ACM橡胶的组成及品种
ACM橡胶简单介绍

丙烯酸酯橡胶简介以丙烯酸酯为主要单体经共聚而成的一种合成橡胶,具有耐高温、耐油、抗臭氧和耐紫外线辐照等特殊性能,是一种耐热、耐油的特种橡胶。
主要用作汽车和机车的各种耐热耐油密封圈、衬垫和油封。
丙烯酸酯橡胶发展历史1912年,德国人O.勒姆首次研究了聚丙烯酸酯的硫化。
1944年,美国的C.H.费希尔等开发了丙烯酸乙酯与2-氯乙基乙烯基醚共聚橡胶。
1948年,GOODREACH公司将该产品工业化。
1952年,美国单体公司开始生产丙烯酸丁酯与丙烯腈共聚的丙烯酸酯橡胶。
1955年,日本东亚合成化学也生产了丙烯酸丁酯-丙烯腈共聚橡胶。
1975年美国杜邦公司开发成功丙烯酸酯与α-烯烃共聚的橡胶,其典型代表是丙烯酸乙酯-乙烯无规共聚物和其后的丙烯酸乙酯-乙烯交替共聚橡胶。
这就是AEM橡胶。
丙烯酸酯橡胶的合成路线一类是乳液聚合,其主要品种有丙烯酸丁酯-丙烯腈共聚物,丙烯酸乙酯-丙烯酸丁酯-第三单体(如氯代醋酸乙烯酯等)三元共聚物,如高温胶和低温胶等,有良好的耐热、耐油性,但强度低(拉伸强度约10 MPa)、低温性能差(玻璃化温度Tg为-15~-28℃)。
这类高分子聚合物我们称之为聚丙烯酸橡胶-即大家非常熟悉的ACM橡胶。
另一类是溶液聚合。
丙烯酸酯与α-烯烃的溶液聚合橡胶,产品强度高、低温性能好(Tg为-38℃)。
这类烯聚合物的主要代表产品有美国杜邦化学的乙烯-丙烯酸酯橡胶即AEM。
丙烯酸酯橡胶的生产方法乳液法。
采用阴离子型和非离子型混合乳化剂(如十二烷基硫酸钠和烷氧基聚环氧乙烷),在水介质中将丙烯酸酯(包括乙酯和丁酯)或丙烯腈等乳化,并用水溶性引发剂引发聚合。
胶乳经凝聚、洗涤、干燥等工序即得干胶。
生胶的特性粘数[η]为4~6。
溶液法。
以卤代烃(如二氯甲烷)作溶剂,偶氮化合物作引发剂,以路易斯酸作络合剂,在约1MPa下使丙烯酸酯与α-烯烃(如乙烯)进行交替共聚,胶液经凝聚、回收溶剂后,即得交替共聚橡胶。
若采用过氧化物如过氧化三甲基醋酸叔丁酯作引发剂,在约180MPa的高压下使丙烯酸乙酯与乙烯共聚,则所得橡胶为无规共聚物。
acm橡胶在胶粘剂中的作用 -回复

acm橡胶在胶粘剂中的作用-回复ACM橡胶在胶粘剂中的作用胶粘剂是一种广泛应用于工业和日常生活中的材料,用于粘合、封装、修补和连接不同物质。
它在汽车、电子、建筑和医疗行业中都具有重要的作用。
其中,ACM橡胶作为一种常用的材料,被广泛应用于胶粘剂的制造过程中。
本文将一步一步向您介绍ACM橡胶在胶粘剂中的作用。
首先,什么是ACM橡胶?ACM指的是丙烯酸酯橡胶。
它是一种合成橡胶,由氧化丙烯酸酯单体制成。
ACM橡胶具有优异的耐寒性、耐化学品腐蚀性能和疲劳耐久性。
这些特性使得ACM橡胶成为制作胶粘剂的理想材料之一。
其次,ACM橡胶在胶粘剂中扮演着不同的角色。
