1.示范教案(3.1.1 不等关系与不等式(一))
高中数学教学课例《3.1不等关系与不等式(1)》课程思政核心素养教学设计及总结反思

学科
高中数学
教学课例名
《3.、三角等内容有着密切的联系.
在高考题中不等式常与其他知识交汇呈现,因此不等式
在高考中占有比较重要的地位。而本节课是本章的起始
课,学好本节课是学习本章的基础。通过学习有助于学 教材分析
(3)练习巩固 4、联系实际,探索研究 在教学中,我们提倡让学生在问题解决中学习,在问题 探索中学习,从而使学生建构起对知识的理解,因此在 下一环节中,我设计了一个生活实际问题,让学生在问 题探索中学习新知。 能否用所学知识准确表示“糖水加糖甜更甜”的现象? 下面通过复习实数的基本理论,利用数轴数形结合,归 纳总结得出比较两个实数(式)大小的方法,学生容易 接受。 然后给出两组比较简单的作差比较,师生合作完成,教 师板书,学生回答,再总结提炼步骤方法。并变式练习, 一方面可以巩固作差比较法,另一方面,渗透了分类讨 论的数学思想,为课后的能力作业给予一点启示。 例 3、比较下面两组代数式的大小: 步骤:作差→变形→判号→结论. 其中变形是关键,常用的变形手段有提公因式、分解因 式、通分、配方、有理化等. 最后通过例 4,可以先让学生尝试,教师巡视学生解答 情况,最后通过幻灯片展示标准过程,指出学生易错点, 强调关键点。对本题的教学既是对实际探索问题的解 决,前后呼应;也是对作差比较法的进一步巩固,突破
教学策略选 教师的主导作用,主要教会学生清晰的思维和严谨的推 择与设计 理。 为了更好地体现课堂教学中“教师为主导,学生为主 体”的教学关系和“以人为本,以学定教”的教学理 念,在本节课的教学过程中,我将紧紧围绕教师组织— —启发引导,学生探究——交流发现,组织开展教学活 动。我设计了以下六个环节,层层深入,在教学中注意 关注整个过程和全体学生,充分调动学生积极参与教学 过程的每个环节。
3.1.1不等关系与不等式(一)

第三章不等式§3.1.1不等关系与不等式(一)一、教学目标1.使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)产生的实际背景的前提下,能列出不等式与不等式组.2. 学习如何利用不等式表示不等关系,利用不等式的有关基本性质研究不等关系;3.通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的设置,通过学生对问题的探究思考,广泛参与,改变学生的学习方式,提高学习质量。
二、教学重、难点重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。
难点:正确理解现实生活中存在的不等关系. 用不等式(组)正确表示出不等关系。
三、教学过程(一)[创设问题情境]问题1:设点A与平面的距离为d,B为平面上的任意一点,则d≤。
问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。
根据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元?分析:若杂志的定价为x元,则销售的总收入为万元。
那么不等关系“销售的总收入不低于20万元”可以表示为不等式≥20问题3:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍。
怎样写出满足上述所有不等关系的不等式呢?分析:假设截得500mm的钢管x根,截得600mm的钢管y根..根据题意,应有如下的不等关系:(1)解得两种钢管的总长度不能超过4000mm;(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;(3)解得两钟钢管的数量都不能为负。
由以上不等关系,可得不等式组:[练习]:除了以上列举的现实生活中的不等关系,你还能列举出你周围日常生活中的不等关系吗?归纳:文字语言与数学符号间的转换.(二)典例分析例1:某校学生以面粉和大米为主食.已知面食每100克含蛋白质6个单位,含淀粉4个单位;米饭每100克含蛋白质3个单位,含淀粉7个单位.某快餐公司给学生配餐,现要求每盒至少含8个单位的蛋白质和10个单位的淀粉.设每盒快餐需面食百克、米饭百克,试写出满足的条件.例2:配制两种药剂需要甲、乙两种原料,已知配一剂种药需甲料3毫克,乙料5毫克,配一剂药需甲料5毫克,乙料4毫克。
教学设计1:3.1.1 不等关系与不等式

人教B版高二数学教案设计【学习目标】1.知识与技能:了解不等式一些基本性质并可以进行简单应用。
2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3.情感、态度与价值观:通过讲练结合,培养学生转化的数学思想和逻辑推理能力.【学习重点】1.能用不等式(组)表示实际问题的不等关系.2.会用作差法比较两数的大小.【学习难点】建立不等式模型.【授课类型】新授课【学习方法】讲练结合法人教B 版 高二数学 教案设计问题3. 某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%,如何用不等式组表示上述关系? 答: {f ≥2.5%p ≥2.3%问题4. 观察由上述问题得到的关系式,它们有什么共同特点?我们怎么来定义不等关系?答: 这些关系式中都由不等式符号. 我们常用数学符号“≠,<,>,≤,≥”连接两个数或代数式,以表示它们之间的不等关系. 含有这些不等号的式子,叫做不等式.例1. 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解: 设杂志社的定价为x 元,则销售的总收入为(8-x−2.50.1×0.2)x 万元,则“销售的总收入仍不低于20万元”可以用不等式(8-x−2.50.1×0.2)x ≥20来表示.变式1. 某用户计划购买单价分别为60元、70元的单片软件和盒装磁盘,使用资金不超过500元,根据需要,软件至少买3片,磁盘至少买2盒.问:软件数与磁盘数应满足什么条件?解:设软件数为x ,磁盘数为y ,则根据题意可得 {60x +70y ≤500x ≥3,且x ∈N y ≥2,且y ∈N ,探究二. 比较大小问题1.在数轴上,如果表示实数a 和b 的两个点分别为A 和B ,则点A 和点B 在数轴上的位置与实数a 和b 的大小有什么关系?答:(1) 当a =b 时,点A 和点B 重合;(2) 当 a >b 时,点A 在点B 的右侧;(3) 当 a <b 时,点A 在点B 的左侧.人教B版高二数学教案设计人教B版高二数学教案设计人教B版高二数学教案设计【课后反思】。
经典教案3.1不等关系与不等式(1).doc

(2)当销售量小于 吨时,即 ,公司亏损,即 .
