠AOC、∠AOB的平分线,∠MON=56°.(1)∠COD与∠AOB相等吗?请说明理由;(2)求∠BOC的度数;(3)求∠AOB与∠AOC的度数.【解答】解:(1)∠COD=∠AOB.理由如下:如图∵点O在直线AD上,∴∠AOC+∠COD=180°,又∵∠AOC与∠AOB互补,∴∠AOC+∠AOB=180°,∴∠COD=∠AOB;(2)∵OM、ON分别是∠AOC、∠AOB的平分线,∴∠AOM=∠COM,∠AON=∠BON,∴∠BOC=∠BOM+∠COM,=∠BOM+∠AOM,=(∠MON﹣∠BON)+(∠MON+∠AON),=2∠MON,=112°;(3)由(1)得:∠COD=∠AOB,∵∠AOB+∠BOC+∠COD=180°,∴∠AOB=(180°﹣∠BOC)=(180°﹣112°)=34°,∴∠AOC=180°﹣∠AOB=180°﹣34°=146°.21.如图,点A,M,B,C,N,D在一条直线上,若AB:BC:CD=2:3:2,AB的中点M与CD的中点N的距离是11cm,求AD的长.【解答】解:设AB=2xcm,BC=3x,CD=2x.∵M是AB的中点,∴MB=xcm.∵N是CD的中点,∴NC=xcm,∵MN=11cm,∴x+3x+x=11.解得:x=2.2.AD=2x+3x+2x=7x=15.4cm.22.如图,已知点O为直线AB上一点,将一直角三角板的直角顶点放在点O 处.(1)如图1,将三角板的一边ON与射线OB重合,过点O在三角板的内部,作射线OC,使∠NOC:∠MOC=2:1,求∠AOC的度数;(2)如图2,将三角板绕点O逆时针旋转一定角度到图2的位置,过点O在三角板MON的内部作射线OC,使得OC恰好是∠MOB对的角平分线,此时∠AOM与∠NOC满足怎样的数量关系?并说明理由.【解答】解:(1)∵∠NOC:∠MOC=2:1,∴∠MOC=90°×=30°,∴∠AOC=∠AOM+∠MOC=90°+30°=120°.(2)∠AOM=2∠NOC,令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,∵∠AOM+∠MOC+∠BOC=180°,∴γ+90°﹣β+90°﹣β=180°,∴γ﹣2β=0,即γ=2β,∴∠AOM=2∠NOC.。

(新版人教版)七年级上第四章《图形认识初步》单元测试卷及解析

(新版人教版)七年级上第四章《图形认识初步》单元测试卷及解析

七年级数学第四章图形的初步认识单元测试卷本卷满分100分一、细心填一填:可别填错啦!(每题3分,共39分)1、 如图⑴,有____条直线,有____条线段,有____条射线。

2、 如图⑵,从A 地到B 地走②路线最近,它根据的是____________3、 已知:P 是线段AB 的中点,PA=3cm ,则AB=______cm.4、 用度、分、秒表示 35.12°= ° ′ ″5、 已知∠a=42°31′,则∠a 的余角为_________.6、 如图⑶,射线OA 所表示的方向是______________. ⑵7、 如图⑷,AC ⊥BC,垂足为C,则A 到直线BC 的距离是线段______的长度。

8、 如图⑸,直线a ∥b,∠1=50°,则∠2=______.9、 如图⑹∠1与∠2是直线___与___被直线___所截而成的内错角。

10、如图⑺,O 是直线AB 上的一点,OD 平分∠AOC ,OE 平分∠BOC,则 ∠DOE=______. 11、如图⑻它是正方体的表面展开图,则C 面的对面是_____面。

12、如图⑼,要得到AB ∥CD,则需要角相等的条件是_______________(写一个即可). 13、钟表上表示的时间为8点15分,则时针与分针的夹角为______度。

⑺ ⑻ ⑼ 二、精心选一选:可别张冠李戴哦!(每小题3分,共15分) 1、如图⑽,与∠a 是同位角的有( )个。

A. 3B. 4C. 5D. 6 2、下列语句错误的有( )个。

⑽① 相等的角是对顶角 ② 等角的补角相等 ③ 同位角相等 ④ 过一点有且只有一条直线与已知直线垂直 ⑤ 连结两点的线段叫做两点间的距离 ⑥ 不相交的两条直线互相平行 A. 2 B. 3 C.4 D. 5 3、不能用一副三角板画出的角是( )。

