ch13波动光学基础

合集下载

大学物理之波动光学讲解

大学物理之波动光学讲解

2024/1/28
25
未来发展趋势预测
2024/1/28
01 02 03
拓扑光子学
拓扑光子学是研究光在具有拓扑特性的材料中传播行为的 新兴领域。拓扑保护的光子态具有鲁棒性和缺陷免疫性, 为设计高性能、高稳定性的光学器件和系统提供了新的思 路和方法。
量子光学与量子信息
随着量子技术的不断发展,量子光学与量子信息已成为当 前研究的热点领域。利用光的量子特性,可以实现量子计 算、量子通信和量子精密测量等前沿应用。
6
02
干涉现象与原理
2024/1/28
7
双缝干涉实验及结果分析
03
实验装置与步骤
结果分析
干涉条件
使用激光作为光源,通过双缝装置,在屏 幕上观察到明暗相间的干涉条纹。
双缝干涉实验结果表明光具有波动性,明 暗相间的干涉条纹是光波叠加的结果。
当两束光波的频率相同、振动方向相同、 相位差恒定时,它们叠加后会产生干涉现 象。
超材料
超材料是一种具有特殊物理性质 的人工复合材料,其性质往往超 越自然材料的限制。在波动光学 领域,超材料可用于实现负折射 率、完美透镜、隐身斗篷等奇特 现象和应用。
表面等离激元
表面等离激元是一种存在于金属 和介质界面上的电磁模式,具有 亚波长尺度的场局域和增强效应 。表面等离激元在纳米光子学、 生物光子学和光电子学等领域具 有广泛的应用前景。
2024/1/28
8
薄膜干涉及其应用实例
薄膜干涉原理
当光照射在薄膜上时,薄膜的前后两 个表面都会反射光,这两束反射光叠 加后会产生干涉现象。
应用实例
肥皂泡、水面上的油膜等都可以观察 到薄膜干涉现象。此外,在光学仪器 中,也常常利用薄膜干涉来增强或减 弱光的反射或透射。

大学物理波动光学一PPT课件

大学物理波动光学一PPT课件

超快光谱技术
介绍超快光谱技术的原理、方法及应 用,如泵浦-探测技术、时间分辨光谱 技术等。
超短脉冲激光技术
详细介绍超短脉冲激光技术的原理、 实现方法及应用领域,如飞秒激光技 术、阿秒激光技术等。
未来光学技术挑战和机遇
光学技术的挑战
阐述当前光学技术面临 的挑战,如光学器件的 微型化、集成化、高性 能化等。
大学物理波动光学一 PPT课件
目录
• 波动光学基本概念与原理 • 干涉原理及应用 • 衍射原理及应用 • 偏振现象与物质性质研究 • 现代光学技术进展与挑战
01
波动光学基本概念与原理
光波性质及描述方法
光波是一种电磁波,具有波动性 质,可以用振幅、频率、波长等
物理量来描述。
光波在真空中的传播速度最快, 且在不同介质中传播速度不同。
01
02
03
04
摄影
利用偏振滤镜消除反射光和散 射光,提高照片清晰度和色彩
饱和度。
液晶显示
利用液晶分子的旋光性控制偏 振光的透射和反射,实现图像
显示。
光学仪器
如偏振光显微镜、偏振光谱仪 等,利用偏振光的特性进行物
质分析和检测。
其他领域
如生物医学、材料科学、环境 科学等,利用偏振光的特性进
行研究和应用。
01
牛顿环实验装置与步骤
介绍牛顿环实验的基本装置和操作步骤,包括凸透镜、平面镜、光源等

02
牛顿环测量光学表面反射相移
阐述如何通过牛顿环实验测量光学表面反射相移的原理和方法。
03
等厚干涉原理及应用
探讨等厚干涉的基本原理,以及其在光学测量和光学器件设计中的应用