【方法总结】正确理解图象所表达的意思是解决该问题的关键.
例2 比较 与 的大小,其中 R.
【审题要津】比较 与 的大小,只要作差后判出差的符号即可.
解:
, .
【方法总结】两个实数比较大小,通常用作差法来进行,其一般步骤是:
解: .
7.咖啡馆配制两种饮料,甲种饮料用奶粉、咖啡、糖分别为9 、4 、3 ,乙种饮料用用奶粉、咖啡、糖分别为4 、5 、5 ,已知每天使用原料为奶粉3600 、咖啡2000 、糖3000 .写出满足上述所有不等关系的不等式.
解:设配制甲种饮料 ,配制乙种饮料 .
则
8.比较 与 .
解: - = .
第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将差化积;第三步:定号.最后得出结论.
例3 建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.
4.不等式 的含义.
不等式 应读作“ 大于或者等于 ”,其含义是指“或者 > ,或者 = ”,等价于“ 不小于 ,即若 > 或 = 之中有一个正确,则 正确.
5.能否正确对“问题2”和“问题3”列式.(见课本)
6.实数比较大小的依据与方法.
(1)如果 是正数,那么 ;如果 等于零,那么 ;如果 是负数,那么 .反之也成立,就是.( >0 > ; =0 = ; <0 < ).
解:由已知图形知: ,由此得: .
高中数学新人教版B版精品教案《人教版B高中数学必修5 3.1.1 不等关系与不等式》1

不等关系与不等式的教学设计辽宁省营口市开发区熊岳高中数学组李明不等关系与不等式的教学设计一、教材分析本节的内容是继学习等量关系之后,在实际生活中存在的又一新的关系-----不等关系。
不等关系在现实世界与日常生活中大量存在,在数学研究和数学应用中与等量关系同样起着重要的作用,它是学习不等式性质及解法的基础,又是构造方程、不等式与函数的基石;因此本节具有重要的奠基作用二、教学目标分析鉴于本节的地位与作用,根据新课标准的要求及高三学生的认知水平,我将教学目标确定为以下三个方面。
(1)知识与技能:通过具体情境感受在现实世界和日常生活中的存在着大量的不等关系;理解不等式(组)的实际背景;(2)过程与方法:通过解决具体问题,学会解决比较大小的基本方法。
(3)情感与价值:通过通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。
教学重点:比较大小的基本方法:作差法和作商法,及特值法教学难点:作商法和作差法三、学情分析本节课面对的是高中三年级的学生,学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。
在学习过程中,教师要抓住学生熟悉的心理,积极调动起学生的学习兴趣。
学生层次参次不齐,个体差异比较明显。
教师只要适当地进行引导,就会取得很好的教学效果四、教学过程由大屏幕显示不等式与不等关系考纲要求,考点分布及考情【设计意图】:让学生在学习知识之前做到心中有数(一)复习旧知(回归教材)教师提问,学生回答,大屏幕显示答案1、两个实数比较大小的依据2、不等式的性质3、不等式的常用性质【设计意图】:学生重新复习教材的内容,可以达到进一步巩固已有知识,,同时达到能熟练应用旧知识的目的(二)知识的回顾由大屏幕显示例1,教师组织学生分组讨论,回答问题例1:下列命题:①若b a bc ac >>则,22;②22,0b ab a b a <<<<则若③已知m b a ,,均为正数,并且b a <,则ba mb a >++m ④x x 432--的最大值是342- 其中正确的命题是教师给学生思考时间后回答问题,并说明理由【设计意图】:这个例子针对的是不等式的性质和常用性质的练习,让学生对不等式的性质的应用有个更进一步的认识,以及在高考中这一块知识如何命题。
3.1.1不等关系与不等式教案

3、1、1不等关系与不等式(第一课时)教学目标:1、知识与技能目标:(1)、理解不等关系及其在数轴上的几何表示。
(2)、会用两个实数之间的差运算确定两实数之间的大小关系,能比较两个代数式的大小。
2、过程与方法目标:(1)教师提出问题,素材,并及时点拨,与学生进行交流,分析,抽象出数学模型。
(2)设计较典型的问题,通过学生自主探究,激发学习兴趣和积极性。
3、态度情感与价值观目标:(1)通过具体情景,让学生体会到学好数学对日常生活的重要作用。
(2)培养学生发现问题、分析问题和解决问题的能力,进而培养学生的实践能力。
进一步体会数形结合的重要方法,增强对事物间普遍联系规律的认识,树立辩证唯物主义思想。