A. 15°B. 75°C. 105°D. 125° 4、下列图形中不是正方形的展开图的是( ) 5、如图⑾,已知 AB ∥CD, 则①∠B=∠1 ②∠2=∠B ③∠2=∠A④∠3=∠B,其中说法正确的是( )A.①②③④B. ②③④C. ③④D. ①④ ⑾OAABCab A B⑶⑷⑸ ⑹42°1212 DCO E A DC B C A C B E FD A D BF EA B① ②③ a 1D A B C 32三、耐心答一答:你一定是学习的智者! 1、读下列语句,并画出图形。

人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3B解析:B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【详解】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点睛】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°A 解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16B 解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.5.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A.B.C.D. A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.6.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 8.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A.8B.7C.6D.4C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.9.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB ,直线a .故选C .【点睛】本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C 在AB 上且AC=BC ∴AC=AB=3cm ∴BC=9cm 又M 为BC 的中点∴CM=BC=45cm ∴AM=AC+CM=75cm 故答案为解析:5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C 在AB 上,且AC=13BC , ∴AC=14AB=3cm ,∴BC=9cm ,又M 为BC 的中点, ∴CM=12BC=4.5cm ,∴AM=AC+CM=7.5cm . 故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC AB+BC=4cm,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.16.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm 则长方形的宽为(14-2x )cm 根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.18.如图,上午6:30时,时针和分针所夹锐角的度数是_____.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动 解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度. 180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.20.如图,::2:3:4AB BC CD=,AB的中点M与CD的中点N的距离是3cm,则BC=______.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.三、解答题21.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.24.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.25.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.26.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(1)用1个单位长度表示1cm,请你在数轴上表示出A,B, C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA−AB的值是否会随着t的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB的值不会随着t的变化而改变,理由见解析;【分析】(1)在数轴上表示出A,B,C的位置即可;(2)求出CA的长即可;(3)不变,理由如下:当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm,(3)不变,理由如下:当移动时间为t秒时,点A. B. C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 27.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.28.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。

(新版人教版)七年级上第四章《图形认识初步》单元测试卷及解析答案

(新版人教版)七年级上第四章《图形认识初步》单元测试卷及解析答案

第四章《图形认识初步》综合测试题(满分120分时间 90分钟)一、选择题(每题3分,共30分)1. ①平角是一条直线;②射线是直线的一半;③射线AB 与射线BA 表示同一条射线;④用一个扩大2倍的放大镜去看一个角,这个角会扩大2倍;⑤两点之间,线段最短;⑥120.5°= 120°50׳.以上说法正确的有( )A .0个 B.1个 C.2个 D.3个2.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的是( )3.下列叙述正确的是( )A .180°是补角B 120°和60°互为补角C 120°和60°是补角D 60°是30°的补角4. 如图1表示一个用于防震的L 形的包装用泡沫塑料,当从上面看这一物体时看到的图形形状是( )5.下列图形中,哪一个是正方体的展开图( )6.甲看乙的方向为南偏西25°,那么乙看甲的方向是 ( )A .北偏东75°B .南偏东75°C .北偏东25°D .北偏西25°7.若∠A 的余角是70°,则∠A 的补角是( )A .70°B .110°C .20°D .160°8.如图,AOC ∠和BOD ∠都是直角,如果 ︒=∠150AOB ,那么=∠COD ( ) A 、︒30 B 、︒40 C 、︒50 D 、︒609.经过任意三点中的两点共可画出( )A .1条直线B .2条直线C .1条或3条直线D .3条直线AC B O DA .B .C .D .(图1)10.如图所示,从O 点出发的五条射线,可以组成角的个数是( ).A .10个B .9个C .8个D .4个二、填空题(每题3分,共30分)11.橙子类似______体,菠萝类似_______体,角柜类似_______体,金字塔类似_______体,粉笔盒类似_______体。

