统计检测题

合集下载

(人教版)西安市必修第二册第四单元《统计》检测卷(答案解析)

(人教版)西安市必修第二册第四单元《统计》检测卷(答案解析)

一、选择题1.从某中学抽取10名同学,得到他们的数学成绩如下:82,85,88,90,92,92,92,96,96,98(单位:分),则可得这10名同学数学成绩的众数、中位数分别为()A.92,92B.92,96C.96,92D.92,902.总体有编号为01,02,…,19,20的20个个体组成。

利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481A.14 B.07 C.04 D.013.总体由编号为01,02,…,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()50 44 66 44 21 66 06 58 05 62 61 65 54 35 02 42 35 48 96 32 14 52 41 52 4822 66 22 15 86 26 63 75 41 99 58 42 36 72 24 58 37 52 18 51 03 37 18 39 11A.23 B.21 C.35 D.324.2020年春节后,因受疫情影响,某高中学校为学生导学助学开展网课,为了解网课教学方式对学生视力影响情况,在学校抽取了100名同学进行视力调查.如图为这100名同学视力的频率分布直方图,其中前4组的频率成等比数列,后6组的频数成等差数列,设最、的值分别为()大频率为a,在4.6到5.0之间的数据个数为b,则a bA.0.27,78B.0.27,73C.2.7,78D.2.7,735.某校高三年级有男生410人,学号为001,002,,410;女生290人,学号为411,412,,700.对高三学生进行问卷调查,按学号采用系统抽样的方法,从这700名学生中抽取10人进行问卷调查(第一组采用简单随机抽样,抽到的号码为030);再从这10名学生中随机抽取3人进行数据分析,则这3人中既有男生又有女生的概率是( )A .15B .310C .710D .456.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为 A .B .C .D .7.已知统计某校1000名学生的某次数学水平测试成绩得到样本频率分布直方图如图所示,则直方图中实数a 的值是( )A .0.020B .0.018C .0.025D .0.038.某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为( ) A .280B .320C .400D .10009.对于一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +C (i =1,2,3,…,n ),其中C ≠0,则下列结论正确的是( ) A .平均数与方差均不变 B .平均数变,方差保持不变 C .平均数不变,方差变 D .平均数与方差均发生变化 10.已知数据1x 、2x 、、2020x 、2020的平均值为2020,则数据1x 、2x 、、2020x 相对于原数据( ) A .变得更稳定B .变得更不稳定C .一样稳定D .无法判断11.某公司引进先进管理经验,在保持原有员工人数的基础上,注重产品研发及员工待遇,提高产品质量和员工积极性,效益显著提高.同时该公司的各项成本也随着收入的变化发生了相应变化.下图给出了该公司2018年和2019年的运营成本及利润占当年总收入的比例,已知2019年和2018年的材料设备费用相同,则下列说法不正确的是( )A .该公司2019年利润是2018年的3倍B .该公司2019年的员工平均工资是2018年的2倍C .该公司2019年的总收入是2018年的2倍D .该公司2019年的研发费用等于2018年的研发和工资费用之和12.已知样本甲:1x ,2x ,3x ,…,n x 与样本乙:1y ,2y ,3y ,…,n y ,满足321(1,2,...,)i i y x i n =+=,则下列叙述中一定正确的是( )A .样本乙的极差等于样本甲的极差B .样本乙的众数大于样本甲的众数C .若某个i x 为样本甲的中位数,则i y 是样本乙的中位数D .若某个i x 为样本甲的平均数,则i y 是样本乙的平均数13.某中学从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的众数是83,乙班学生成绩的平均数是86,则x y +的值为( )A .7B .8C .9D .10二、解答题14.某市有100万居民,政府为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),,[4,4.5)分成9组,制成了如下的频率分布直方图:(1)求直方图中a 的值;(2)估计居民月均用水量的众数、中位数(精确到0.01).15.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率; (2)写出新养殖法的箱产量的众数;(3)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法 新养殖法P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.8282()()()()()n ad bc K a b c d a c b d -=++++16.随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30、42、41、36、44、40、37、37、25、45、29、43、31、36、49、34、33、43、38、42、32、34、46、39、36,根据上述数据得到样本的频率分布表如下:分组频数频率[]25,3030.12(]30,3550.20(]35,4080.32(]40,451n1f(]45,502n2f(1)确定样本频率分布表中1n、2n、1f和2f的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(]30,35的概率.17.