多光束干涉及其应用

波动光学基础

波动光学基础

波动光学基础波动光学是光学中的一个重要分支,研究光传播过程中的波动现象。

本文将介绍波动光学的基础知识,包括光的干涉、衍射和偏振等方面。

一、光的干涉现象干涉是指两个或多个波源发出的波相互叠加和相互作用的现象。

光的干涉现象在日常生活和科学研究中都有广泛应用。

干涉分为构成干涉的要素和干涉的种类两部分。

1. 构成干涉的要素光的干涉所需的要素包括两个或多个波源和一个探测屏。

波源是产生波的物体,可以是点光源、扩展光源或多个波源。

探测屏接收波传播到达的位置和方向,用于观察干涉现象。

2. 干涉的种类光的干涉可分为构成干涉图样的特定点处的干涉和整个波面上的连续干涉。

根据光程差的大小,干涉可以分为相干干涉和非相干干涉。

干涉还可以分为近似干涉和严格干涉。

二、光的衍射现象衍射是指波通过障碍物、缝隙或物体边缘时发生偏离直线传播方向的现象。

光的衍射现象是波动光学的重要内容,其理论和实验都具有重要意义。

1. 衍射的特点光的衍射具有波动性特征,表现为波通过障碍物、缝隙或物体边缘后的弯曲、弯曲程度与波长有关、衍射图案的产生等。

2. 衍射的条件光的衍射需要满足一定的条件。

具体来说,波长要适合障碍物大小、波传播到达障碍物的位置要符合一定的角度条件等。

三、光的偏振现象偏振是指光波中振动方向在特定平面上进行的现象。

偏振光在实际应用中有广泛的用途,例如偏振片、太阳眼镜等。

1. 偏振的方式光的偏振有线偏振、圆偏振和椭圆偏振三种形式。

线偏振是指光波中的振动方向在固定的平面上振动;圆偏振是指光波中的振动方向像旋转矢量一样随时间旋转;椭圆偏振是指光波的振动方向沿椭圆轨迹运动。

2. 获得偏振光的方法获得偏振光主要有自然光通过偏振片、波片或通过偏振装置产生的方法。

总结:本文介绍了波动光学基础知识,包括光的干涉、衍射和偏振。

干涉是指波的相互叠加和相互作用的现象,衍射是指波通过障碍物或物体边缘后的弯曲现象,偏振是指光波中振动方向在特定平面上进行的现象。

通过学习波动光学的基础知识,我们可以更好地理解光的本质和特性,为实际应用中的光学问题提供解决思路。

波动光学

波动光学

p O
§2.单缝衍射 单缝衍射 一.实验装置 二.衍射条纹 衍射条纹 明纹等间距
I
2.平行光会聚在 的焦平 平行光会聚在L的焦平 平行光会聚在 面上.平行于主光轴的光 面上 平行于主光轴的光 会聚在O点 平行于副光轴 会聚在 点,平行于副光轴 的光会聚于P点 的光会聚于 点. 3.各子波在 点光程相 各子波在O点光程相 各子波在 点为亮条纹(中 同,故O点为亮条纹 中 故 点为亮条纹 央明纹). 央明纹
a sinθ = 0
(3)暗纹条件 暗纹条件: 暗纹条件 a sinθ = ±kλ,k = 1,2,3… 明纹中心条件: 明纹中心条件 λ a sinθ = ±(2k′ +1) , 2 k′ =1 2,3… , 中央明纹中心: 中央明纹中心
a sinθ = 0
注:上述暗纹和中央明纹 中心)位置是准确的, (中心)位置是准确的, 其余明纹中心的位置较 上稍有偏离. 上稍有偏离. (4)中央明纹的角宽度 两 中央明纹的角宽度(两 中央明纹的角宽度 旁第一暗纹对应的角度) 旁第一暗纹对应的角度
1 2 1′ ′ 2′ ′
半波带 半波带
θ
a B 半波带 半波带 A
1 2 1′ ′ 2′ ′
把光程差δ分为的半波长 把光程差 分为的半波长 λ/2倍数进行分析 倍数进行分析. 倍数进行分析 a a sinθ = λ 时,可将缝分 两个“半波带” 为两个“半波带”
λ/2
两个“ 半波带” 两个 “ 半波带 ” 上发的 光在 P处干涉相消形成暗 3 . 当 a sinθ = 2 λ 可将缝分成三个“ 时 , 可将缝分成三个 “ 半波带” 半波带”
缝较大时, 缝较大时,光是直线传 播的
惠更斯——菲涅耳原理 二. 惠更斯 菲涅耳原理 表述: 表述 : 波传到的任何一点 都可看作发射子波的波源, 都可看作发射子波的波源, 从同一波阵面上各点发射 的子波在空间某点相遇而 的子波在空间某点相遇而 相干叠加, 相干叠加,决定该点波的光强 . n