人教版七年级上册数学期末复习第四章《几何图形初步》同步练习

人教版七年级上册数学期末复习第四章《几何图形初步》同步练习

期末复习四《几何图形初步》1.长方体、圆柱、球、正方形、圆等,从实物中抽象出的图形统称____________.2.有些几何图形的各个部分不都在同一平面内,这样的图形称为____________.有些几何图形的各个部分都在______________,它们是平面图形.3.有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的__________.4.从正面看到的投影,称为__________;从上面看到的投影,称为__________;从侧面看到的投影,称为__________.5.几何体简称体,包围着体的是面,面与面相交的地方成______,线与线相交的地方是______.几何图形都是由__________________组成的,其中______是基本元素.6.两点之间,________最短;连结两点之间线段的长度,叫做两点之间的________.7.由两条具有公共端点的________组成的图形叫做角,两条射线的公共端点是角的________.8.1°的160为1分,记作________,即1°=________′;1′的160为1秒,记作________,即1′=________″.9.从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的__________.10.两个角的和等于90°(直角),就说这两个角互为________.两个角的和等于180°(平角),就说这两个角互为________.★集训1 图形的展开与折叠1.下列图形是正方体的表面展开图的是( )2.如图所示的正方体的展开图是 ( )3.如图是某个几何体的表面展开图,围成几何体后,与点E 重合的两个点是( )A .点C 与点DB .点A 与点GC .点A 与点GD .点A 与点C★集训2 从不同的方向看物体4.如图是由5个相同的小正方体组成的几何体,其俯视图为( )5.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数最少是______.★集训3 线段有关的计算6.已知线段AB =8 cm ,在直线AB 上画BC ,使BC =2 cm ,则线段AC 的长度是 A .6 cm B .10 cm C .6 cm 或10 cm D .4 cm 或16 cm 7.如图,点C 是线段AB 上一点,点D 、E 分别是AC 、BC 中点,若线段AB 长为10,则线段DE 长为______.8.如图,已知点C 为AB 上一点,AC =15 cm ,CB =23AC ,若D 、E 分别为AC 、AB 的中点,求DE 的长.★集训4 角有关的计算9.已知∠2是∠1的余角,∠3是∠2的补角,且∠1=38°,则∠3等于 ( ) A .62° B .128° C .138° D .142°10.计算34°25′×2+35°42′=_______________.11.如图,直线AB、CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC∶∠EOD=2∶3,求∠BOD的度数.一、选择题(每小题4分,共32分)1.下列图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中,属于立体图形的是 ( )A.③⑤⑥B.①②③ C.④⑤D.④⑥2.下列各式计算正确的是 ()A.12°=118″ B.38°15′=38.15°C.24.8°×2=49.6° D.90°-85°45′=4°65′3.一个几何体的表面展开图如图所示,则这个几何体是( ) A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.将如图所示的直角三角形ABC绕直角边AB旋转一周,所得几何体的主视图为()5.下列说法中,正确的是 ( )A.直线比射线长 B.两条直线也能进行度量和比较大小C.线段不可以测量 D.射线只有一个端点,不可测量6.如果∠α和∠β互余,那么下列表示∠β的补角的式子:①180°-∠β;②90°+∠α;③2∠α+∠β;④2∠β+∠α.其中正确的有 ( )A.①②③ B.①②③④ C.①②④D.①②7.如图是一个正方体的包装盒的展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个展开图折成正方体后,相对面上的两个数互为相反数,则填在A、B、C内的三个数依次是A.-1,-2,1B.-1,1,-2C.-2,-1,1D.1,-1,-28.如图,OM、OP、ON分别是∠AOB、∠AOC和∠BOC的平分线,则下列各式一定成立的是( ) A.∠AOP>∠MONB.∠AOP=∠MONC.∠AOP<∠MOND.∠AOP=∠BOC二、填空题(每小题5分,共20分)9.建筑工人在砌墙时,经常用细绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,这样做的依据是____________________.10.比较:28°15′______28.15°.(填“>”“<”或“=”)11.长度为12 cm的线段AB的中点为M,点C将线段MB分成MC∶CB=1∶2,则线段AC 的长度为____________.12.如图,一副直角三角板摆放在一起,射线OM平分∠BOC,ON平分∠AOC,∠MON的度数为__________.三、解答题(共48分)13.(10分)一个角的补角加上10°后等于这个角的余角的3倍,求这个角.14.(12分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB 和∠AOC的度数.15.(12分)如图,B、C两点把线段MN分成三部分,其比为MB∶BC∶CN=2∶3∶4,点P 是MN的中点,PC=2 cm,求MN的长.16.(14分)如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值;(2)求正方体的上面和右面的数字和.。

人教版七年级数学上册第四章几何图形复习试题二(含答案) (67)

人教版七年级数学上册第四章几何图形复习试题二(含答案) (67)