首先,ACM橡胶可以作为粘接剂的基础材料。
胶粘剂的基础材料通常由聚合物或橡胶组成,用于提供粘接的强度和可塑性。
ACM橡胶具有良好的机械性能,可以为胶粘剂提供强大的粘结力和适应性,使其能够在不同条件下保持稳定的性能。
其次,ACM橡胶在胶粘剂中还可以用作增稠剂。
增稠剂的作用是增加胶粘剂的粘度,使其能够更好地涂覆和填充材料表面。
ACM橡胶具有较高的分子量和粘性,可以有效地增加胶粘剂的粘度,提高其在粘接过程中的润湿性和填充性能。
这对于胶粘剂的有效使用和工艺控制非常重要。
此外,ACM橡胶还具有良好的耐化学品性能。
化学品的腐蚀性对于胶粘剂的性能和寿命有着重要的影响。
ACM橡胶由于其特殊的结构和分子链,具有优异的耐化学品腐蚀性能,能够在接触各种化学溶剂和液体时保持其稳定性。
这使得ACM橡胶成为适用于各种应用场合的胶粘剂材料。
此外,ACM橡胶还能够提高胶粘剂的耐热性能。
在一些特殊的应用环境中,胶粘剂需要承受高温和极端温差的压力。
ACM橡胶具有良好的耐热性,可以在高温环境中保持其强度和粘着性能。
这使得ACM橡胶成为制作高温胶粘剂的理想选择。
总结起来,ACM橡胶在胶粘剂中起到了多重作用。
它作为胶粘剂的基础材料,提供了粘接的强度和可塑性。
同时,ACM橡胶还作为增稠剂,提高了胶粘剂的粘度和润湿性能。
丙烯酸酯橡胶(ACM)发展简介

丙烯酸酯橡胶(ACM)发展简介1.1.丙烯酸酯橡胶简介丙烯酸酯橡胶(简称ACM)是以丙烯酸烷基酯为主要单体与少量交联体单体共聚而成的一类特种合成橡胶[1]。
其结构如图1-1所示,由于结构上的特点,丙烯酸酯橡胶具有优良的耐热性、耐油性、抗氧化性、耐候性以及耐油性。
与此同时,丙烯酸酯橡胶在力学性能和加工性能相比较氟橡胶和硅橡胶具有显著优势,价格较氟橡胶低廉。
近些年来,以丙烯酸酯橡胶为基础的特种密封件、液压油管、电缆护套等在汽车、航空航天等重要领域广泛应用,显现出其日益重要的商业价值。
*H2CHCC OORH2CHC*X图1-1.丙烯酸酯橡胶分子结构示意Fig. 1-1. Polyacrylate Rubber molecular structure1.2.酯橡胶结构与性能1.2.1.丙烯酸酯橡胶的共聚单体种类丙烯酸酯橡胶的共聚单体可分为主单体、硫化点单体和低温耐油单体等三大类。
常用的主单体有丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯等,或者将二种以上单体进行组合,如表1-1所示[2]。
侧链中酯键作为ACM的记性部分发挥总用,而且侧链链长对耐寒性影响很大。
与此同时,ACM橡胶的耐寒性和耐油性也受到分子链侧酯基上烷基碳原子的数目与枝化程度的影响。
随着耐寒度的增加但是耐油性变差,为了保持ACM良好的耐油性并改善其耐低温性能,便合成了一些带有极性的低温耐油单体。
