《弹性力学》试题参考答案

合集下载

(完整版)《弹性力学》试题参考答案

(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为: ,。

0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。

ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量。

S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。

由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。

弹性力学教材习题及解答(供参考)

弹性力学教材习题及解答(供参考)

1 —1.选择题a. 下列材料中,_D_属于各向同性材料。

A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。

b. 关于弹性力学的正确认识是_A_。

A•计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。

c. 弹性力学与材料力学的主要不同之处在于_B_。

A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。

d. 所谓完全弹性体”是指_B_。

A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时间历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。

2—1.选择题a. 所谓应力状态”是指_B_。

A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,因此应力矢量是不可确定的。

2—2.梯形横截面墙体完全置于水中,如图所示。

已知水的比重为,试写出墙体横截面边界AA', AB, BB'的面力边界条件。

在AA1,叭=一砂卫*刁0,在AB ±3 aaj十z趴豹=-jy sin. a、在2—3.作用均匀分布载荷q的矩形横截面简支梁,如图所示。

根据材料力学分析结果,该梁er, = —y r^.=—横截面的应力分量为试检验上述分析结果是否满足平衡微分方程和面力边界条件。

由此,只有当仃卩确罡.材料力学中所得轲的解答才能满足平衡方程和边界 条件’即芮満足弹性力学基本方程的解. 2 - 4.单位厚度的楔形体,材料比重为,楔形体左侧作用比重为的液体,如图所示。

试~ a x cos os - sin a,~ cos tz - tr^ sin tz y^y sin a 0 cos /? - sm 0=6 厂期cos 』一 cr 尸血厅=0.2- 5.已知球体的半径为r ,材料的密度为 1,球体在密度为 i ( 1 > 1)的液体中漂浮,如沉入複体割分 yj 面力F = -p 3g (z 0 - z ) 1边界条件为舌匕一卩”严严+ @ 一厂)% = 0-X% 十丁〔巧-51) +(z-f )r v = 0.肚迄+严疋*("尸)(务一耳)a 也来沉人液郎中的部分(珂 < 立< 2尸),边畀条件为开T ■*■尸欣斗仗一町% = °, f 十十住-尸打中=①6 +y^ 十仗“门口丁 550*写出楔形体的边界条件。

《弹性力学》试题参考答案(2021年整理精品文档)

《弹性力学》试题参考答案(2021年整理精品文档)

(完整版)《弹性力学》试题参考答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)《弹性力学》试题参考答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)《弹性力学》试题参考答案的全部内容。

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰ 2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M .4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用.圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替.(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 已知。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案处具有相同的位移时,也能在整个公共边界上具有相同的位移。

19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。

20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”)1、连续性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

(√) 5、如果某一问题中,0===zy zx zττσ,只存在平面应力分量xσ,yσ,xyτ,且它们不沿z 方向变化,仅为x ,y的函数,此问题是平面应力问题。

(√) 6、如果某一问题中,0===zy zx zγγε,只存在平面应变分量xε,yε,xyγ,且它们不沿z 方向变化,仅为x ,y的函数,此问题是平面应变问题。

(√) 9、当物体的形变分量完全确定时,位移分量却不能完全确定。

(√)10、当物体的位移分量完全确定时,形变分量即完全确定。

(√)14、在有限单元法中,结点力是指结点对单元的作用力。

(√)15、在平面三结点三角形单元的公共边界上应变和应力均有突变。

(√ )三、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。

(1)ByAx x+=σ,DyCx y+=σ,FyEx xy+=τ; (2))(22y x A x+=σ,)(22y x B y+=σ,Cxyxy=τ;其中,A ,B ,C ,D ,E ,F 为常数。

解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s fm l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。