人教版七年级数学上册第四章几何图形复习试题二(含答案) 指出下列平面图形各是什么几何体的展开图.【答案】(1)圆柱;(2)圆锥;(3)三棱柱;(4)三棱锥;(5)长方体.【解析】【分析】根据几何体的平面展开图的特征可知:(1)是圆柱的展开图;(2)是圆锥的展开图;(3)是三棱柱的展开图;(4)是三棱锥的展开图;(5)是长方体的展开图.【详解】(1)圆柱;(2)圆锥;(3)三棱柱;(4)三棱锥;(5)长方体.【点睛】本题主要考查几何体展开图的知识点,熟记常见几何体的平面展开图的特征是解决此类问题的关键.62.如图是一个长方体的表面展开图,每个外表面都标注了字母,请根据要求回答问题:(1)如果面A在多面体的底部,那么哪一个面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)如果从右面看是面C,面D在后面,那么哪一个面会在上面?【答案】(1)面F.(2)面C.(3)面A.【解析】【分析】利用长方体及其表面展开图的特点解题.这是一个正方体的平面展开图,共有六个面,其中面“A”与面“F”相对,面“B”与面“D”相对,“C”与面“E”相对.【详解】由图可知,“C”与面“E”相对.则(1)∵面“A”与面“F”相对,∴A面是长方体的底部时,F面在上面;(2)由图可知,如果F面在前面,B面在左面,那么“E”面在下面,∵面“C”与面“E”相对,∴C面会在上面;(3)由图可知,如果C面在右面,D面在后面,那么“F”面在下面,∵面“A”与面“F”相对,∴A面在上面.A面会在上面.【点睛】本题考查的知识点是展开图折叠成长方体,解题关键是注意长方体的空间图形,从相对面入手,分析及解答问题.63.两位同学画的小动物如图所示,哪个图形是用立体图形组成的?用了哪些立体图形?哪个图形是用平面图形组成的?用了哪些平面图形?【答案】左边的图形是用立体图形组成的,用了圆柱体、长方体、球体和正方体;右边的图形是用平面图形组成的,用了三角形、正方形、长方形、五边形、六边形、圆.【解析】【分析】左图是由立体图形组成的,右图是由平面图形组成的,仔细识图即可作答.【详解】左边的图形是用立体图形组成的,用了圆柱体、长方体、球体和正方体;右边的图形是用平面图形组成的,用了三角形、正方形、长方形、五边形、六边形、圆.【点睛】本题考查的知识点是立体图形和平面图形的区别,解题关键是熟记立体图形和平面图形的定义.64.以给定的图形“○○、△△、=”(两个圆、两个三角形、两条线段)为构件,构思独特且有意义的图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的一个图形,并写出一两句贴切、诙谐的解说词.【答案】见解析.【解析】【分析】本题答案不唯一,结合实际生活中的实物,画一幅图画,再说出它像什么就可以.【详解】答案不唯一,如:【点睛】本题的关键是要善于观察与思考,结合实际有利于培养想象能力.65.如图①、②、③、④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表:(2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系;(3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数.【答案】(1)见表格解析;(2)V+F=E+1;(3)30.【解析】【分析】(1)根据图中的四个平面图形数出其顶点数、边数、区域数得出结果;(2)根据表(1)数据总结出归律;(3)根据题(2)的公式把20个顶点和11个区域代入即可得平面图形的边数.【详解】(1)结和图形我们可以得出:图①有4个顶点、6条边、这些边围成3个区域;图②有7个顶点、9条边、这些边围成3个区域;图③有8个顶点、12条边、这些边围成5个区域;图④有10个顶点、15条边、这些边围成6区域.(2)根据以上数据,顶点用V表示,边数用E表示,区域用F表示,他们的关系可表示为:V+F=E+1;(3)把V=20,F=11代入上式得:E=V+F﹣1=20+11﹣1=30.故如果平面图形有20个顶点和11个区域,那么这个平面图形的边数为30.【点睛】本题考查了图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.66.一个正方体6个面分别写着1,2,3,4,5,6.根据下列摆放的三种情况,那么每个数对面上的数是几?【答案】1对4,2对5,3对6;或1对5,2对4,3对6.【解析】【分析】根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对;或面“1”与面“5”相对,面“2”与面“4”相对,“3”与面“6”相对.