教学重点:实数(代数式)大小比较的基本方法:作差法。
教学难点:判断差的符号难点突破方法:1、结合实例强化2、小组合作探究教法:“自主学习、合作探究、精讲点拨、有效训练”四环节教学法学法:尝试、探究、讨论、总结、运用教具:投影仪板书设计:黑板中央板书课题,左侧依次书写定义、实数(代数式)大小的比较法,其余位置留作演算使用,屏幕保留小结和作业。
教学过程:1、新课引入:现实世界中存在着等量关系,也存在着大量的不等关系,同学们能举出一些例子吗?如:(1)天气预报说:今天早晨最低温度为22℃,今天白天的最高温度为30℃,若用t表示气温,那么用数学表达式可写成22℃≤t≤30℃(2)上一章学习的等比数列中规定q≠0(3)根号a中,a的取值范围是什么?a非负实数,即a≥0(4)提问两同学的身高问题,让全体同学比较其大小关系。
如A>B2、合作探究:(学生思考并回答以下问题)问题一:不等式的定义用不等号连接两个解析式(以表示它们之间的不等关系)所得的式子,叫做不等式.不等号的种类:>、<、≥、≤、≠.(强调“≥、≤”的读法中的“或”引出问题二)问题二:2≥2,这样写正确吗?(“≥“的含义是什么?)这样写是对的,因为“>”和“=”只要一个满足就可以了,即a≥b表示a>b或a=b ,同样a≤b即为a<b或a=b。
高中数学:3.1.1 不等关系与不等式 教案(新人教版必修5B)

3.1.1不等关系与不等式教案教学目标:1.掌握实数的运算性质与大小顺序之间的关系,2.学会比较两个代数式的大小.教学重点:实数的大小比较的基本方法:作差法。
教学过程1、不等式的概念用不等号连接两个解析式所得的式子,叫做不等式.说明:(1)不等号的种类:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代数式和超越式(包括指数式、对数式和三角式等)(3)不等式研究的范围是实数集R2、实数大小比较的依据实数与数轴上的点是一一对应的,在数轴上不同的两个点中,右边的点表示的实数比左边的点表示的实数大,若点A在点B的右方,则点A表示的实数a就大于点B表示的实数b,即a>b,这时,b应加上一个正数才能得到a,即a-b是一个正数,故比较两个实数的大小,只要考虑它们的差就可以了,对两个实数有如下的性质:如果a>b,则a-b为正数,若a<b,则a-b为负数,如果a=b,则a-b=0,反之亦然,即有:3、对于任意两个数a和b,在a>b,a=b,a<b三种关系中,有且只有一种关系成立4、 例题:例1.比较x x -2和2-x 的大小例2.当p 、q 都为正数且1=+q p 时,试比较代数式2)(qy px +与22qy px +的大小归纳总结 :(1)、(2)是用作差比较法来比较两个实数的大小,其一般步骤是:作差——变形——判断符号它们差的符号问题,至于差本身是多少,在此无关紧要补充例题:例3.比较lgx 2与(lgx )2的大小。
例4.已知a>b>0,m>0,试比较m a m b ++与ab 的大小。
5、 巩固练习: 1、若a <0,-1<b <0,则有( ) A a >ab >ab 2 B 2>ab >a C >a >ab 2 D ab >ab 2>a 2、下列不等式中,恒成立的是 ( )A.a 2>0B.lg(a 2+1)>0C.0||>a a D.2a >0 3、已知a,b ∈R,b a≥0,a+b<0则( )A.a ≤0,b<0B. a ≥0,b>0C. a<0,b<0D. a>0,b>04、已知x<0,那么,x 2,2x,x 的大小关系是 ( )A. x 2>2x>xB. x >x 2>2xC. x <x 2<2xD. 2x<x <x 25、已知ab<0,b-a<0,则不等式a 1 b1成立6、设A=(a 2+b 2)(c 2+d 2),B=(ac+bd)2,则A B7、设a<b<0,则b a 1 a1 8、已知a,b ∈R,且ab ≠0,则不等式ab-a2 b 2成立9 、比较a 4-b 4与4a 3(a-b)的大小10、已知x>y ,且y ≠0,比较y x 与1的大小11、设a=x 2+1-2x,b=x 2+16-8x,且3<x<4,比较a 与b 的大小12、 已知0<a<b,a+b=1,,比较b 与a 2+b 2的大小小结:求差比较,关键是差的符号的判定,而差的符号的判定关键是作差以后的变形,变形的主要方法是分解和配方 课堂练习:第63页练习A 、B 。
§3.1.1不等关系与不等式(一)

浓度为 b m ,
am
bm b 可以证明 成立. am a
你能证明吗?预习下一节内容,给出证明.