例如采用丙烯酸丁酯为主单体的PBA玻璃化转变温度(Tg)为-54℃,脆性温度(Tb)为-45℃;而以丙烯酸乙酯为主单体的PEA的Tg则为-23℃,Tb为-23℃。
随着侧酯基上烷基链长的增大,丙烯酸酯橡胶的玻璃化转变温度(Tg)和脆性温度(Tb)迅速下降,耐寒性提高的同时耐油性却随之下降。
这是因为随着烷基院子数目的增加对侧酯基的屏蔽作用加大,使得ACM分子间作用力减小,分子链更加的柔顺,导致Tg下降[3];ACM分子侧酯基上连接的基团一般都是与非极性油类相容性较好的烷基,因此随着侧酯基上烷基长度和支化程度的提高,ACM的耐油性能下降。
丙烯酸酯橡胶(ACM)的配方及工艺

丙烯酸酯橡胶(ACM)的配方及工艺丙烯酸酯橡胶(ACM)具有优异的耐油、耐热、耐臭氧、抗紫外线等性能,从20世纪60年代末开始,随着高速汽车的发展而在美国、日本等工业先进国家获得较为广泛的应用。
近年,随着我国汽车工业、摩托车工业、电力工业的快速发展以及进口车辆、机具的增多,对ACM的需求已越来越大。
据国家机械工业局规划发展司介绍,国产汽车中采用ACM的车种为12种,2000年汽车装车和维修需要ACM5000t。
电力行业现在也已经逐步使用ACM代替NBR制造变压器的密封件,以提高使用寿命。
特别是现在国内的电网改造给ACM提供了较大的市场,使ACM的应用快速增长。
很多行业已逐步采用ACM替代NBR以提高制品的性能,或替代价格昂贵的氟橡胶以降低成本,或与氟橡胶并用以改善加工性能。
为了满足国内市场对ACM的需求,国家有关部门已将ACM 列入了积极发展的品种之列,一些科研院所和大专院校等都加入到这一领域进行研究和技术开发,研究成果报道增多,给ACM 的应用打下了一定的理论基础。
从80年代末开始,国内先后建立了几套ACM工业化生产装置,部分满足了国内市场的需求。
ACM的配合和加工具有特殊性,各厂家生产的ACM具有不同的配合和加工要求,给ACM的推广应用造成一定难度。
我国的橡胶制品企业多为中小型企业,技术力量薄弱,也影响了ACM的推广应用。
为了使ACM在我国尽快得到推广应用,解决好配合加工中的技术问题成为当前一项迫切任务。
为此,我们将所了解的用户在实际应用中遇到的配合技术问题进行了分析探讨,现介绍如下。
1ACM配合中的常见问题及产生原因在ACM胶料的配合中,比较常见的技术问题主要有:①胶料性能不稳定;②拉伸强度太低;③压缩永久变形和扯断永久变形大;④回弹性差,有的胶料硫化后近似于硬质塑料;⑤耐磨性差;⑥耐高温老化性差;⑦浅色胶料难以配合和硫化,彩色制品在硫化时变色。
出现上述问题的原因是多方面的,主要影响因素有以下几点:(1)生胶质量低或不稳定生胶质量低或不稳定是影响胶料性能的最重要原因。
原来丙烯酸酯橡胶(ACM)的胶料配合需要这些成分组成?生产工艺也与众不同哦!!!