为了落实习主席提出“绿水青山就是金山银山”的环境治理要求,某市政府积极鼓励居民节约用水.计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年200位居民每人的月均用水量(单位:吨),将数据按照[0,1),[1,2),…,[8,9)分成9组,制成了如图所示的频率分布直方图,其中0.4a b=.(1)求直方图中,a b的值,并由频率分布直方图估计该市居民用水的平均数(每组数据用该组区间中点值作为代表);(2)设该市有40万居民,估计全市居民中月均用水量不低于2吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.18.从某食品厂生产的面包中抽取100个,测量这些面包的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数82237285(1)在相应位置上作出这些数据的频率分布直方图;(2)估计这种面包质量指标值的平均数x(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该食品厂生产的这种面包符合“质量指标值不低于85的面包至少要占全部面包90%的规定?”19.为创建全国文明城市,我市积极打造“绿城”的创建目标,使城市环境绿韵萦绕,使市民生活绿意盎然.有效增加城区绿化面积,提高城区绿化覆盖率,提升城市形象品位.林业部门推广种植甲、乙两种树苗,并对甲、乙两种树苗各抽测了10株树苗的高度(单位:厘米),数据如下面的茎叶图:(1)根据茎叶图求甲、乙两种树苗的平均高度;(2)根据茎叶图,计算甲、乙两种树苗的高度的方差,运用统计学知识分析比较甲、乙两种树苗高度整齐情况.20.某中学团委组织了“纪念抗日战争胜利73周年”的知识竞赛,从参加竞赛的学生中抽出60名学生,将其成绩(均为整数)分成六段[)40,50,[)50,60,…,[]90,100后,画出如图所示的部分频率分布直方图.观察图形给出的信息,回答下列问题:(1)求第四组的频率,并补全这个频率分布直方图;(2)估计这次竞赛的及格率(60分及以上为及格)和平均分(同一组中的数据用该组区间的中点值代表)21.进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”,该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的2×2列联表: 赞同限行 不赞同限行 合计 没有私家车 90 20 110 有私家车 70 40 110 合计16060220(1)根据上面的列联表判断,能否有99%的把握认为“赞同限行与是否拥有私家车”有关; (2)为了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1名“没有私家车”人员的概率.参考公式:K 2=()()()()2()n ad bc a b c d a c b d -++++P (K 2≥k ) 0.10 0.05 0.010 0.005 0.001 k2.7063..8416.6357.87910.82822.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:P C的估计值为记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).23.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[120,130)内的频率;(2)估计本次考试的中位数;(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.24.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足..的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.25.私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:年龄[15,25)[25,35)[35,45)[45,55)[55,65)[65,75](岁)频数510151055赞成人469634数(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率.ξ,求随机变量ξ的(3)在(2)在条件下,再记选中的4人中不赞成...“车辆限行”的人数为分布列和数学期望.26.6月17日是联合国确定的“世界防治荒漠化和干旱日”,为增强全社会对防治荒漠化的认识与关注,聚焦联合国2030可持续发展目标——实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗埔中随机地抽测了200株树苗的高度(单位:cm),得到以下频率分布直方图.(1)求直方图中a的值及众数、中位数;(2)若树高185cm及以上是可以移栽的合格树苗.①求合格树苗的平均高度(结果精确到个位);②从样本中按分层抽样方法抽取20株树苗作进一步研究,不合格树苗、合格树苗分别应抽取多少株?参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】本题中数据92出现了3次,出现的次数最多,所以本题的众数是82;中位数是将一组数据按照由小到大(或由大到小)的顺序排列,得:82,85,88,90,92,92,92,96,96,98,中间两个数据的平均数是(92+92)÷2=92.故中位数是92.故选:A.【点睛】本题考查众数,中位数的概念,属基础题.2.C解析:C【解析】【分析】:先从65开始,每两个数字为一个数依次取出编号为01,02,…,19,20的数即可。