【详解】根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对;或面“1”与面“5”相对,面“2”与面“4”相对,“3”与面“6”相对.故答案为1对4,2对5,3对6;或1对5,2对4,3对6.【点睛】注意正方体的空间图形,从相对面入手,分析及解答问题.67.如图是一个正方体的展开图,每个面内都标注了字母,请根据要求回答下列问题:(1)如果面F在正方体的底部,那么哪一面会在上面?(2)如果面B在前面,从左面看是面C,那么哪一面会在上面?(3)如果从右面看到面D,面E在后面,那么哪一面会在上面?【答案】(1)面B;(2)面D;(3)面F.【解析】【分析】根据题意可以将多面体的展开图动手折一下,观察每个面的对面,进行转动,再找到其对面.【详解】将多面体的展开图再动手折一下,得到:A和D相对,B和F相对,C和E 相对.故(1)如果面F在正方体的底部,那么面B会在上面;(2)如果面B在前面,从左面看是面C,那么面D会在上面;(3)如果从右面看到面D,面E在后面,那么面F会在上面.【点睛】本题考查了灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.68.如图是一个几何体的平面展开图.(1)这个几何体是____;(2)求这个几何体的体积.(π取3.14)【答案】(1)圆柱;(2)1570cm3【解析】【分析】(1)根据几何体的展开图侧面是矩形,两底面是圆形,可得几何体;(2)根据圆柱的体积公式,可得答案.【详解】解:(1)几何体的展开图侧面是矩形,两底面是圆形,几何体是圆柱.故答案为圆柱;(2)由图可知:底面直径为10cm,高为20cm,故圆柱的体积=3.14×(10÷2)2×20=1570cm3.答:这个几何体的体积是1570cm3.【点睛】本题考查了几何体的展开图,几何体的展开图侧面是矩形,两底面是圆形的几何体是圆柱.69.如图,在一次数学活动课上,张明用17个底面为正方形,且底面边长为a,高为b的小长方体达成了一个几何体,然后他请王亮用尽可能少的同样的长方体在旁边再搭一个几何体,使王亮所搭的几何体恰好可以和张明所搭的几何体拼成一个大长方体(即拼大长方体时将其中一个几何体翻转,且假定组成每个几何体的小长方体粘合在一起).(1)王亮至少还需要个小长方体;(2)请画出张明所搭几何体的左视图,并计算它的表面积(用含,a b的代数式表示);(3)请计算(1)条件下王亮所搭几何体的表面积(用含,a b的代数式表示).【答案】(1)19(2),23418.ab a(3)2+ab a3216.【解析】【分析】(1)确定张明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可.(2)根据图形,画出左视图,计算表面积即可.(3)画出王亮所搭几何体的俯视图,即可求出表面积.【详解】(1)∵王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体2⨯=个,4336∵张明用17个边长为1的小正方体搭成了一个几何体,∴王亮至少还需36−17=19个小立方体.(2)张明所搭几何体的左视图有三列,第一列有4个长方形,第二列有2个长方形,第三列有1个长方形:表面积为:()()22+++++=+ab a ab a101077993418.(3)王亮所搭几何体的俯视图如图所示,图中数字代表该列小正方体的个数.故王亮所搭几何体的表面积为:()()22+++++=+9977883216.ab a ab a 【点睛】本题主要考查的是由三视图判断几何体的知识,能够根据题意确定出两人所搭几何体的形状是解答本题的关键;70.如图是一正方体的展开图,若正方体相对两个面上的式子的值相等,求下列代数式的值:(1)求27x的值;(2)求32x﹣y的值.【答案】(1)8;(2)1【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,然后根据幂的乘方的性质和同底数幂的除法的运算性质分别进行计算即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“3x”与“2”是相对面,“3y”与“4”是相对面,∵正方体相对两个面上的式子的值相等,∴3x=2,3y=4,(1)27x=(3x)3=23=8;(2)32x﹣y=32x÷3y=(3x)2÷3y=22÷4=4÷4=1.【点睛】考查正方体的表面展开图,根据相对的面之间一定相隔一个正方形,确定向对面是解题的关键.三、填空题。