大学物理波动光学 PPT

大学物理波动光学 PPT


n2 n1
i
例 13.10.波长550nm黄绿光对人眼和照像底片最敏感。要使照 像机对此波长反射小,可在照像机镜头上镀一层氟化镁 MgF2薄膜,已知氟化镁的折射率 n=1.38 ,玻璃的折射率 n=1.55. 求 氟化镁薄膜的最小厚度
解 两条反射光干涉减弱条件
2nd (2k 1) k 0,1,2,
d
10
(2) 双缝间距 d 为
d D 600 5.893104 5.4mm
x
0.065
例 13.3.用白光作光源观察杨氏双缝干涉。设缝间距为d,缝面 与屏距离为 D
求 能观察到的清晰可见光谱的级次 解 在400 ~ 760 nm 范围内,明纹条件为
xd k
D
最先发生重叠的是某一级次的红光和高一级次的紫光
2
增透膜的最小厚度
d 550 100nm
d
4n 4 1.38
r1 r 2
n 1.00 n 1.38 n 1.55
说明 增反膜
薄膜光学厚度(nd)仍可以为 / 4 但膜层折射率 n 比玻璃的折射率大
§13.6 迈克耳逊干涉仪
一. 干涉仪结构
二. 工作原理
d
光束 1 和 2 发生干涉
光程 x 0r nr
u c 0 n n
真空中 光波长
光程是一个折合量,在相位改变相同的条件下,把光在 介质中传播的路程折合为光在真空中传播的相应路程
多种介质
光程 niri
i

n1 n2
… …
ni
由光程差计算 相位差
r1 r2
ri
[n(r2 d) nd] nr1

大学物理(波动光学知识点总结)

大学物理(波动光学知识点总结)

大学物理(波动光学知识点总结)contents•波动光学基本概念与原理•干涉理论与应用目录•衍射理论与应用•偏振光理论与应用•现代光学技术发展动态简介波动光学基本概念与原理01光波是一种电磁波,具有横波性质,其振动方向与传播方向垂直。