统计习题——精选推荐

统计习题——精选推荐

卫生统计学习题第二章定量资料的统计描述1. 1985年某省农村30例6-7岁正常男童胸围(cm)测量结果如下:51.6 54.1 54.0 56.9 57.7 55.558.3 55.4 53.8 57.7 51.3 53.8 57.3 54.8 52.1 55.3 54.8 54.7 53.4 57.1 53.1 55.9 51.4 54.6 56.1 61.859.3 56.8 59.8 53.9(1)试编制以上数据的频数表,绘制直方图,概括其分布特征。

(2)用合适的统计量描述其集中趋势和离散趋势。

(3)对样本进行正态性检验第三章定性资料的统计描述1.某地通过卫生服务的基线调查得到如下资料,试作如下分析:(1)计算全人口的性别比;(2)计算育龄妇女(15~49岁)占总人口的百分比;(3)计算总负担系数;(4)计算老年人口系数某地人口构成情况年龄组(岁)男(%)女(%)年龄组(岁)男(%)女(%)0~ 4.2 4.0 45~ 2.4 2.75~ 3.2 3.1 50~ 2.1 2.410~ 4.4 4.2 55~ 1.2 2.215~ 5.5 5.3 60~ 1.3 2.420~ 5.1 5.2 65~ 1.1 1.425~ 6.0 6.1 70~ 0.8 1.230~ 4.3 4.5 75~ 0.5 0.935~ 3.2 3.3 80~ 0.2 0.540~ 2.3 2.5 85~ 0.1 0.2第四章常用概率分布1.假定虚症患者中,气虚型占30%。

现随机抽查30名虚症患者,求其中没有1名气虚型的概率、有4名气虚型的概率。

2.某溶液平均1毫升中含有大肠杆菌3个。

摇均后,随机抽取1毫升该溶液,内含大肠杆菌2个和低于2个的概率各是多少?3.某人群中12岁男童身高的分布近似正态分布,均数为144.00cm,标准差为5.77cm,试估计(1)该人群中12岁男童身高集中在哪个范围?(2)求人群中12岁男童身高的95%和99%参考值范围;(3)求人群中12岁男童身高低于140cm的概率;(4)求人群中12岁男童身高超过160cm的概率;第五章参数估计基础1.某研究表明新研制的一种安眠药比旧安眠药增加睡眠时间。

10.1 统计调查习题(含答案)

10.1 统计调查习题(含答案)