原来丙烯酸酯橡胶(ACM)的胶料配合需要这些成分组成?生产工艺也与众不同哦丙烯酯橡胶的配合丙烯酸酯橡胶的耐老化、耐热性能优良,与一般橡胶相比,通常的使用温度较高,在这种较高的温度下,防老剂的防护作用往不甚显著,通常不需加防老剂。
另外,因丙烯酸酯橡胶制品基本上是在与耐油接触的条件下使用,软化剂在使用过程中会产生挥发、抽出、移栖现象,所以通常不宜采用。
这样配方仅包括硫化剂、补强剂、操作助剂。
(1)硫化剂ACM的硫化剂要根据引入聚合物的官能团来确定,ACM的共聚单体可分为主单体、低温耐油单体和硫化点单等三类单体。
主单体,常用的有丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯和丙烯酸2-乙基己酯等;低温耐油单体,主要有丙烯酸烷氧醚酯、丙烯酸甲氧乙酯、丙烯酸聚乙二醇甲氧基酯、顺丁烯二酸二甲氧基乙酯等;硫化点单体,目前工业化应用的主要有含氯型的氯乙酸乙烯酯、环氧型甲基丙烯酸缩水甘油酯、烯丙基缩水甘油酯、双键型的3-甲基2-丁烯酯、亚乙基降冰片烯、酸型的顺丁烯二酸单酯或衣糠酸单酯等。
目前市场上销售的ACM产品主要是活性氯型产品,常用的硫化剂组成的硫化体系如下。
①皂/硫黄并用硫化体系。
该体系特点是工艺性能好、硫化速率较快,胶料的贮存稳定性好,但是胶料的热老化性稍差,压缩水久变形较大。
常用的皂有硬脂酸钠、硬脂酸钾和油酸钠。
②N,N二亚肉桂基-1,-已二胺硫化体系。
采用该体系的硫化胶的热老化性能好,压缩水久变形小,但是工艺能稍差,有时会出现粘模现象,混炼胶贮存期较短,硫化程度不高,一般需要二次硫。
③TCY(1,3,5-三巯基-2,4,6-均三嗪)硫化体系。
该体系硫化速率快,可以取消二段硫化,硫化胶热老化性好,压缩水久变形小,工艺性能一般,但对模具腐蚀性较大,混炼胶的贮存时间短,易焦烧。
环氧型ACM常采用多胺、有机羧酸铵盐、二硫代甲酸盐、季铵盐/脲硫化剂。
为了提高反应速率,改善反应选择性,可采适当的促进剂,如各种路易氏碱或酸等都是有效的。
丙烯酸酯橡胶

丙烯酸酯橡胶应用一、前言:比重1.~1.1丙烯酸酯橡胶(英文简称ACM)是以丙烯酸酯为主单体经共聚而得的弹性体,其主链为饱和碳链,侧基为极性酯基;通常要用硫化点单体参与共聚以使其易于硫化。
由于一次结构为饱和碳链和极性侧基,赋予它很好的耐热、耐老化、耐油性能。
被广泛地应用于各种高温、耐油环境,如轴封、O型圈、输油管和各种垫片等。
特别是汽车的曲轴、汽门阀杆、汽缸垫、排汽管的密封和液压输油管等。
有汽车胶的美称。
根据机械部汽车司1995年的统计,国产车使用ACM密封件件数及单耗量如下车型件/辆(ACM胶料)ACM单耗①(kg/辆)CA7220 0.7上海“桑塔那”0.2神龙“富康”0.5TJ7100 0.1CA21046L 4 0.7南京“依维柯” 4 1.5CA1092-Ⅱ 6 0.8“EQ1092 ” 6 0.1“EQ1141G ”11 0.3标致505 0.7JN “ 1491 ”20 7①已采用的部分关键部件的用量(按国际标准,平均为1.0~1.5kg/辆)随着我国汽车工业的兴起和高速发展,一方面,引进汽车生产线的元件国产化和进口原装车备件的更换都急需ACM胶作耐油密封件。
另一方面,我国原有的载重汽车及乘用汽车等也需要不断提高整车质量,延长大修时间。