描述光波的物理量包括振幅、频率、波长、波速等,其中波长和频率决定了光的颜色。

光波的传播遵循波动方程,可以通过解波动方程得到光波在不同介质中的传播规律。

光波性质及描述方法干涉现象是指两列或多列光波在空间某些区域相遇时,相互叠加产生加强或减弱的现象。

产生干涉的条件包括:两列光波的频率相同、振动方向相同、相位差恒定。

常见的干涉现象有双缝干涉、薄膜干涉等,可以通过干涉条纹的形状和间距等信息来推断光源和介质的性质。

干涉现象及其条件衍射现象及其分类衍射现象是指光波在传播过程中遇到障碍物或小孔时,偏离直线传播的现象。

衍射现象可以分为菲涅尔衍射和夫琅禾费衍射两种类型,其中菲涅尔衍射适用于障碍物尺寸与波长相当或更小的情况,而夫琅禾费衍射适用于障碍物尺寸远大于波长的情况。

常见的衍射现象有单缝衍射、圆孔衍射等,可以通过衍射图案的形状和强度分布等信息来研究光波的传播规律和介质的性质。

偏振现象与双折射偏振现象是指光波在传播过程中,振动方向受到限制的现象。

根据振动方向的不同,光波可以分为横波和纵波两种类型,其中只有横波才能发生偏振现象。

双折射现象是指某些晶体在特定方向上对光波产生不同的折射率,使得入射光波被分解成两束振动方向相互垂直的偏振光的现象。

这种现象在光学器件如偏振片、偏振棱镜等中有重要应用。

通过研究偏振现象和双折射现象,可以深入了解光与物质相互作用的基本规律,以及开发新型光学器件和技术的可能性。

干涉理论与应用02杨氏双缝干涉实验原理及结果分析实验原理杨氏双缝干涉实验是基于光的波动性,通过双缝产生的相干光波在空间叠加形成明暗相间的干涉条纹。

结果分析实验结果表明,光波通过双缝后会在屏幕上产生明暗相间的干涉条纹,条纹间距与光波长、双缝间距及屏幕到双缝的距离有关。

波动光学基本概念总结

波动光学基本概念总结

波动光学基本概念总结波动光学是光学的一个重要分支,它研究的是光的波动性。

在这一领域,有许多基本概念需要我们深入理解和掌握。

首先,我们来谈谈光的干涉。

光的干涉是指两列或多列光波在空间相遇时,在某些区域始终加强,在另一些区域始终减弱,形成稳定的强弱分布的现象。

这就好像两队士兵步伐整齐地前进,当他们的步伐完全一致时,在某些地方会显得特别强大,而在另一些地方则相对较弱。

产生干涉的条件有三个:两束光的频率相同、振动方向相同以及相位差恒定。

杨氏双缝干涉实验是光干涉现象的经典例证。

在这个实验中,通过两条狭缝的光在屏幕上形成了明暗相间的条纹。

这些条纹的间距与光的波长、双缝间距以及双缝到屏幕的距离有关。

通过对干涉条纹的观察和测量,我们可以深入了解光的波动性,并能精确计算光的波长等重要参数。

接下来是光的衍射。

光的衍射是指光在传播过程中遇到障碍物或小孔时,偏离直线传播而进入几何阴影区,并在屏幕上出现光强不均匀分布的现象。

就像水流绕过石头继续流淌一样,光也会绕过障碍物继续传播。

夫琅禾费衍射是一种常见的衍射现象,比如单缝衍射。

当一束平行光通过一个宽度有限的单缝时,在屏幕上会形成中央亮纹宽而明亮,两侧对称分布着一系列强度逐渐减弱的暗纹和亮纹。

衍射现象不仅让我们看到了光的波动性,也在很多光学仪器的设计和应用中起着关键作用。

再说说光的偏振。

光的偏振是指光的振动方向对于传播方向的不对称性。

我们可以把光想象成一根绳子上的波动,正常情况下,这根绳子可以在各个方向上振动,而偏振光就像是这根绳子只能在特定的方向上振动。

偏振光分为线偏振光、圆偏振光和椭圆偏振光。

线偏振光的振动方向始终在一个固定的直线方向上,而圆偏振光和椭圆偏振光的振动方向则是不断变化的。

偏振片是一种常用的获取和检测偏振光的器件。

在实际应用中,偏振光有着广泛的用途。

例如,在立体电影中,通过给观众佩戴不同偏振方向的眼镜,让两只眼睛分别看到不同的画面,从而产生立体感。

还有光的波长和频率。

大学物理讲义(第13章波动光学)第一节

大学物理讲义(第13章波动光学)第一节

第13章波动光学光是能激起视觉的一类电磁波.人们主要通过光来接受自然界的信息.研究光现象、光的本性和光与物质相互作用等规律的学科称为光学.它是物理学的又一个重要分支.光学通常分为几何光学、波动光学和量子光学三部分.当光的波长可以忽略,其波动效应不明显时,把光的能量看成是沿着一根根光线传播的,光遵从直进、反射、折射等定律,这便是几何光学.波动光学研究的是光在传播过程中显示出的干涉、衍射和偏振等波动现象和特点.通常人们把建立在光的量子性基础上,深入到微观领域研究光与物质相互作用规律的分支学科,称为量子光学.从20世纪60年代以来,由于激光和光信息技术的出现,光学又有了新的发展,并且派生出许多属于现代光学范畴的一些新分支.本章讨论光的波动理论.§13.1 光干涉的一般理论光是一定波长范围内的电磁波.可见光是能够被人的眼睛直接看到的电磁波,它的波长范围在400~760nm之间.一、光的叠加原理在通常的情况下,光和其他波动一样,在空间传播时,遵从波的叠加原理.当几列光波在空间传播时,它们都将保持原有的特性,此即光波的独立传播原理.由此,在它们交叠的区域内各点的光振动是各列光波单独存在时在该点所引起的光振动的矢量和,这就是光的叠加原理.但应指出,光并不是在任何情况下都遵从这一原理的.当光通过非线性介质(例如变色玻璃),或者光强很强(如激光,同步辐射)时,该原理不成立.通常当强光通过介质时将出现许多非线性效应,研究这类光现象的理论称为非线性光学.这是现代光学中很活跃的研究领域之一.不过,在本章所涉及的范围内,光波叠加原理仍然是一个基本的原理.二、光的相干叠加1. 光波的相干条件在讨论机械波时,我们已给出了波干涉的定义,即当两列波同时在空间传播时,在两波交叠的区域内某些地方振动始终加强,而另一些地方振动始终减弱的现象.光的干涉定义与之完全相同.能产生干涉现象的光叫相干光.干涉并不违背叠加原理,且正是后者的结果.但并不是任何两列波在空间相遇时都能发生干涉,产生干涉是有条件的,即干涉是特殊条件下的叠加.波的相干条件是:1) 频率相同;2) 振动方向相同(或存在相互平行的振动分量);3) 具有恒定的相位差.这三个条件,对机械波来说比较容易实现,因此观察机械波的干涉现象比较方便.但对光波来说就不那么容易做到了.这与普通光源的发光机制有关.光是光源中大量分子或原子等微观粒子的能量状态发生变化而引起的电磁辐射.近代物理学已完全肯定分子或原子的能量是量子化的,即能量具有分立值,当分子或原子由较高能态跃迁到较低能态时就发出一个波列,一个波列的长度是有限的,持续的时间约为10-8s.