10.1 统计调查\r\n习题(含答案)未命名一、单选题1.下列调查中,最适合采用全面调查(普查)方式的是()A.对国庆期间来渝游客满意度的调查B.对我校某班学生数学作业量的调查C.对全国中学生手机使用时间情况的调查D.环保部门对嘉陵江水质情况的调查【答案】B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.对国庆期间来渝游客满意度的调查适合抽样调查,不符合题意;B.对我校某班学生数学作业量的调查适合全面调查,符合题意;C.对全国中学生手机使用时间情况的调查适合抽样调查,不符合题意;D.环保部门对嘉陵江水质情况的调查适合抽样调查,不符合题意;故选:B.【点睛】考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.为了准确反映某车队10名司机1月份耗去的汽油费用,且便于比较,那么选用最合适、直观的统计图是()A.统计表B.条形统计图C.扇形统计图D.折线统计图【答案】B【解析】【分析】根据题意的要求,结合统计图的特点作出判断即可.【详解】根据题意,要求清楚地比较10名司机的汽油费用,而条形统计图能清楚地表示出每个项目的具体数目,符合要求,故选:B.【点睛】考查了统计图的选择,解决此类问题,需要明确题意的要求,根据统计图的特点选择合适的统计图.3.要反映2010﹣2018年常德市学生人数的变化情况最适合使用的统计图是()A.复式图B.条形图C.扇形图D.折线图【答案】D【解析】【分析】根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可.【详解】解:根据统计图的特点,知要反映常德市学生人数的变化情况,最适合使用的统计图是折线统计图.故选:D.【点睛】本题考查统计图的选择.根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.4.下列调查中,适合采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国七年级学生身高的现状C.检查一枚用于发射卫星的运载火箭的各零部件D.了解市场上某种食品添加剂的含量是否符合国家标准【答案】C【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、了解一批圆珠笔的使用寿命,应采用抽样调查,故此选项不合题意;B、了解全国七年级学生身高的现状,应采用抽样调查,故此选项不合题意;C、检查一枚用于发射卫星的运载火箭的各零部件,应采用普查,故此选项符合题意;D、了解市场上某种食品添加剂的含量是否符合国家标准,应采用抽样调查,故此选项不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁以上的员工C.企业新进员工D.从企业员工名册中随机抽取三分之一的员工【答案】D【解析】【分析】直接利用抽样调查的可靠性,应随机抽取.【详解】解:为调查某大型企业员工对企业的满意程度,样本最具代表性的是:用企业人员名册,随机抽取三分之一的员工.故选:D.【点睛】此题主要考查了抽样调查的可靠性,注意抽样必须具有代表性以及随机性.6.2018年全国硕士研究生招生考试于12月22日和23日举行,菏泽市共报考6298人.为了解这些考生的数学成绩,从中抽取500名考生的数学成绩进行统计分析,以下说法正确的是( )A.这500名考生是总体的一个样本B.这6298名考生的数学成绩是总体C.每位考生是个体D.抽取的500名考生是样本容量【答案】B【解析】【分析】根据样本、总体、个体、样本容量的概念逐一进行分析即可.【详解】A、这500名考生的数学成绩是总体的一个样本,故本选项不符合题意;B、这6298名考生的数学成绩是总体,故本选项符合题意;C、每位考生的数学成绩是个体,故本选项不符合题意;D、样本容量是500,故本选项不符合题意,故选B.【点睛】本题考查了样本、总体、个体、样本容量等知识,熟练掌握相关概念以及注意事项是解题的关键.7.下列说法正确的是()A.单项式−5x2y的次数是2B.棱柱侧面的形状不可能是一个三角形C.长方体的截面形状一定是长方形D.为了刻画空气里四类污染物每一类所占的比例,最适合使用的统计图是折线统计图【答案】B【解析】【分析】依据单项式的概念,截一个几何体以及统计图的选用,即可得到正确结论.【详解】解:A.单项式-5x2y的次数是3,故本选项错误;B.棱柱侧面的形状不可能是一个三角形,故本选项正确;C.长方体的截面形状不一定是长方形,故本选项错误;D.为了刻画空气里四类污染物每一类所占的比例,最适合使用的统计图是扇形统计图,故本选项错误;故选:B.【点睛】本题主要考查了单项式的概念,截一个几何体以及统计图的选用,扇形统计图是用整个图表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.8.