2013-1-21 重庆市万州高级中学 曾国荣 wzzxzgr@ 16
§3.1.1不等关系与不等式(一)
小结 1. 两 实数间的大小与两数之差有如下关系:
a>ba–b>0 a=ba–b=0 a<ba–b<0
根据两个正数的和仍是正数,得
(a b) (b c) 0, 即a c 0,
推论: 由a b, 且b c a c.
2013-1-21 重庆市万州高级中学 曾国荣 wzzxzgr@ 12
a c.
§3.1.1不等关系与不等式(一)
不等式的性质
性质3:
3
§3.1.1不等关系与不等式(一)
问题2 :某种杂志原以每本2.5元的价格销售,可以 销售出8万本。据市场调查,若单价每提高0.1元, 销售量就可能相应减少2000本,若把提价后杂志的 定价设为x元,怎样用不等式表示销售的总收入仍 不低于20万元呢? 分析:若杂志的定价为x元,则销售的总收入为
x 2.5 (8 0.2)x 万元。 0.1
4 x y 10 18 x 15 y 66 x 0 y 0
2013-1-21 重庆市万州高级中学 曾国荣 wzzxzgr@ 7
§3.1.1不等关系与不等式(一)
练习3、某年夏天,我国遭受特大洪灾,灾区学生 小李家中经济发生困难,为帮助小李解决开学费用 问题,小李所在班级学生(小李除外)决定承担这 笔费用。若每人承担12元人民币,则多余84元;若 每人承担10元,则不够;若每人承担11元,又多出 40元以上。问该班共有多少人?这笔开学费用共多 少元? 分析:设该班除小李外共有x人,这笔开学费用共 y元,则:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1不等关系与不等式3.1.1不等关系与不等式(一)从容说课通过本节课的学习让学生从一系列的具体问题情境中感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用,这是学习本章的基础,也是不等关系在本章内容的地位与作用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较的过程,即能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程,这是学习本章第三节的基础.在本节课的学习过程中还安排了一些简单的学生易于处理的问题,用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望,这也是学生学习本章的情感基础.根据本节课教学内容,应用观察、抽象归纳、思考、交流、探究,得出数学模型,进行启发式教学并使用投影仪辅助.教学重点 1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性;2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题;3.理解不等式或不等式组对于刻画不等关系的意义和价值.教学难点1.用不等式或不等式组准确地表示不等关系;2.用不等式或不等式组解决简单的含有不等关系的实际问题.教具准备投影仪、胶片、三角板、刻度尺三维目标一、知识与技能1.通过具体情境建立不等观念,并能用不等式或不等式组表示不等关系;2.了解不等式或不等式组的实际背景;3.能用不等式或不等式组解决简单的实际问题.二、过程与方法1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.设计较典型的现实问题,激发学生的学习兴趣和积极性.三、情感态度与价值观1.通过具体情境,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度;2.学习过程中,通过对问题的探究思考、广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有实际意义问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的简洁美,激发学生的学习兴趣.教学过程导入新课师日常生活中,同学们发现了哪些数量关系.你能举出一些例子吗?生实例1:某天的天气预报报道,最高气温32℃,最低气温26℃.生实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则x a<x b.(老师协助画出数轴草图)生实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.(学生迫不及待地说出这么多,说明课前的预习量很充分,学习数学的兴趣浓,此时老师应给以充分的肯定和表扬)推进新课师同学们所举的这些例子联系了现实生活,又考虑到数学上常见的数量关系,非常好.而且大家已经考虑到本节课的标题不等关系与不等式,所举的实例都是反映不等量关系,这将暗示我们这节课的效果将非常好.(此时,老师用投影仪给出课本上的两个实例)实例6:限时40 km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p 应不少于2.3%.[过程引导]师能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点、进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人来说必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?