加之汽车向高速、节油方向发展,这就要求汽车汽缸的燃烧温度不断提高,近年来随着我国高速公路飞速发展,也要求车速提高,各运转部位密封件的温度也相应提高,许多关键部件均需采用高性能的ACM作高温耐油密封件,以保证整车水平。
因此,特种合成橡胶行业和特胶制品行业都急需集中精力研制开发并工业化生产适合汽车工业需要的各类ACM胶种及其制品,否则将难以改变ACM和制品长期依赖进口的局面。
与其它耐油橡胶相比,丙烯酸酯橡胶具有性能/价格比最优的特点。
它长期使用温度180℃,短期使用温度可达210℃,在各种润滑油、燃料油中膨胀率较低(<10%),汽车变速箱用ACM制品密封可连续行驶15-20万公里而不漏油;而丁腈橡胶虽能耐油性能很好,但耐老化性能和耐温性能较差,汽车用丁腈橡胶密封制品连续使用温度仅为106℃,变速箱部位密封连续行驶仅8000-10000公里即开始漏油。
丙烯酸酯橡胶

丙烯酸酯橡胶应用一、前言:比重1.~1.1丙烯酸酯橡胶(英文简称ACM)是以丙烯酸酯为主单体经共聚而得的弹性体,其主链为饱和碳链,侧基为极性酯基;通常要用硫化点单体参与共聚以使其易于硫化。
由于一次结构为饱和碳链和极性侧基,赋予它很好的耐热、耐老化、耐油性能。
被广泛地应用于各种高温、耐油环境,如轴封、O型圈、输油管和各种垫片等。
特别是汽车的曲轴、汽门阀杆、汽缸垫、排汽管的密封和液压输油管等。
有汽车胶的美称。
根据机械部汽车司1995年的统计,国产车使用ACM密封件件数及单耗量如下车型件/辆(ACM胶料) ACM单耗①(kg/辆)CA7220 0.7“桑塔那”0.2神龙“富康”0.5TJ7100 0.1CA21046L 4 0.7“依维柯” 4 1.5CA1092-Ⅱ 6 0.8“EQ1092 ” 6 0.1“EQ1141G ”11 0.3标致505 0.7JN “1491 ”20 7①已采用的部分关键部件的用量(按国际标准,平均为1.0~1.5kg/辆)随着我国汽车工业的兴起和高速发展,一方面,引进汽车生产线的元件国产化和进口原装车备件的更换都急需ACM胶作耐油密封件。
另一方面,我国原有的载重汽车及乘用汽车等也需要不断提高整车质量,延长大修时间。
加之汽车向高速、节油方向发展,这就要求汽车汽缸的燃烧温度不断提高,近年来随着我国高速公路飞速发展,也要求车速提高,各运转部位密封件的温度也相应提高,许多关键部件均需采用高性能的ACM作高温耐油密封件,以保证整车水平。
因此,特种合成橡胶行业和特胶制品行业都急需集中精力研制开发并工业化生产适合汽车工业需要的各类ACM 胶种及其制品,否则将难以改变ACM和制品长期依赖进口的局面。
与其它耐油橡胶相比,丙烯酸酯橡胶具有性能/价格比最优的特点。
它长期使用温度180℃,短期使用温度可达210℃,在各种润滑油、燃料油中膨胀率较低(<10%),汽车变速箱用ACM制品密封可连续行驶15-20万公里而不漏油;而丁腈橡胶虽能耐油性能很好,但耐老化性能和耐温性能较差,汽车用丁腈橡胶密封制品连续使用温度仅为106℃,变速箱部位密封连续行驶仅8000-10000公里即开始漏油。
丙烯酸酯橡胶

丙烯酸酯橡胶应用一、前言:比重1.~1.1丙烯酸酯橡胶(英文简称 ACM)是以丙烯酸酯为主单体经共聚而得的弹性体,其主链为饱和碳链,侧基为极性酯基;通常要用硫化点单体参与共聚以使其易于硫化。
由于一次结构为饱和碳链和极性侧基,赋予它很好的耐热、耐老化、耐油性能。