发出一个波列后,它还可以从外界吸收能量,由低能态跃迁到高能态,当它再次由高能态向低能态跃迁时它就再发出一个波列.这是一个随机的过程,每一个原子或分子先后发射的不同波列以及不同原子或分子同时发射的各个波列,彼此之间在初相上没有联系,振动方向也各不相同,频率也可以不同.我们所观察到的光看起来是连续的光波,实际上是由大量原子或分子发射的许许多多彼此完全独立的有限长波列组成的,如图13.1所示.2. 相干光的获得由前面的讨论可知,普通光源发出的光是由光源中各个分子或原子发出的波列组成的,而这些波列之间没有固定的相位关系.因此,来自两个独立光源的光波,即使频率相同,振动方向相同,它们的相位差也不可能保持恒定,因而不是相干光;同一光源的两个不同部分发出的光,也不满足相干条件.因此也不是相干光.只有从同一光源的同一部分发出的光通过某些装置进行分束后,才能获得符合相干条件的相干光.因此获得相干光的方法的基本原理是把由光源上同一点发出的光设法“一分为二”,然后再使这两部分叠加起来,由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,即每一个光波列都分成两个频率相同、振动方向相同、相位差恒定的波列,因而这两部分是满足相干条件的相干光.把同一光源发出的光分成两部分的方法有两种:一种叫分波振面法,由于同一波振面上各点的振动具有相同相位,所以从同一波振面上取出的两部分可以作为相干光源.如杨氏双缝实验等就用了这种方法;另一种叫分振幅法,其原理是利用反射、折射把波面上某处的振幅分成两部分,再使它们相遇从而产生干涉现象.例如薄膜干涉和迈克耳孙干涉仪等就采用了这种方法.上面讨论的是普通光源,对激光光源,所有发光的原子或分子都是步调一致的动作,所发出的光具有高度的相干稳定性.从激光束中任意两点引出的光都是相干的,可以方便的观察到干涉现象,因而不必采用上述获得相干光束的方法.3. 相干光的干涉光波是电磁波,在光波中,产生感光作用与生理作用的主要是电场强度E ,因此,一般我们将E 称为光矢量.如图13.2所示,光振幅为21E E ,的两束相干光,在空间叠加,按照光的干涉理论知,叠加后任一点P 的合振幅为 )cos( 12102021222122r r E E E E E 在波动光学中,主要讨论的是光波所到之处的相对光强.由于光强(平均能流密度)2E I ,因此可直接把光强表示为2E I ,所以由上式得)cos(121020212122r r I I I I I (13.1) 21I I 、分别为两束相干光的强度,I 为叠加后的强度.可见,两束相干光叠加后,空间各点的光强取决于两束光波在该点的相位差:1210202r r (13.2) 2121212*********I I I I I P k I I I I I P k k min max ,)(,),,,(点的光强最小点的光强最大当 (13.3) 其他位置的光强介于两者之间,即max min I I IP 点的光强分布曲线如图13.3所示.如果两束相干光的光强相等,则干涉后040 min max ,I I I必须指出,对于两束相干光,只有在I 1=I 2或I 1~I 2的情况下,才能观察到清楚的明暗相间的干涉图样;当 I 1、I 2相差甚大时, I max 与I min 相差不大,干涉图样模糊不清.对于两束相干光,在很多情况下初相相同,这时r r r 2212 在这种情况下,干涉明暗点的位置决定于两束光到观察点的波程差 :暗点亮点212210/)(),,,(k k k r (13.5) 三、光程 光程差上面讨论了两束相干光在真空中传播时的干涉情况,现在讨论两束相干光在介质中传播时的干涉情况.我们知道,光在真空中传播的速度为c,在介质中传播的速度为n c / ;因此,光在介质中的波长为nn c /' λ为光在真空中的波长.如上所述,两束初相相同的相干光,在真空中传播时,到空间某观察点的波程差为r ,则这两束光到该点的相位差为r 2 如果两束光在折射率为n 的介质中传播,它们到观察点的相位差为r n r 22' 由此可见,两束光在真空中传播时,它们到某点的相位差决定于波程差r ;而两束光在介质中传播时,它们到某点的相位差决定于波程差r 与介质折射率n 的乘积,这里n r 称为这两束光的光程差;一般把折射率n 与波程r 的乘积称为光程,21I I 212I I21I I a )(21I I b )(图13.3 两相干光在相遇点的光强随相位差的分布曲线用L 表示,即L=nr .普遍情况下,两束光的光程差δ表示两束光光程之差.如图13.4所示.112212r n r n L L (13.6)两相干光的干涉效果决定于相位差,而相位差决定于光程差;因此,光的干涉规律决定于光程差δ.可见,光程差是讨论光的干涉现象的非常重要的概念.许多干涉装置都满足两束相干光初相相等的条件,因此相位差与光程差的关系及干涉明、暗点的位置决定于光程差δ2 干涉明暗点位置 暗点明点212210/)(),,,(k k k (13.7) 注意:式(13.5 )与(13.7 )实际上是一致的,前者适用于真空情况(r ),而后者则适用一般情况,它是光的干涉中最基本的公式.由它可知,要确定干涉图样的规律,就必须计算两束光的光程差δ.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ch13
第十三章
波动光学基础
上海同步辐射装置全景
ch13
研究内容 :
13.1 13.2 13.3
13.4 13.5
13.6 13.7
13.8 13.9 13.10
光是电磁波 光源 光的干涉 获得相干光的方法 杨氏双缝实验 光程与光程差 薄膜干涉 迈克耳孙干涉仪 惠更斯—菲涅耳原理
单缝的夫琅禾费衍射 衍射光栅及光栅光谱 线偏振光 自然光
ch13
相干叠加: 满足相干条件的两束光叠加后
I I1 I 2 2 I1 I 2 cos
位相差恒定,有干涉现象 若 I1 I 2 2 I 2 I1 ( 1 cos ) 4 I 1cos 2 干涉相长 2k I 4 I1
( 2k 1 )
E
平面电磁波
H
O
u x
E ( x, t ) E0 cos (t
H ( x, t ) H 0 cos (t
x ) u
x ) u
和 H,在同一地点同时存在,具有相同的相位,以相同的速 ① 电磁波场矢量 E
特性
② 电磁波是横波 E u , H u ,E ③ 在空间同一点处, E 和 H 数值成比例
波动性:光的传输过程 粒子性:光与物质的相互 作用过程
光的本质:具有波粒二象性
ch13