生可以用不等式或不等式组来表示.师什么是不等式呢?生用不等号将两个解析式连结起来所成的式子叫不等式.(老师给出一组不等式-7<-5;3+4>1+4;2x≤6;a+2≥0;3≠4.目的是让同学们回忆不等式的一些基本形式,并说明不等号“≤,≥”的含义,是或的关系.回忆了不等式的概念,不等式组学生自然而然就清楚了)师能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程,通过对不等式数学模型的研究,反过来作用于我们的现实生活,这才是我们学习数学的最终目的.(此时,同学们已经迫不及待地想说出自己的观点.)[合作探究]生我们应该先像实例2那样用不等式或不等式组把上述实例中的不等量关系表示出来. 师说得非常好,下面我们就把上述实例中的不等量关系用不等式或不等式组一一表示出来.那应该怎么样来表示呢?(学生轮流回答,老师将答案相应地写在实例后面)生上述实例中的不等量关系用不等式表示应该为32℃≤t≤26℃.生可以表示为x≥0.(此时,学生有疑问,老师及时点拨,可以画出图形.让学生板演)(老师顺便画出三角形草画)生|AC|+|BC|>|AB|(只需结合上述三角形草图).生 |AB |+|BC |>|AC |、|AC |+|BC |>|AB |、|AB |+|AC |>|BC |.生 |AB |-|BC |<|AC |、|AC |-|BC |<|AB |、|AB |-|AC |<|BC |.交换被减数与减数的位置也可以. 生 如果用v 表示速度,则v≤40 km/h.生 f≥2.5%或p≥2.3%.(此时,一片安静,同学们在积极思考)生 这样表达是错误的,因为两个不等量关系要同时满足,所以应该用不等式组来表示此实际问题中的不等量关系,即可以表示为⎩⎨⎧≥≥%.3.2%,5.2p f 生 也可表示为f≥2.5%且p≥2.3%.师 同学们看这两位同学的观点是否正确?生 (齐答)大家齐声说,都可以.师 同学们的思考很严密,很好!应该用不等式组来表示此实际问题中的不等量关系,也可以用“且”的形式来表达.课堂练习教科书第83页练习1、2.(老师让学生轮流回答,学生回答很好.此时,同学们已真正进入了本节课的学习状态,老师再用投影仪给出课本上的三个问题.问题是数学研究的核心,以问题展示的形式来培养学生的问题意识与探究意识)【问题1】 设点A 与平面α的距离为d,B 为平面α上的任意一点.[活动与探究]师 请同学们用不等式或不等式组来表示出此问题中的不等量关系.(此时,教室一片安静,同学们在积极思考,时间较长,老师应该及时点拨)[方法引导]师 前面我们借助图形来表示不等量关系,这个问题是否可以?(可以让学生板演,结合三角形草图来表达)过点A 作AC ⊥平面α于点C ,则d=|AC |≤|AB |. 师 这位同学做得很好,我们在解决问题时应该贯穿数形结合的思想,以形助数,以数解形. 师 请同学们继续来处理问题2.[合作探究]【问题2】 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?生 可设杂志的定价为x 元,则销售量就减少2.01.05.2⨯-x 万本. 师 那么销售量变为多少呢?如何表示? 生 可以表示为)2.01.05.28(⨯--x 万本,则总收入为x x )2.01.05.28(⨯--万元. 〔老师板书,即销售的总收入为不低于20万元的不等式表示为)2.01.05.28(⨯--x x≥20〕 师 是否有同学还有其他的解题思路?生 可设杂志的单价提高了0.1n 元,(n ∈N *),(下面有讨论的声音,有的同学存在疑问,此时老师应密切关注学生的思维状况) 师 为什么可以这样设?生 我只考虑单价的增量.师 很好,请继续讲.生 那么销售量减少了0.2n 万本,单价为(2.5+0.1n)元,则也可得销售的总收入为不低于20万元的不等式,表示为(2.5+0.1n)(8-0.2n)≥20.师 这位同学回答得很好,表述得很准确.请同学们对两种解法作比较.(留下让学生思考的时间)师 请同学们继续思考第三个问题.[合作探究]【问题3】 某钢铁厂要把长度为4 000 mm 的钢管截成500 mm 和600 mm 两种,按照生产的要求,600 mm 钢管的数量不能超过500 mm 钢管的3倍.怎样写出满足上述所有不等关系的不等式?师 假设截得500 mm 的钢管x 根,截得600 mm 的钢管y 根.根据题意,应当有什么样的不等量关系呢?生 截得两种钢管的总长度不能超过4 000 mm.生 截得600 mm 钢管的数量不能超过500 mm 钢管的3倍.生 截得两种钢管的数量都不能为负.师 上述的三个不等关系是“或”还是“且”的关系呢?生 它们要同时满足条件,应该是且的关系.生 由实际问题的意义,还应有x,y ∈N.师 这位同学回答得很好,思维很严密.那么我们该用怎样的不等式组来表示此问题中的不等关系呢?生 要同时满足上述三个不等关系,可以用下面的不等式组来表示:⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥≥≥≤+.,,0,0,3,40000600500N y x y x y x y x 师 这位同学回答很准确.通过上述三个问题的探究,同学们对如何用不等式或不等组把实际问题中所隐含的不等量关系表示出来,这一点掌握得很好.请同学们再完成下面这个练习.