第4章 几何图形初步 章末复习题2022-2023学年人教版七年级数学上册

第4章 几何图形初步  章末复习题2022-2023学年人教版七年级数学上册

第4章 几何图形初步章末复习知识网络{立体图形{ 从不同方向看立体图形立体图形的展开图点、线、面、体:点动成线,线动成面, 平面图形{ 直线、射线、线段{直线的性质: 确定一条直线线段的大小比较线段的性质:两点之间, 最短角{角的度量角的比较与运算——角的平分线余角和补角的性质{同角(等角)的补角 同角(等角)的余角 中考演练一、选择题1.【2020长春中考】下列图形是四棱柱的侧面展开图的是( )2.【2021兰州中考】若∠A =40°,则∠A 的补角为( ) A.40° B.50° C.60° D.140°3.【2021黔西南州中考】如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是( )A.雷B.锋C.精D.神4.【2020江西中考】如图所示,正方体的展开图为()5.【2021巴中中考】某立体图形的表面展开图如图所示,则这个立体图形是( )6.【2021泰州中考】互不重合的A,B,C三点在同一条直线上,若AC=2a+1,BC=a+4,AB=3a,则这三点的位置关系是( )A.点A在B,C两点之间B.点B在A,C两点之间C.点C在A,B两点之间D.无法确定7.【2021包头中考】已知线段AB=4,在直线AB上作线段BC,使得BC=2.若D是线段AC的中点,则线段AD的长为( )A.1B.3C.1或3D.2或38.【2021河北中考】如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一条直线上,请借助直尺判断该线段是( )A.aB.bC.cD.d9.【2019金华中考】如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5 km处C.在南偏东15°方向5 km处D.在南偏东75°方向5 km处二、填空题10.【2021上海中考】70°的余角是.11.【2021兴安盟中考】74°19'30″=°.12.【2020大庆中考】将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB=.第12题图第13题图第14题图13.【2020昆明中考】如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B北偏西35°方向,则∠ABC的度数为°.14.【2020通辽中考】如图,点O在直线AB上,∠AOC=53°17'28″,则∠BOC的度数是.三、解答题15.【2006钦州中考】如图,已知∠1=65°15',∠2=78°30',求∠1+∠2和∠3.16.【2017河北中考】在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.17.【2007舟山中考】如图,是一个食品包装盒的表面展开图.(1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标示的尺寸,计算这个多面体的侧面积和全面积.(侧面积与两个底面积之和)达标练习一、选择题1.如图是某会展中心展出的一只紫砂壶,你认为从上面看到的效果图是( )2.图中的平面展开图与标注的立体图形不相符的是( )3.下列语句中,正确的个数为( )①画直线AB=3 cm;②射线AB与射线BA是两条不同的射线;③用一个平面去截一个正方体,其截面最多为六边形.A.0B.1C.2D.34.在同一平面内有四个点,过其中任意两点画直线,仅能画出四条直线,则这四点的位置关系是( )A.任意三点都不共线B.有且仅有三点共线C.有两点在另外两点确定的直线外D.以上答案都不对5.如图,下列说法正确的是( )A.直线AB与直线BC是同一条直线B.线段AB与线段BA是不同的两条线段C.射线AB与射线AC是两条不同的射线D.射线BC与射线BA是同一条射线6.如图,AB=12 cm,C为AB的中点,点D在线段AC上,且AD∶CB=1∶3,则DB的长度是( )A.4 cmB.6 cmC.8 cmD.10 cm7.永州境内的潇水河畔有朝阳岩、柳子庙和迴龙塔等三个名胜古迹(如图所示),其中柳子庙坐落在潇水之西的柳子街上,始建于1056年,是永州人民为纪念唐宋八大家之一的柳宗元而筑建.现有三位游客分别参观这三个景点,为了使这三位游客参观完景点后步行返回旅游车上所走的路程总和最短,那么旅游车等候这三位游客的最佳地点应在( )A.朝阳岩B.柳子庙C.迴龙塔D.朝阳岩和迴龙塔这段路程的中间位置8.如图,下列说法不正确的是( )A.直线m,n相交于点PB.直线m不经过点QC.PA+PB<QA+QBD.直线m上共有三个点二、填空题9.如果圆柱的侧面展开图是相邻两边长分别为5和4π的长方形,那么圆柱的体积是.10.某食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度/cm1 22 2+1.53 2+34 2+4.5……,求叠成一摞后的高度为cm.11.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④B是直线AB,BC的交点.其中正确语句的有.(只填写序号)第11题图第12题图12.如图所示.(1)图中经过点D 的直线有 条,它们是 . (2)图中以A 为端点的射线有 条,它们是 .13.