弹性力学网考考试题及答案

弹性力学网考考试题及答案

弹性力学网考考试题及答案一、单项选择题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程是()。

A. 平衡方程B. 几何方程C. 物理方程D. 相容方程答案:A2. 弹性力学中,平面应力问题是指()。

A. 应力分量σx、σy、τxy均不为零B. 应力分量σx、σy、τxy中有一个为零C. 应力分量σx、σy、τxy中有两个为零D. 应力分量σx、σy、τxy中有三个为零答案:C3. 在弹性力学中,圣维南原理适用于()。

A. 静力平衡问题B. 热弹性问题C. 动力学问题D. 流体力学问题答案:A4. 弹性力学中,平面应变问题是指()。

A. 应变分量εx、εy、γxy均不为零B. 应变分量εx、εy、γxy中有一个为零C. 应变分量εx、εy、γxy中有两个为零D. 应变分量εx、εy、γxy中有三个为零答案:B5. 弹性力学中,主应力和主应变之间的关系是()。

A. 线性关系B. 非线性关系C. 没有关系D. 取决于材料的性质答案:A6. 弹性力学中,莫尔圆在σ-τ平面上表示的是()。

A. 应力状态B. 应变状态C. 位移场D. 速度场答案:A7. 弹性力学中,平面应力问题和平面应变问题的区别在于()。

A. 应力分量的数量B. 应变分量的数量C. 位移分量的数量D. 材料的性质答案:B8. 弹性力学中,三向应力状态下的应力分量不包括()。

A. σxB. σyC. σzD. τxy答案:D9. 弹性力学中,应力集中现象通常发生在()。

A. 光滑表面B. 尖锐转角C. 平坦区域D. 均匀区域答案:B10. 弹性力学中,弹性模量E和泊松比μ之间的关系是()。

A. E = 2G(1+μ)B. E = 3G(1-2μ)C. E = 3G(1+2μ)D. E = 2G(1-μ)答案:A二、多项选择题(每题3分,共15分)11. 弹性力学中,下列哪些方程是基本方程?()A. 平衡方程B. 几何方程C. 物理方程D. 相容方程答案:ABCD12. 弹性力学中,下列哪些因素会影响材料的弹性模量E?()A. 材料种类B. 温度C. 应力状态D. 应变状态答案:AB13. 弹性力学中,下列哪些是平面应力问题的特点?()A. 应力分量σz为零B. 应变分量εz不为零C. 位移分量w为零D. 位移分量u和v不为零答案:AC14. 弹性力学中,下列哪些是平面应变问题的特点?()A. 应变分量εz为零B. 应力分量σz不为零C. 位移分量w不为零D. 位移分量u和v不为零答案:AD15. 弹性力学中,下列哪些是应力集中现象的影响因素?()A. 材料性质B. 几何形状C. 载荷类型D. 边界条件答案:BCD三、判断题(每题2分,共20分)16. 弹性力学中,平衡方程是描述物体内部力的平衡状态的方程。

《弹性力学》试题(重学考试试卷 参考答案)

《弹性力学》试题(重学考试试卷  参考答案)

(1)将φ代入相容方程
4Φ x 4
2
4Φ x 2 y
2
4Φ y 4
0 ,显然满足。因此,该函数可以作为应力函数。
O
(2)应力分量的表达式:
x
2 y 2
6qx2 h3
y
4qy3 h3
3qy 3h
,
y
y
2 x 2
q 2
4y3 h3
3y h
1
xy
2 xy
6qx h3
h2 4
y2
考察边界条件:在主要边界 y=±h/2 上,应精确满足应力边界条件
响可以不计。
A.几何上等效
B.静力上等效
C.平衡 D.任意
3、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。
A.平衡方程、几何方程、物理方程完全相同
B.平衡方程、几何方程相同,物理方程不同
C.平衡方程、物理方程相同,几何方程不同
D.平衡方程相同,物理方程、几何方程不同
(在各个方向上相同)。
2、位移法求解的条件是什么?怎样判断一组位移分量是否为某一问题的真实位移?(5 分)
答: 按位移法求解时,u,v 必须满足求解域内的平衡微分方程,位移边界条件和应力边界条件。 平衡微分方程、位移边界条件和(用位移表示的)应力边界条件既是求解的条件,也是校核 u,v 是否正确的条件。
1
3i
m
2
j
4
5
6
7
89
j
m
i
(a)
(b)
题八图
解:
因结构关于沿编码 2、5、8 的轴线对称,故可取左半部分进行分析,见下图所示。