课堂练习练习:若需在长为4 000 mm 的圆钢上,截出长为698 mm 和518 mm 两种毛坯,问怎样写出满足上述所有不等关系的不等式组?分析:设截出长为698 mm 的毛坯x 个和截出长为518 mm 的毛坯y 个,把截取条件数学化地表示出来就是:⎪⎪⎩⎪⎪⎨⎧∈≥≥≤+.,,0,0,4000518698N y x y x y x(练习可让学生板演,老师结合学生具体完成情况作评析,特别应注意x≥0,y≥0,x,y ∈N ) 课堂小结师 通过今天的学习,你学到了什么知识,有何体会?生 我感到学习数学可以帮助我们解决生活中的实际问题.生 数学就在我们的身边,与我们的生活联系非常紧密,我更加喜爱数学了.生 本节课我们还进一步巩固了初中所学的二元一次不等式及二元一次不等式组,并且用它来解决现实生活中存在的大量不等量关系的实际问题.师 我来补充一下,在用二元一次不等式及二元一次不等式组表示实际问题中的不等关系时,思维要严密、规范,并且要注意数形结合等思想方法的综合应用.(慢慢培养学生学会自己来归纳总结,将所学的知识,结合获取知识的过程与方法,进行回顾与反思,从而达到三维目标的整合.进而培养学生的概括能力和语言表达能力) 布置作业第84页习题3.1A 组4、5.板书设计 不等关系与不等式(一)实例 方法引导 方法归纳 如何用不等式或不等式组表示 实例剖析(知识方法应用) 小结 实际问题中不等量关系? 示范解题备课资料一、备用习题1.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料需要的主要原料是磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨、硝酸盐15吨.现有库存磷酸盐10吨、硝酸盐66吨,在此基础上进行生产.请用不等式或不等式组把此实例中的不等量关系表示出来.分析:设x,y 分别为计划生产甲、乙两种混合肥料的车皮数,则⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.0,0,661518,104y x y x y x2.某年夏天,我国遭受特大洪灾,灾区学生小李家中经济发生困难.为帮助小李解决开学费用问题,小李所在班级学生(小李除外)决定承担这笔费用.若每人承担12元人民币,则多余84元;若每人承担10元,则不够;若每人承担11元,又多出40元以上.问该班共有多少人?这笔开学费用共多少元?请用不等式或不等式组把此实例中的不等量关系表示出来,不必解答.分析:设该班共有x 人,这笔开学费用共y 元,则⎪⎪⎩⎪⎪⎨⎧∈=-=-.,4011,10,8412*N x y x y x y x <. 3.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.请用不等式或不等式组把此实例中的不等量关系表示出来.分析:设投资人分别用x 万元、y 万元投资甲、乙两个项目,由题意,知⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.0,0,8.11.03.0,10y x y x y x4.某企业生产A 、B 两种产品,A 产品的单位利润为60元,B 产品的单位利润为80元,两种产品都需要在加工车间和装配车间进行生产,每件A 产品在加工车间和装配车间各需经过0.8 h 和2.4 h ,每件B 产品在两个车间都需经过1.6 h ,在一定时期中,加工车间最大加工时间为240 h ,装配车间最大生产时间为288 h.请用不等式或不等式组把此实例中的不等量关系表示出来.分析:设该企业分别生产A 产品x 件、B 产品y 件,则⎪⎪⎩⎪⎪⎨⎧∈≥≤+≤+.,0,,2886.14.2,2406.18.0Z y x y x y x y x 二、课外探究开放性问题已知:不等式组⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥≥=+≥+,,,1,1,100,50N y x y x y x y x 你能举出符合此不等式组的实际问题吗?3.1.2 不等关系与不等式(二)从容说课本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.为了利用不等式更好地研究不等关系,也能够让学生在以后的解不等式以及对不等式的证明奠定一定的理论基础.在本节课的学习过程中将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.了解不等式的一些基本性质并能给出严格的理论证明,能用不等式的基本性质进行一些简单的不等式证明,进而更深一层次地从理性角度建立不等观念.这是学习本节课的目的也是本节课的内容安排在本章的地位与作用.对实数基本理论的复习,教师应作好点拨,利用数轴数形结合,做好归纳总结.对不等式的基本性质,教师应指导学生用数学观点与等式的基本性质作类比、归纳、逻辑分析,并鼓励学生从理性角度去分析量与量的比较的过程,进而能利用不等式的基本性质来证明一些简单的不等式.在本节课的学习过程中,课外作业仍安排了一些简单的学生易于处理的实际问题,用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并进一步让学生体会研究不等式基本性质的必要性,这也是学生学习本学时的情感基础.