在下列调查方式中,较为合适的调查方式是()A.为了解深圳市中小学生的视力情况,采用普查的方式B.为了解深圳市中小学生的课外阅读习惯情况,采用普査的方式C.为了解某校七年级(2)班学生期末考试数学成绩情况,采用抽样调査的方式D.为了解深圳市中小学生参加“课外兴趣班”报名情况,采用抽样调查的方式【答案】D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、为了解深圳市中小学生的视力情况,采用抽样调查的方式比较合适,故此选项错误;B、为了解深圳市中小学生的课外阅读习惯情况,采用抽样调查的方式比较合适,故此选项错误;C、为了解某校七年级(2)班学生期末考试数学成绩情况,采用普查的调査的方式比较合适,故此选项错误;D、为了解深圳市中小学生参加“课外兴趣班”报名情况,采用抽样调查的方式,故此选项正确;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.为了解中学生获取资讯的主要渠道,设置“A.报纸.B.电视.C.网络,D.身边的人.E.其他”五个选项(五项中必选且只能选一项)的调查问卷.先随机抽取50名中学生进行该问卷调查.根据调查的结果绘制条形图如图.该调查的方式是(),图中的a的值是()A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,24【答案】D【解析】【分析】根据题意得到此调查为抽样调查,由样本容量求出a的值即可.【详解】解:根据题意得:该调查的方式是抽样调查,a=50−(6+10+6+4)=24,故选:D.【点睛】此题考查了条形统计图,以及全面调查与抽样调查,弄清题意是解本题的关键.10.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的使用寿命;B.了解苏州市八年级学生身高现状;C.考察人们保护海洋的意识;D.检查一枚用于发射卫星的运载火箭各零部件.【答案】D【解析】【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解苏州市八年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D.【点睛】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.11.下列调查中,最适合采用抽样调查(抽查)的是()A.调查“神州十一号飞船”各部分零件情况B.调查旅客随身携带的违禁物品C.调查全国观众对湖南卫视综艺节目“幻乐之城”的满意情况D.调查重庆一中九年级某班学生数学暑假作业检测成绩【答案】C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A、调查“神州十一号飞船”各部分零件情况,适合全面调查,故不符合题意;B、调查旅客随身携带的违禁物品,适合全面调查,故不符合题意;C、调查全国观众对湖南卫视综艺节目“幻乐之城”的满意情况,适合采用抽样调查,故符合题意;D、调查重庆一中九年级某班学生数学暑假作业检测成绩,适合全面调查,故不符合题意;故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命;B.了解全国九年级学生身高的现状;C.考察人们保护海洋的意识;D.检查一枚用于发射卫星的运载火箭的各零部件;【答案】D【解析】【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D.【点睛】考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.二、填空题13.为了了解我市市直20000名初中生的身高情况,从中抽取了2000名学生测量身高,在这个问题中,样本容量是_____.【答案】2000.【解析】【分析】根据样本容量是指样本中个体的数目,可得答案.【详解】解:在这个问题中,样本容量是2000.故答案为:2000.【点睛】本题考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.14.某校有3000名学生,随机抽取300名学生进行体重调查,该问题中,样本的容量为______.【答案】300【解析】【分析】样本容量则是指样本中个体的数目,据此即可判断.【详解】解:样本的容量为300.故答案是:300.【点睛】考查了样本容量的定义,总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,样本容量是样本中包含的个体的数目,不能带单位.15.为了估计水塘中的鱼数,老张从鱼塘中捕获200条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘.过一段时间,他再从鱼塘中随机打捞200条鱼,发现其中25条鱼有记号.则鱼塘中总鱼数大约为_____条.【答案】1600【解析】【分析】首先求出有记号的25条鱼在200条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】×100%=12.5%,∵池塘中有记号的鱼所占的百分比为:25200∴池塘中共有鱼200÷12.5%=1600,故答案为:1600.【点睛】本题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.三、解答题16.七(3)班语文老师对本班学生的课外阅读情况做了调查,并请数学老师做了如图的统计图.(1)哪种类型书籍最受欢迎?(2)哪两种类型书籍受欢迎的程度差不多?(3)图中扇形的大小分别代表什么?(4)图中各个百分比如何得到?所有百分比之和是多少?【答案】(1)科幻书籍最受欢迎;(2)科普和武打书籍受欢迎的程度差不多;(3)图中扇形的大小分别代表喜欢某类书籍的人数占全班人数的百分比;(4)根据:喜欢某类书籍的人数×100%,即可得到各个百分比.全班总人数【解析】【分析】(1)根据圆心角的大小或百分比的大小即可判断.(2)根据圆心角的大小或百分比的大小即可判断.(3)图中扇形的大小分别代表喜欢某类书籍的人数占全班人数的百分比.×100%,即可得到各个百分比.(4)根据:喜欢某类书籍的人数全班总人数【详解】(1)由题意:科幻书籍最受欢迎.(2)科普和武打书籍受欢迎的程度差不多.(3)图中扇形的大小分别代表喜欢某类书籍的人数占全班人数的百分比.×100%,即可得到各个百分比,和为1(4)根据:喜欢某类书籍的人数全班总人数【点睛】本题考查扇形统计图,解题的关键是熟练掌握基本知识,属于中考常考题型.17.手机给学生带来方便的同时也带来了很大的影响.常德市某校初一年级在一次家长会上对若干家长进行了一次对“学生使用手机”现象看法的调查,将调查数据整理得如下统计图(A:绝对弊大于利,B:绝对利大于弊,C:相对弊大于利,D:相对利大于弊):(1)这次调查的家长总人数为多少人?表示“C相对弊大于利”的家长人数为多少人?(2)本次调查的家长中表示“B绝对利大于弊”所占的百分比是多少?并补全条形统计图.(3)求扇形统计图图2中表示“A:绝对弊大于利”的扇形的圆心角度数.【答案】(1)总人数200人,表示“C相对弊大于利”的家长人数为40人;(2)10%,详见解析;(3)162°.【解析】【分析】(1)用C选项的人数除以其所占百分比可得总人数,由条形图可直接得出C选项具体人数;(2)根据各选项人数之和等于总人数求得B选项人数,用B选项人数除以总人数可得其所占百分比;(3)用360°乘以A选项人数所占比例即可得.【详解】解:(1)这次调查的家长总人数为40÷20%=200(人),表示“C相对弊大于利”的家长人数为40人;(2)B选项的人数为200﹣(90+40+50)=20(人),∴本次调查的家长中表示“B绝对利大于弊”所占的百分比为20×100%=10%,200补全条形图如下:(3)扇形统计图图2中表示“A:绝对弊大于利”的扇形的圆心角度数为360°×90=200 162°.故答案为:(1)总人数200人,表示“C相对弊大于利”的家长人数为40人;(2)10%,详见解析;(3)162°.【点睛】本题考查条形统计图和扇形统计图,解题的关键是把条形统计图和扇形统计图的数据相结合求解.18.随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选择:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其他),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:⑴这次被调查的学生有多少人?⑵表中m的值为,并补全条形统计图;⑶若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.【答案】(1)50人;(2)详见解析;(3)400人,建议同学们多用手机学习,少玩游戏. 【解析】【分析】(1)根据选项C的频数和频率,可求出被调查的总人数;(2)用选项A的频数除以总人数可得频率;(3)用该校的学生数乘以手机购物或玩游戏的频率和,可得结果;建议合理即可.【详解】⑴5÷0.1=50人,答:这次被调查的学生有50人⑵m=10÷50=0.2 ,p=50×0.4=20,补全统计图如下:⑶ 800×(0.1+0.4)=800×0.5=400人;建议同学们多用手机学习,少玩游戏.答:估计全校学生中利用手机购物或玩游戏的共有400人,建议同学们多用手机学习,少玩游戏..【点睛】本题主要考查条形统计图和用样本估计整体,能够从图表中得到有用信息是解题关键. 