电磁波(横波)的产生与传播
变化的电场 变化的磁场 变化的电场
1.电磁波的波源——任何振动电荷或电荷系都是反射电磁波的波源, 振动的电荷或电荷系
2. 真空中的平面简谐电磁波及其特性
E 沿x轴传播的平面简谐电磁波电场强度 和磁场强度H 可分别表示为:
非相干叠加:
I 0
干涉相消
叠加后光强等于两光束单独照射时的光强之和,无干 涉现象。
I I1 I 2
ch13
§13-3 获得相干光的方法 光程与光程差
一、普通光源获得相干光的途径(方法) 1 分波前的方法
光 源 波阵面分割法
将点光源的波前分割为两部分,使之分别通 过两个光具组,经反射或折射后交叠起来, 在一定区域内产生干涉场。经典例子杨氏干 涉实验
r1
)
s1
* *
r1
r2
s2
n
P
与n有关
t r2 t r1 r2 r 1 2π ( ) 2π ( ) 2π ( 1 ) 2π ( nr2 r ) T ' T '
1.定义:
光程L: 介质折射率与光的几何路程之积 L=
r u t
2. 光程差 (两光程之差) 光程差 相位差
c 光程 L nr r ct u
nr
s1 *
r1
r2
P
光程表示在相同的时间内光在真空中通过的路程
s2 *
n
nr2 r1
Δ 2π