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小和证明不等式的一些性质.应用观察、类比、归纳、逻辑分析、思考、交流、探究,得出不等式的基本性质,并能利用不等式的基本性质进行一些简单的不等式证明.进行启发、探究式教学并使用投影仪辅助.教学重点 1.利用数轴,数形结合回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小;2.了解不等式性质研究的必要性及不等式的一些基本性质;3.能用不等式的基本性质来证明一些简单的不等式.教学难点1.用实数的基本理论来比较两个代数式的大小时对差的合理变形;2.利用不等式的基本性质来证明一些简单的不等式.教具准备投影仪、胶片、三角板、刻度尺三维目标一、知识与技能1.利用数轴,数形结合回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小与用实数的基本理论来证明不等式的一些性质;2.通过回忆与复习学生所熟悉的等式性质类比得出不等的一些基本性质;3.在了解不等式一些基本性质的基础之上能利用它们来证明一些简单的不等式.二、过程与方法1.采用探究法,按照联想、类比、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣.三、情感态度与价值观1.通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;2.学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严谨美,从而激发学生的学习兴趣.教学过程导入新课师上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系.为了利用不等式更好地研究不等量关系及用不等式或不等式组研究含有不等关系的问题.我们需要对不等式的性质有必要的了解.推进新课师我们已学习过等式、不等式,同学们还记得等式的性质吗?生等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,所得到的仍是等式.师很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,结果将会如何呢?(此时很快能让学生进入对初中所学过的不等式三条基本性质的回忆与复习)师一般地说,不等式的基本性质有三条:性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向_________.(让同学回答)性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向________.(让同学回答)性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向________.(让同学回答)[过程引导]师 不等式的这三条基本性质,都可以用数学的符号语言表达出来.(让三位同学板演) 性质1:a <b a +c <b +c (或a -c <b -c );a >b a +c >b +c (或a -c >b -c ).性质2:a <b 且c >0⇒ac <bc (或cb c a <);a >b 且c >0 ac >bc (或c b c a >). 性质3:a <b 且c <0⇒ac >bc (或c b c a >);a >b 且c <0 ac <bc (或c b c a <). (用数学符号表达不等式的性质,目的是为下面用符号进行不等式性质与证明打基础,给学生也有一适应过程.老师对学生的板演作点评)师 性质2、性质3两条性质中,对a 、b 、c 有什么要求?生 对a 、b 没什么要求,特别要注意c 是正数还是负数.师 很好,c 可以为零吗?生 c 不能为零.因为c 为零时,任何不等式两边都乘以零就变成等式了.若是“≤”或“≥”则可以.师 这位同学回答的非常好,思维既严谨又周到.师 对于不等式的这三条基本性质,我们不仅要理解这三条性质,还要能灵活运用.在初中,我们对这三条性质只是作了感性的归纳,现在我们应对它给出严格的证明,只有这样应用这些性质才能有理有据.(学生已迫不及待)生(齐声)那我们来给出严格的证明吧.(此处,说明老师点拨很到位.真正体现了课堂上教师的主导地位与学生的主体地位) 师 为了对不等式的基本性质给出严格证明,我们还有必要回忆实数的基本性质. (此时学生对这一名词肯定感到生疏,老师在黑板上应很快给出数轴)[教师精讲]师 若点A对应的实数为a ,点B对应的实数为b ,因为点A在点B的左边,所以可得a >b .a >b 表示a 减去b 所得的差是一个大于0的数即正数,即a >b ⇒a -b >0.它的逆命题是否正确?生 显然正确.师 类似地,如果a <b ,则a 减去b 是负数,如果a =b ,则a 减去b 等于0,它们的逆命题也正确.一般地,a >b ⇒a -b >0;a =b ⇒a -b =0;a <b ⇒a -b <0.师 这就是实数的基本性质的一部分,还有任意两个正数的和与积都是正数等.等价符号左边不等式反映的是实数的大小顺序,右边不等式反映的则是实数的运算性质,合起来就成为实数的运算性质与大小顺序之间的关系,它是不等式这一章的理论基础,是证明不等式以及解不等式的主要依据.师 由实数的基本性质可知,我们如何比较两个实数的大小呢?生 只要考察它们的差就可以了.师 很好.