被广泛地应用于各种高温、耐油环境,如轴封、O型圈、输油管和各种垫片等。
特别是汽车的曲轴、汽门阀杆、汽缸垫、排汽管的密封和液压输油管等。
有汽车胶的美称。
根据机械部汽车司1995年的统计,国产车使用ACM密封件件数及单耗量如下车型件 /辆(ACM胶料)ACM单耗①(kg/辆)CA7220 0.7上海“桑塔那”0.2神龙“富康”0.5TJ7100 0.1CA21046L 4 0.7南京“依维柯” 4 1.5CA1092-Ⅱ 6 0.8“EQ1092 ” 6 0.1“EQ1141G ”11 0.3标致505 0.7JN “ 1491 ”20 7①已采用的部分关键部件的用量 (按国际标准,平均为1.0~1.5kg/辆)随着我国汽车工业的兴起和高速发展,一方面,引进汽车生产线的元件国产化和进口原装车备件的更换都急需ACM胶作耐油密封件。
另一方面,我国原有的载重汽车及乘用汽车等也需要不断提高整车质量,延长大修时间。
加之汽车向高速、节油方向发展,这就要求汽车汽缸的燃烧温度不断提高,近年来随着我国高速公路飞速发展,也要求车速提高,各运转部位密封件的温度也相应提高,许多关键部件均需采用高性能的ACM作高温耐油密封件,以保证整车水平。
因此,特种合成橡胶行业和特胶制品行业都急需集中精力研制开发并工业化生产适合汽车工业需要的各类ACM胶种及其制品,否则将难以改变ACM和制品长期依赖进口的局面。
与其它耐油橡胶相比,丙烯酸酯橡胶具有性能/价格比最优的特点。
它长期使用温度180℃,短期使用温度可达210℃,在各种润滑油、燃料油中膨胀率较低(<10%),汽车变速箱用ACM制品密封可连续行驶15-20万公里而不漏油;而丁腈橡胶虽能耐油性能很好,但耐老化性能和耐温性能较差,汽车用丁腈橡胶密封制品连续使用温度仅为106℃,变速箱部位密封连续行驶仅8000-10000公里即开始漏油。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丙烯酸酯橡胶的组成和品种
发布日期:2006-6-1 11:38:32 作者:出处:
聚丙烯酸是一种塑料或纤维材料,由于羧基侧链增大了分子间力与旋转空间位阻,致使分子链僵硬,且分子结构规整,易于结晶,因此常温下缺乏橡胶性。
羧基经醇酯化后,由于烷基屏蔽了极性基,降低了分子间力,因而增大了分子链的柔性。
研究证明,随烷基侧链的增长,这种屏蔽内塑作用增加,增至聚丙烯酸正丁酯时即已成为橡胶状弹性体。
只是这种均聚物不好硫化,需引入适宜的硫化活性单体,这种共聚单体的引入,不仅有利于硫化,且可以打乱分子链的规整结构,降低分子间力,阻止结晶,从而增大了聚合物的橡胶性。
因此纵令某些丙烯酸酯的均聚物不是橡胶,如聚丙烯酸乙酯,若引入适宜的共聚单体后也可以成为橡胶,丙烯酸酯橡胶即由丙烯酸酯和交联单体为基本组分。
为改进其特性,有时也引入少量第三单体。
(一)丙烯酸酯
丙烯酸酯种类需根据橡胶耐油、耐寒和加工性能综合平衡确定,随酯基碳原子数的加,有利于打乱聚合物分子链排布,减少分子间的作用力,增大内部塑性,降低脆化温度,这一趋势直至正辛基。
聚丙烯酸正辛酯的脆化温度为-65℃,继续增长酯基链长,因链节内转动的空间位阻增大造成的不利影响超过了它对极性基的屏蔽效应,使净效果相反,如图15—1。