λ
例:P147 13.1 (2) 13.2 (1)
ch13
§13-4 杨氏双缝干涉
一、杨氏双缝干涉 托马斯· 杨(Thomas Young)
13.11 13.12
偏振片的起偏和检偏
13.13 13.14 13.15
马吕斯定律 反射和折射产生的偏 振 布儒斯特定律 双折射现象 椭圆偏振光 偏振光的干涉 旋光效应简介
ch13
§13-1
光是电磁波
一、光的本质
1.光的两种学说
①牛顿微粒学说 2.光的本质 ①光的电磁理论
②惠更斯波动学说 ② 光的量子理论:粒子性
1016
无线电波 3104 m ~ 0.1 cm 紫外线 400 nm ~ 5 nm 红外线 6 105 nm ~ 760 nm X 射线 5 nm ~ 0.04 nm 射线 可见光 760 nm ~ 400 nm 0.04 nm
ch13
§13-2 光源 光的干涉
一、光源
1.光源:通常把发出可见光为主的物体叫作光源,如 太阳、电灯、日光灯等。而把发以非可见光 为主的物体叫做辐射源
英国物理学家、医生和考古学家,光的 波动说的奠基人之一 波动光学:杨氏双缝干涉实验
生理光学:三原色原理
材料力学:杨氏弹性模量 考古学 :破译古埃及石碑上的文字
ch13
1.实验装臵
1801年,杨氏巧妙地设计 了一种把单个波阵面分解 为两个波阵面以锁定两个 光源之间的相位差的方法 来研究光的干涉现象。杨 氏用叠加原理解释了干涉 现象,在历史上第一次测 定了光的波长,为光的波 动学说的确立奠定了基础。
干涉条纹变密
ch13
5. 杨氏双缝干涉的应用 (1)测量波长: (2)测量薄膜的厚度和折射率: (3)长度的测量微小改变量。
(2)暗条纹(干涉减弱):
x d (2k 1) k 0,1,2, D 2 暗条纹在屏上的位臵 d x (2k 1) x (2k 1) D 或 Δ 2π 2π λ D 2d
ch13
x
D k d D ( 2k 1) d 2
d、 D一定时,若 变化,x 的变化
ch13
当用白光照射时,观察屏上出现彩色条纹
x k
D d
k 3 k 1 k 2
k 1
k 2
k 3
2、同一级次的各色条纹中, 1、在屏幕上x=0处各种波长的光 波长短的距中心较近,反之 光程差均为零,各种波长的零级 条纹发生重叠,形成白色明纹。 则较远。明纹位臵
S*
S1 * S2 *
分波前(面)
S是一单色点光源,它发出的光射到不透明屏上的两个小孔S1和S2, S1和S2靠得很近,并且与S等距离, S1和S2发出的两列波来自于同 一光源某一时刻发出的同一波列,因而它们就成为从同一波面分 出的两个同相的单色光源,即相干光源。从它们发出的光波在观 察屏上叠加,形成明暗相间的干涉条纹。为了提高干涉条纹的亮 度,实际上S、S1和S2用三个互相平行的狭缝代替三个小孔
度传播。
H, 三者满足右螺旋关系。
E H
r 0
r 0
u 1
④ 介质中电磁波的传播速度决定于介质的介电常数和磁导率