请同学们思考下面这个问题.(此时,老师用投影仪给出问题)[合作探究]【问题1】 已知x≠0,比较(x 2+1)2与x 4+x 2+1的大小.(问题是数学研究的核心,此处以问题展示的形式来培养学生的问题意识与探究意识) (让学生板演,老师根据学生的完成情况作点评)解:(x 2+1)2-x 4-x 2-1=x 4+2x 2+1-x 4-x 2-1=x 2,由x≠0,得x 2>0,从而(x 2+1)2>x 4+x 2+1.(学生对x≠0,得x 2>0在说理过程中往往会忽略)师 下面我们来看一组比较复杂的问题,请大家都来开动脑筋,认真审题,仔细分析. (让学生板演,老师根据学生的完成情况作点评)【例1】 比较下列各组数的大小(a ≠b ). (1)2b a +与ba 112+ (a >0,b >0); (2)a 4-b 4与4a 3(a -b ).师 比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.解:(1))(2)()(24)(22112222b a b a b a ab b a b a ab b a ba b a +-=+-+=+-+=+-+, ∵a >0,b >0且a ≠b ,∴a +b >0,(a -b )2>0. ∴ba b a b a b a 11220,)(2)(2+++->即>. (2)a 4-b 4-4a 3(a -b )=(a -b )(a +b )(a 2+b 2)-4a 3(a -b )=(a -b )(a 3+a 2b +ab 2+b 3-4a 3)=(a -b )[(a 2b -a 3)+(ab 2-a 3)+(b 3-a 3)]=-(a -b )2(3a 2+2ab +b 2)=-(a -b )2[2a 2+(a +b )2],∵2a 2+(a +b )2≥0(当且仅当a =b =0时取等号),又a ≠b ,∴(a -b )2>0,2a 2+(a +b )2>0.∴-(a -b )2[2a 2+(a +b )2]<0.∴a 4-b 4<4a 3(a -b ).师 同学们完成得很好,证明不等式时,应注意有理有据、严谨细致,还应条理清晰.比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用. (此时,老师用投影仪给出下列问题)[合作探究]【问题2】 求证:(1)a >b 且c >0⇒ac >bc ;(2)a >b a +c >b +c .师 请同学们思考第一小问该如何证明?生 可用实数的基本性质,∵a >b ,∴a -b >0.又∵c >0,由任意两个正数的积都是正数可得(a -b )c >0,即ac >bc .师 这位同学证明的思路很好,很严密.同学们还有其他的证明思路吗?生 ac -bc =(a -b )c ,∵a >b ,∴a -b >0.又∵c >0,由任意两个正数的积都是正数可得(a -b )c >0,所以得证.师 这位同学证明得是否正确?生 正确.师 这两位同学的证明都正确,请同学们认真地审视一下,比较这两位同学证题思路的区别与联系.生 第一位同学的证明是由条件到结论,第二位同学的证明是由结论到条件,即寻找结论成立的条件.师回答得非常好,这位同学看出了两种证明方法的本质.由条件到结论,由结论到条件,这是我们证明问题经常采用的思路.(按照教材对不等式的证明要求,此处对不等式证明的分析法与综合法没有点明,只是让学生通过具体的问题了解不等式证明的分析法与综合法的证题思路)师 请同学继续思考第二小问该如何证明?生 可由结论到条件,a +c -(b +c )=a -b ,∵a >b ,∴a -b >0,∴a +c >b +c .师 这位位同学回答得很好,有理有据,严谨细致,也很有条理清晰.别的同学有问题吗? 生(齐声)没问题.师 这说明同学们对不等式的证明思路掌握得很好.师 下面我们再来看一个比较复杂的问题,请大家继续开动脑筋,认真审题,仔细分析. (此处,老师再一次这样说的目的是能够激发起同学们克服难题的欲望,进而增强学习的积极性与主动性)(此时,老师用投影仪给出本课时的例2)[例题剖析]已知a >b >0,c <0,求证:b c a c >.师 前面我们已经利用不等式及实数的基本性质证明了一些简单的不等式.请同学思考此该如何证明?生 可由条件到结论.∵a >b >0,两边同乘以正数ab 1,得b 1>a 1,即a 1<b 1b .又∵c <0,∴b c a c >.师 这位同学回答得很好.通过此例的解答可以看出,本课时,同学们对简单不等式的证明掌握得非常好.希望同学们课后进一步探究,对不等式的基本性质和实数的性质应用既要严密、规范,又要灵活,才能达到要求.课堂小结常用的不等式的基本性质及证明:(1)a >b ,b >c ⇒a >c ;a >b ,b >c ⇒a -b >0,b -c >0⇒ (a -b )+(b -c )>0⇒a -c >0 a >c .(2)a >b a +c >b +c ;a >b ⇒a -b >0⇒ (a -b )+(c -c )>0⇒ (a +c )-(b +c )>0⇒a +c >b +c .(3)a >b ,c >0⇒ac >bc ;a >b ,c >0⇒a -b >0,c >0⇒ (a -b )c >0⇒ac -bc >0⇒ac >bc .(4)a >b ,c <0⇒ac <bc .a >b ,c <0⇒a -b >0,c <0⇒ (a -b )c <0⇒ac -bc <0⇒ac <bc .。