已知n (n ≥2)个点P 1,P 2,P 3,…,P n 在同一平面内,且其中没有任意三点在同一直线上.设S n 表示过这n 个点中的任意2个点所作的所有直线的条数,显然,S 2=1,S 3=3,S 4=6,S 5=10,…,由此推断,S n = . 三、解答题14.如图,已知某长方体的展开图的面积为310 cm 2,求x 的值.15.已知线段AB ,延长AB 到点C ,使AB =BC ,反向延长AB 到点D ,使AD =4AB ,E 是线段CD 的中点.若DE =12 cm,求: (1)线段AB 的长; (2)线段AE 的长.16.已知点B 在线段AC 上,点D 在线段AB 上,(1)如图1,若AB =6 cm,BC =4 cm,D 为线段AC 的中点,求线段DB 的长度; (2)如图2,若BD =14AB =13CD ,E 为线段AB 的中点,EC =12 cm,求线段AC 的长度.17.如图,OC 表示北偏东54°方向,OD 平分∠BOC. (1)求∠BOD 的度数;(2)请正确描述射线OD 表示的方向.18.如图,已知∠AOB=40°.∠BOC,则∠BOC=;(1)如图1,若∠AOC=13(2)如图2,∠AOC=30°,OM为∠AOB内部的一条射线,ON是∠MOC内部的一条射线,且3∠CON=∠NOM.求4∠AON+∠COM.图1 图2参考答案知识网络{立体图形{ 从不同方向看立体图形立体图形的展开图点、线、面、体:点动成线,线动成面, 面动成体 平面图形{ 直线、射线、线段{直线的性质: 两点 确定一条直线线段的大小比较线段的性质:两点之间, 线段 最短角{角的度量角的比较与运算——角的平分线余角和补角的性质{同角(等角)的补角 相等 同角(等角)的余角 相等 中考演练一、选择题1.【长春中考】下列图形是四棱柱的侧面展开图的是( B )2.【2021兰州中考】若∠A =40°,则∠A 的补角为( D ) A.40° B.50° C.60° D.140°3.【2021黔西南州中考】如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是( D )A.雷B.锋C.精D.神4.【江西中考】如图所示,正方体的展开图为(A )5.【2021巴中中考】某立体图形的表面展开图如图所示,则这个立体图形是( A)6.【2021泰州中考】互不重合的A,B,C三点在同一条直线上,若AC=2a+1,BC=a+4,AB=3a,则这三点的位置关系是( A)A.点A在B,C两点之间B.点B在A,C两点之间C.点C在A,B两点之间D.无法确定7.【2021包头中考】已知线段AB=4,在直线AB上作线段BC,使得BC=2.若D是线段AC的中点,则线段AD的长为( C)A.1B.3C.1或3D.2或38.【2021河北中考】如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一条直线上,请借助直尺判断该线段是( A)A.aB.bC.cD.d9.【金华中考】如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是(D)A.在南偏东75°方向处B.在5 km处C.在南偏东15°方向5 km处D.在南偏东75°方向5 km处二、填空题10.【2021上海中考】70°的余角是.【答案】20°11.【2021兴安盟中考】74°19'30″=°.【答案】74.32512.【2020大庆中考】将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB=.【答案】72°第12题图第13题图第14题图13.【昆明中考】如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B北偏西35°方向,则∠ABC的度数为95°.14.【通辽中考】如图,点O在直线AB上,∠AOC=53°17'28″,则∠BOC的度数是126°42'32″.三、解答题15.【钦州中考】如图,已知∠1=65°15',∠2=78°30',求∠1+∠2和∠3.解:因为∠1=65°15',∠2=78°30',所以∠1+∠2=65°15'+78°30'=143°45',所以∠3=180°-(∠1+∠2)=180°-143°45'=36°15'.16.【河北中考】在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.解:(1)若以B为原点,则点C表示1,点A表示-2,所以p=1+0-2=-1;若以C为原点,则点A表示-3,点B表示-1,所以p=-3-1+0=-4.(2)若原点O在图中数轴上点C的右边,且CO=28,则点C表示-28,点B表示-29,点A表示-31,所以p=-31-29-28=-88.17.【舟山中考】如图,是一个食品包装盒的表面展开图.(1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标示的尺寸,计算这个多面体的侧面积和全面积.(侧面积与两个底面积之和)解:(1)根据图示可知形状为直六棱柱.b 2,(2)由题可知S侧=6ab,S正六边形=3√32所以S全=S侧+2S正六边形=6ab+3√3 b 2.达标练习一、选择题1.如图是某会展中心展出的一只紫砂壶,你认为从上面看到的效果图是( C )2.