弹性力学 - 答案

弹性力学 - 答案

《弹性力学》习题答案一、单选题1、所谓“完全弹性体”是指(B)A、材料应力应变关系满足虎克定律B、材料的应力应变关系与加载时间、历史无关C、本构关系为非线性弹性关系D、应力应变关系满足线性弹性关系2、关于弹性力学的正确认识是(A )A、计算力学在工程结构设计中的作用日益重要B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设C、任何弹性变形材料都是弹性力学的研究对象D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析3、下列对象不属于弹性力学研究对象的是(D )。

A、杆件B、块体C、板壳D、质点4、弹性力学对杆件分析(C)A、无法分析B、得出近似的结果C、得出精确的结果D、需采用一些关于变形的近似假定5、图示弹性构件的应力和位移分析要用什么分析方法?(C)A、材料力学B、结构力学C、弹性力学D、塑性力学6、弹性力学与材料力学的主要不同之处在于( B )A、任务B、研究对象C、研究方法D、基本假设7、下列外力不属于体力的是(D)A、重力B、磁力C、惯性力D、静水压力8、应力不变量说明( D )。

A. 应力状态特征方程的根是不确定的B. 一点的应力分量不变C. 主应力的方向不变D. 应力随着截面方位改变,但是应力状态不变9、关于应力状态分析,(D)是正确的。

A. 应力状态特征方程的根是确定的,因此任意截面的应力分量相同B. 应力不变量表示主应力不变C. 主应力的大小是可以确定的,但是方向不是确定的D. 应力分量随着截面方位改变而变化,但是应力状态是不变的10、应力状态分析是建立在静力学基础上的,这是因为( D )。

A. 没有考虑面力边界条件B. 没有讨论多连域的变形C. 没有涉及材料本构关系D. 没有考虑材料的变形对于应力状态的影响11、下列关于几何方程的叙述,没有错误的是( C )。

A. 由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移B. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移C. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量D. 几何方程是一点位移与应变分量之间的唯一关系12、平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为 z 轴方向)( C )A、 xB、 yC、 zD、 x, y, z13、平面应力问题的外力特征是(A)A 只作用在板边且平行于板中面B 垂直作用在板面C 平行中面作用在板边和板面上D 作用在板面且平行于板中面。

《弹性力学》试题参考标准答案与弹性力学复习题

《弹性力学》试题参考标准答案与弹性力学复习题

《弹性力学》试题参考答案与弹性力学复习题————————————————————————————————作者:————————————————————————————————日期:弹性力学复习资料一、简答题√1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

√平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定。

反之,当形变分量完全确定时,位移分量却不能完全确定。

√平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

√2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

√3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx 、σy 、σz 、τxy 、τyz 、、τzx 。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