⑤ 电磁波在两种不同介质的分界面上要发生发射和反射,折射电磁波在真空中的 速率c与在某种介质中的传播速率之比称为该介质的绝对折射率n,简称折射率。
ch13

0 2 4 6 8

10

12 14

16 18 20 22 24
10 10 10 10 10 10 10 10 10 10 10 10 10
频率Hz 长波无线电波 红外线 760 nm 紫外线 400 nm X射线Fra bibliotek可见光

射 线
短波无线电波 波长 m
108
104
100
104
108
1012
热辐射 电致发光
2.发光过程:
光致发光
化学发光
3.光源的分类
①. 普通光源: 普通光源发出的光为非相干光。 ②. 激光光源:受激辐射
ch13
二. 光波的叠加
光的独立传播原理 光波叠加原理(光强不太大) “ 当两列 ( 或几列 ) 满足相干条件的光波在某 区域同时传播时 , 空间某些点的光振动始终 加强;某些点的光振动始终减弱,合成光波 的光强在空间形成强弱相间的稳定发布。光 波的这种叠加称为相干叠加,也称为光的干 涉现象。 相 干 条 件 : (1)振动方向平行 (2)频率相同 (3)有恒定的位相差
•S下移时,零级明纹上移,干涉条纹整体向上平移;
•S上移时,干涉条纹整体向下平移,条纹间距不变。 ②双缝间距d 改变: 、D 一定时 •当d 增大时,Δx减小,零级明纹中心位臵不变,条 纹变密。 •当d 减小时,Δx增大,零级明纹中心位臵不变,条 纹变稀疏。
ch13
、D 一定时,
条纹间距 x 与 d 的关系
亮纹
暗纹
k 0,1,2,
k 为干涉级
k 0, x0 0称0级中央亮纹
D k 1, x1 称 1级亮纹 d
k 2, x 2 2 D 称 2级亮纹 d
S
S1 * S2 *
ch13
(3)条纹间距:
相邻明纹中心或相邻暗纹中心的距离称为条纹间距
c n u
r r
非铁磁性介质
r 1
n r
ch13
3. 电磁波的能量 —在各向同性介质中,电磁能量传播方向与波速方向相同
辐射能: 电磁波所携带的电磁能量也称辐射能, 是以电磁波的形式传 播出去的能量。 能流密度:单位时间通过垂直电磁波传播方向单位面积的辐射能称为能 流密度,也称为波的强度 在电磁学中,通常把矢量形式表示的能流密度称为坡印亭矢量,常用 电磁场能量体密度 表示
设在垂直于电磁波传播方向x上取一面积元dA,则在dt时间内通过面积 元dA的辐射能应为 wudAdt ∴能流密度S大小为:
1 w we wm (E 2 H 2 ) 2
S
S
方向:u 与 E 和
wudAdt 1 1 1 wu (E 2 H 2 ) ( E E H H ) EH dAdt 2 2
D x xk 1 xk d
当用白光照射时,观察屏上出现彩色条纹 与 有关, 4、干涉条纹的特点
(1)明暗相间的条纹对称分布于中心O点两侧。
(2)相邻明条纹和相邻暗条纹等间距,与干涉级k无关。
ch13
讨论
条纹间距
x
D d
( k 1)
(1)波长及装臵结构变化时干涉条纹的移动和变化 ①光源S位臵改变:
2
2 E0
相关文档
最新文档