19.某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有______人达标;(3)若该校学生有学生2000人,请你估计此次测试中,全校达标的学生有多少人?【答案】(1)详见解析;(2)96人;(3)全校达标的学生有1600人.【解析】【分析】(1)由“不合格”的人数除以占的百分比求出总人数,确定出“优秀”的人数,以及一般的百分比,补全统计图即可;(2)“一般”与“优秀”的人数相加,即可得到结果;(3)求出达标占的百分比,乘以2000即可得到结果.【详解】解:(1)根据题意得:24÷20%=120(人),×100%=30%,则“优秀”人数为120-(24+36)=60(人),“一般”占的百分比为36120补全统计图,如图所示:(2)根据题意得:36+60=96(人),则达标的人数为96人;(3)根据题意得:96×2000=1600(人),120则全校达标的学生有1600人.【点睛】考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.20.某中学准备举行一次球类运动会,在举行运动会之前,同学们就该校学生最喜欢哪种球类运动进行了一次调查,并将调查结果制成了条形统计图和扇形统计图,请你根据图表信息完成下列各题:(1)此次共调查了多少位学生?(2)请将条形统计图补充完整;(3)在这次活动中,小敏选择了自己喜爱的乒乓球,学校要从选择乒乓球课的学生中任选4人去参加市里的比赛,求小敏被选中的概率.【答案】(1)300;(2)见解析;(3)115.【解析】【分析】(1)由乒乓球的人数及其所占百分比可得总人数;(2)用总人数乘以足球对应的百分比可得其人数,用总人数分别乘以篮球和其他部分对应的百分比可得其人数;(3)根据概率公式计算可得.【详解】(1)本次调查的总人数为60÷20%=300(人);(2)篮球的人数为300×44%=132(人),其他的人数为300×3%=9(人),足球的人数为300×(1﹣20%﹣44%﹣3%)=99,补全条形图如下:(3)∵选择乒乓球的人数有60人,从中任选4人参加,∴小敏被选中的概率为460=115.【点睛】本题考查的是条形统计图和扇形统计图及概率公式等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.2018年12月份,我市迎来国家级文明城市复查,为了了解学生对文明城市的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果技照“A非常了解.B了解.C了解较少.D不了解”四类分别统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了______名学生;(2)扇形统计图中D所在的扇形的圆心角为______;(3)将条形统计图补充完整;(4)若该校共有800名学生,请你估计对文明城市的了解情况为“非常了解”的学生的人数.【答案】(1)120;(2)54∘;(3)见解析;(4)120人.【解析】【分析】(1)由B类别人数及其所占百分比可得;(2)用总人数乘以D类别人数占总人数的比例即可得;(3)先用总人数乘以C类别的百分比求得其人数,再根据各类别百分比之和等于总人数求得A的人数即可补全图形;(4)用总人数乘以样本中A类别的人数所占比例即可得.【详解】(1)本次调查的总人数为48÷40%=120(名),故答案为:120;=54∘,(2)扇形统计图中D所在的扇形的圆心角为360∘×18120故答案为:54∘;(3)C类别人数为120×20%=24(人),则A类别人数为120−(48+24+18)=30(人),补全条形图如下:(4)估计对文明城市的了解情况为“非常了解”的学生的人数为800×30=120(人).200【点睛】此题主要考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.榴莲是热带著名水果之一,榴莲营养极为丰富,含有蛋白质、糖类、多种维生素、膳食纤维、脂肪、叶酸,氨基酸和矿物质,有强身健体、滋阴补阳之功效.它的气味浓烈、爱之者赞其香,厌之者怨其臭,喜欢榴莲的人也喜欢榴莲干,榴莲千层,榴莲披萨、榴莲酥等榴莲加工制品,某校数学兴趣小组为了了解本校学生喜爱榴莲的情况,随机抽取了200名学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角度数为______度;喜欢榴莲千层的人数为______人;请补全条形统计图.(2)若该校学生人数为8000人,请根据上述调查结果,估计该校学生中最爱吃榴莲干和榴莲酥的人数之和.【答案】(1) 144,30;(2)4800人.【解析】【分析】(1)用周角乘以很喜欢所占的百分比即可求得其圆心角,直接从条形统计图中得到喜欢榴莲千层的人数即可;。