√4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
x
yx
x
xy
y
y
y
X Y
0 0
(2) (3)
其中: X 0,Y 0 将式(1)代入式(2),有
x
x
xy
y
X
0
(2)
yx
x
y
y
Y
0
(3)
将(1)代入(2),有
xy
y
6q0 lh 3
x2 y
积分上式,得
xy
3q0 lh 3
x2 y2
f1 ( x)
利用边界条件: xy y h 0 2
3.图示矩形弹性薄板,沿对角线方向作用一对拉力P,板的几何尺寸如图,
材料的弹性模量E、泊松比 已知。试求薄板面积的改变量。
解:设当各边界受均布压力 q 时,两力作用点的
相对位移为 S ,由
1 (1 )q
E l l a2 b2 q a2 b2 (1 )
E
设板在力P作用下的面积改变为 S ,由功的互等定理有:
q S P l
将 l代入得: S 1 P a 2 b2
E
显然, S 与板的形状无关,仅与E、 、l 有关。
4.图示曲杆,在 r b 边界上作用有均布拉应力q,在自由端作用有水
平集中力P。试写出其边界条件(除固定端外)。
r rb q, r rb 0
r ra 0, r ra 0
ab dr P cos ab r dr P sin
b
a rdr
P cos
a
2
b
5.试简述拉甫(Love)位移函数法、伽辽金(Galerkin)位移函数法求解空 间弹性力学问题的基本思想,并指出各自的适用性 .
Love、Galerkin位移函数法求解空间弹性力学问题的基本思想:
(1)变求多个位移函数 u(x, y),v(x, y), w(x, y) 或 ur (r, ),u (r, )
(提示:取应力函数为 Asin 2 B )
解: d 很小,M Pd
可近似视为半平面体边界受一集中力偶 M 的情形。
将应力函数 (r, )代入,可求得应力分量:
r
1 r
r
1 r2
2 2
4 r2
Asin
2
2
r 2
0
r
r
1 r
பைடு நூலகம்
1 r2
(2Acos 2
B)
边界条件: (1)
0 0, r 0 0
为求一些特殊函数,如调和函数、重调和函数。 (2)变求多个函数为求单个函数(特殊函数)。
适用性: Love位移函数法适用于求解轴对称的空间问题; Galerkin位移函数法适用于求解非轴对称的空间问题。
三、计算题 1.图示半无限平面体在边界上受有两等值反向,间距为 d 的集中力作 用,单位宽度上集中力的值为 P,设间距 d 很小。试求其应力分量, 并讨论所求解的适用范围。
r0
r0
0, r 0
r0
r0
代入应力分量式,有
1 (2A B) 0 r2
2A B 0 (1)
(2)取一半径为r 的半圆为脱离体,边界上受有: r , r ,和 M = Pd
由该脱离体的平衡,得
2
r
r
2
d
M
0
将代入 r 并积分,有
2 2
1 r2
2
(2Acos 2
B)r 2d
x( y3 3
1 h2 y) 4
f2 (x)
利用边界条件:
y yh 0 2
y
y h 2
q0 l
x
得:
6q0
lh 3 6q0
lh 3
x( h3 1 h3 ) 24 8
x( h3 1 h3 ) 24 8
f2 (x) f2 (x) 0
q0 l
x
由第二式,得
f2 (x)
q0 2l
一、填空题(每小题4分)
1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 ,应力边界条件 。
2.一组可能的应力分量应满足:
平衡微分方程 , 相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, 2 dxdy M 的物理意义是 : D 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy应力函数在边界上值 的物理意义为
公式给出,试由平衡微分方程求出 xy , y,并检验该应力分量能否
满足应力表示的相容方程。
解:(1)求横截面上正应力 x
任意截面的弯矩为 M q0 x3 6l
截面惯性矩为 I h3
12
由材料力学计算公式有: x
My I
2q0 lh 3
x3 y
(2)由平衡微分方程求 y 、 xy
(1)
平衡微分方程:
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分 布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数 的分离
变量形式。
(a)
(x, y) ax2 bxy cy 2 (r, ) r 2 f ( )
(x, y) ax3 bx2 y cxy2 dy3 (b) (r, ) r 3 f ( )
边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:
ij, j X i 0
ij
1 2
(ui,
j
u j,i )
二、简述题(每小题6分)
1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但 静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著 的改变,但远处的应力所受影响可以忽略不计。
有:
3q0 4lh 3
x2h2
f1 ( x)
0
f1 ( x)
3q0 4lh 3
x2h2
xy
3q0 lh 3
x2(y2
1 h2) 4
(4)
将式(4)代入式(3),有
6q0 x( y 2 1 h2 ) y 0
lh 3
4
y
y 6q0 x( y 2 1 h2 )
y
lh 3
4
积分得 :
y
6q0 lh 3
M
0
Asin 2
B
2
M
0

B M 0
2
联立式(1)、(2)求得:
B
M
Pd
A
Pd
2
(2)
代入应力分量式,得
r
2Pd
sin 2
r2
0
r
2Pd
sin 2
r2
结果的适用性:由于在原点附近应用了圣维南原理,故此结果在原点附 近误差较大,离原点较远处可适用。
2.图示悬臂梁,受三角形分布载荷作用,若梁的正应力 x由材料力学
x
将其代入第一式,得
q0 x q0 x q0 x
2l 2l
l
自然成立。
将 y、f2 (x) 代入的表达式,有
所求应力分量:
x
My I
2q0 lh 3
x3 y
xy
3q0 lh 3
x2(y2
1 h2) 4
相关文档
最新文档