图中的平面展开图与标注的立体图形不相符的是( D)3.下列语句中,正确的个数为( C)①画直线AB=3 cm;②射线AB与射线BA是两条不同的射线;③用一个平面去截一个正方体,其截面最多为六边形.A.0B.1C.2D.34.在同一平面内有四个点,过其中任意两点画直线,仅能画出四条直线,则这四点的位置关系是( B)A.任意三点都不共线B.有且仅有三点共线C.有两点在另外两点确定的直线外D.以上答案都不对5.如图,下列说法正确的是( A)A.直线AB与直线BC是同一条直线B.线段AB与线段BA是不同的两条线段C.射线AB与射线AC是两条不同的射线D.射线BC与射线BA是同一条射线6.如图,AB=12 cm,C为AB的中点,点D在线段AC上,且AD∶CB=1∶3,则DB的长度是( D)A.4 cmB.6 cmC.8 cmD.10 cm7.永州境内的潇水河畔有朝阳岩、柳子庙和迴龙塔等三个名胜古迹(如图所示),其中柳子庙坐落在潇水之西的柳子街上,始建于1056年,是永州人民为纪念唐宋八大家之一的柳宗元而筑建.现有三位游客分别参观这三个景点,为了使这三位游客参观完景点后步行返回旅游车上所走的路程总和最短,那么旅游车等候这三位游客的最佳地点应在( B)A.朝阳岩B.柳子庙C.迴龙塔D.朝阳岩和迴龙塔这段路程的中间位置8.如图,下列说法不正确的是( D)A.直线m,n相交于点PB.直线m不经过点QC.PA+PB<QA+QBD.直线m上共有三个点二、填空题9.如果圆柱的侧面展开图是相邻两边长分别为5和4π的长方形,那么圆柱的体积是20π或25.10.某食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度/cm1 22 2+1.53 2+34 2+4.5……现在分别从三个方向上看若干碟子,得到的图形如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为23cm.11.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④B是直线AB,BC的交点.其中正确语句的有①③④.(只填写序号)第11题图第12题图12.如图所示.(1)图中经过点D的直线有3条,它们是直线AD,BC,DE.(2)图中以A为端点的射线有4条,它们是射线AB,AD,AE,AF.13.已知n(n≥2)个点P1,P2,P3,…,P n在同一平面内,且其中没有任意三点在同一直线上.设S n表示过这n个点中的任意2个点所作的所有直线的条数,显然,S2=1,S3=3,S4=6,S5=10,…,由此推断,S n .=n(n-1)2三、解答题14.如图,已知某长方体的展开图的面积为310 cm2,求x的值.解:由题意得2×(10x+5x+5×10)=310,解得x=7.15.已知线段AB,延长AB到点C,使AB=BC,反向延长AB到点D,使AD=4AB,E是线段CD的中点.若DE=12 cm,求:(1)线段AB的长;(2)线段AE的长.解:画图如下.(1)因为E是线段CD的中点,DE=12 cm,所以CD=2DE=24 cm.因为AB=BC,AD=4AB,所以CD=AD+AB+BC=4AB+AB+AB=6AB,所以6AB =24 cm,所以AB =4 cm .(2)因为AB =4 cm,所以AD =4AB =16 cm,所以AE =AD -DE =4 cm .16.已知点B 在线段AC 上,点D 在线段AB 上,(1)如图1,若AB =6 cm,BC =4 cm,D 为线段AC 的中点,求线段DB 的长度;(2)如图2,若BD =14AB =13CD ,E 为线段AB 的中点,EC =12 cm,求线段AC 的长度. 解:(1)因为AC =AB +BC ,AB =6 cm,BC =4 cm,所以AC =10 cm . 又因为D 为线段AC 的中点,所以DC =12AC =5 cm,所以DB =DC -BC =1 cm.(2)设BD =x cm,则AB =4x cm,CD =3x cm.因为DC =DB +BC,所以BC =2x.又因为AC =AB +BC,所以AC =6x cm. 因为E 为线段AB 的中点,所以BE =12AB =2x cm.因为EC =BE +BC,所以EC =2x +2x =4x cm,所以4x =12,解得x =3,所以AC =6x =18 cm .17.如图,OC 表示北偏东54°方向,OD 平分∠BOC.(1)求∠BOD 的度数;(2)请正确描述射线OD 表示的方向.解:(1)因为∠1=54°,所以∠BOC =90°+∠1=144°.因为OD 平分∠BOC ,所以∠BOD =12∠BOC =72°.(2)因为∠DOE =90°-∠BOD =90°-72°=18°,所以射线OD 表示北偏西18°方向.18.如图,已知∠AOB =40°.(1)如图1,若∠AOC =13∠BOC ,则∠BOC = ;【答案】30°或60°(2)如图2,∠AOC=30°,OM为∠AOB内部的一条射线,ON是∠MOC内部的一条射线,且3∠CON=∠NOM.求4∠AON+∠COM.图1 图2解:(2)设∠CON=α,则∠NOM=3∠CON=3α.所以∠COM=4α.因为∠AOC=30°,所以∠AON=∠AOC-∠CON=30°-α,所以4∠AON+∠COM=4(30°-α)+4α=120°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档