此外,随酯基增大,聚合物耐水性提高,但因降低了内聚能密度,增大了碳氢组分,因而耐油性能降低,同时耐热性能、拉伸强度受到损失,硬度下降,而且因生胶粘度下降使炼胶时显得过软、过粘,影响工艺操作。
综上所述,酯基不宜超过丁酯,实际上多采用丙烯酸乙酯和丙烯酸丁酯。
以丙烯酸乙酯为基础的橡胶耐油、耐热性能较好,以丙烯酸丁酯为基础的橡胶耐寒性能较好:通过两种单体的并用,可调节上述性能,得到介于两者之间的橡胶。
丙烯酸酯橡胶的缺点之一是低温下变硬,并丧失弹性,若能改进其低温特性,使用价值必将倍增。
研究证明,在多碳酯基中引入硫醚或氧醚键等极性基团,可在保持良好的耐烃类介质性能同时,改进低温性能,例如由甲氧基乙基丙烯酸酯、乙氧基乙基丙烯酸酯、乙基硫代乙基丙烯酸酯等单体制备的橡胶,可使耐油与耐寒性能得到极好的平衡。
为照顾实用上对应力-应变性质的要求,这类单体需与一般烷基丙烯酸酯并用,最宜含量约占单体总量的25~40%。
此外,一系列的—氰基硫代烷基丙烯酸酯也都可以使用,由此制备的共聚物耐油性极佳,耐寒性能可达丙烯酸丁酯橡胶水平。
选择和调整丙烯酸酯的品种和用量,例如恰当选择丙烯酸
乙酯、丙烯酸丁酯、甲氧基乙基丙烯酸酯的用量,可使橡胶在耐低温、耐油、物理机械性能几方面获得极好平衡,国外一些丙烯酸酯橡胶如Cyanacryl LT—3,Krynac882、Hyear 2121×60、卜ァァヶ口ンAR- 860EX等都是出于这一选择。
使用含氟、含金属的丙烯酸酯单体可制备特种丙烯酸酯橡胶。
(二)交联单体
均聚丙烯酸酯橡胶难以交联.需与提供交联反应的单体共聚以解决硫化问题。
较早使用的交联单体为2-氯乙基乙烯醚和丙烯腈,但由于2-氯乙基乙烯醚的氯原子和丙烯腈的腈基活性低,硫化困难,需用活性大的烷基多胺作硫化剂,造成了加工上一系列困难。
近年来逐步开发了一些反应活性高的交联单体,主要有四种类型:①烯烃环氧化物,如烯丙基缩水甘油醚、缩水甘油丙烯酸酯、缩水甘油甲基丙烯酸酯等,②含活性氯原子的化合物,如氯乙酸乙烯酯、氯乙酸丙烯酸酯;③酰胺类化合物,主要有N-烷氧墓丙烯酰胺、羟甲基丙烯酰胺;
④含非共轭双烯烃单体,如二环戊二烯、甲基坏戊二烯及其二聚体、乙叉降冰片烯等。
含不同交联单体的丙烯酸酯橡胶,硫化体系不同,其加工特性也随之变化,成为丙烯酸酯橡胶的分类基础。
丙烯酸酯橡胶侧链上引入环氧基作为交联点,可在羧酸铵盐等物质作用下,打开环氧基,使分子间发生交联反应。
引入活性很高的氯化物,可用金属皂/硫黄等多种硫化体系进行硫化。
以酰胺类化合物为交联单体可获得一种与通常橡胶具有不同硫化特性的自交联型丙烯酸酯橡胶,即在一定的温度条件下,橡胶本身产生交联反应。
带有双键的丙烯酸酯橡胶,利用共聚物上的双键,可象普通三元乙丙橡胶一样,用硫黄—促进剂体系硫化。
新交联单体的应用,极大地改进了丙烯酸酯橡胶的硫化特性,推动了丙烯酸酯橡胶应用的发展。
(三)其它组分
除上述两种主要成分外,为改进某些性能,有时引入少量其它单体。
如前所述,提高丙烯酸高级烷基酯比例,可改善橡胶耐寒性能,但同时因聚合物粘度降低,严重影响炼胶等工艺性能,若聚合时引入o.5份二乙烯单体或多官能单体(如二甲基丙烯酸乙烯酯、羟甲基丙烯酰胺、丙烯基丙烯酸酯等)使聚合物产生轻度交联,可有效地解决这一问题。
其它单体如苯乙烯可降低吸湿性,提高耐水性,改善耐电、耐寒性能;丙烯腈可赋予硫化胶较高的硬度、扭转模量和耐油性能;乙烯基三烷基硅烷或乙烯基三烷氧基硅烷可提高耐热老化性能。