西安行知中学必修第二册第四单元《统计》检测题(答案解析)

西安行知中学必修第二册第四单元《统计》检测题(答案解析)

一、选择题1.某校高一年级有男生400人,女生300人,为了调查高一学生对于高二时文理分科的意向,拟随机抽取35人的样本,则应抽取的男生人数为( ) A .25B .20C .15D .102.“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标.常用区间[]0,10内的一个数来表示,该数越接近10表示满意度越高.甲、乙两位同学分别随机抽取10位本地市民调查他们的幸福感指数,甲得到十位市民的幸福感指数为5,6,6,7,7,7,7,8,8,9,乙得到十位市民的幸福感指数的平均数为8、方差为2.2,则这20位市民幸福感指数的方差为( ) A .1.75B .1.85C .1.95D .2.053.某中学高一年级甲班有7名学生,乙班有8名学生参加数学竞赛,他们取得的成绩的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是82,若从成绩在[80,90)的学生中随机抽取两名学生,则两名学生的成绩都高于82分的概率为( )A .12B .13C .14D .154.某校高三年级有男生410人,学号为001,002,,410;女生290人,学号为411,412,,700.对高三学生进行问卷调查,按学号采用系统抽样的方法,从这700名学生中抽取10人进行问卷调查(第一组采用简单随机抽样,抽到的号码为030);再从这10名学生中随机抽取3人进行数据分析,则这3人中既有男生又有女生的概率是( )A .15B .310C .710D .455.已知一组样本数据12345x ,x ,x ,x ,x 恰好构成公差为5的等差数列,则这组数据的方差为 A .25B .50C .125D .2506.我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品. 以北京为例,2018年这几类工作岗位的薪资(单位:万元/月)情况如下表所示: 薪资/岗位[]0.5,1 (]1,2 (]2,3 (]3,5数据开发 8% 25% 32% 35% 数据分析 15%36%32% 17% 数据挖掘 9% 12% 28% 51% 数据产品7%17%41%35%由表中数据可得各类岗位的薪资水平高低情况为( ) A .数据挖掘>数据开发>数据产品>数据分析 B .数据挖掘>数据产品>数据开发>数据分析 C .数据挖掘>数据开发>数据分析>数据产品 D .数据挖掘>数据产品>数据分析>数据开发7.某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为( ) A .280B .320C .400D .10008.已知数据1x 、2x 、、2020x 、2020的平均值为2020,则数据1x 、2x 、、2020x 相对于原数据( ) A .变得更稳定 B .变得更不稳定C .一样稳定D .无法判断9.已知某市20132019 年全社会固定资产投资以及增长率如图所示,则下列说法错误..的是( )A .从2013年到2019年全社会固定资产的投资处于不断增长的状态B .从2013年到2019年全社会固定资产投资的平均值为713.6亿元C .该市全社会固定资产投资增长率最高的年份为2014年D .2016年到2017年全社会固定资产的增长率为010.国务院发布《关于进一步调整优化结构、提高教育经费使用效益的意见》中提出,要优先落实教育投入.某研究机构统计了2010年至2018年国家财政性教育经费投入情况及其在GDP 中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A .随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B .2012年以来,国家财政性教育经费的支出占GDP 比例持续7年保持在4%以上C .从2010年至2018年,中国GDP 的总值最少增加60万亿D .从2010年到2018年,国家财政性教育经费的支出增长最多的年份是2012年 11.已知一组数据:123,,,,n x x x x 的平均数为4,方差为10,则1232,32,32n x x x ---的平均数和方差分别是( )A .10,90B .4,12C .4,10D .10,1012.条形图给出的是2017年全年及2018年全年全国居民人均可支配收入的平均数与中位数,饼图给出的是2018年全年全国居民人均消费及其构成,现有如下说法: ①2018年全年全国居民人均可支配收入的平均数的增长率低于2017年; ②2018年全年全国居民人均可支配收入的中位数约是平均数的86%;③2018年全年全国居民衣(衣着)食(食品烟酒)住(居住)行(交通通信)的支出超过人均消费的70%.则上述说法中,正确的个数是( ) A .3B .2C .1D .013.设样本数据1210,,,x x x 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =,则1210,,,y y y 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +二、解答题14.某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照()[)[]0,2,2,4,,14,16⋅⋅⋅分成8组,制成了如图1所示的频率分布直方图.(1)试估计100户居民每月用水量的平均数和中位数;(2)如图2是该市居民李某2019年1~6月份的月用水费y (元)与月份x 的散点图,其拟合的线性回归方程是233y x =+,若李某2019年1~7月份水费总支出为294.6元,试估计张某7月份的用水吨数.15.某中学组织了地理知识竞赛,从参加考试的学生中抽出40名学生,将其成绩(均为整数)分成六组[)40,50,[)50,60,…,[]90,100,其部分频率分布直方图如图所示.观察图形,回答下列问题.(1)求成绩在[)70,80的频率,并补全这个频率分布直方图;(2)估计这次考试的平均分(计算时可以用组中值代替各组数据的平均值); (3)从成绩在[)40,50和[]90,100的学生中选两人,求他们在同一分数段的概率. 16.全国中小学生的体质健康调研最新数据表明我国小学生近视眼发病率为22.78%,初中生为55.22%,高中生为70.34%.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素.学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视.除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因.为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图:(1)写出这组数据的众数和中位数;(2)若视力测试结果不低于5.0,则称为“好视力”.①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率.若从该地区学生(人数较多)中任选3名,记X 表示抽到“好视力”学生的人数,求X 的分布列及数学期望.17.辽宁省六校协作体(葫芦岛第一高中、东港二中、凤城一中、北镇高中、瓦房店高中、丹东四中)中的某校文科实验班的100名学生期中考试的语文、数学成绩都不低于100分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:[)100,110、[)110,120、[)120130,、[)130140,、[]140,150.(1)根据频率分布直方图,估计这100名学生语文成绩的中位数和平均数;(同一组数据用该区间的中点值作代表;中位数精确到0.01)(2)若这100名学生语文成绩某些分数段的人数x 与数学成绩相应分数段的人数y 之比如下表所示: 分组区间[)100,110[)110,120[)120130, [)130140, :x y 1:31:13:4 10:1从数学成绩在[]130,150的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在[]140,150的概率.18.某单位开展岗前培训期间,甲、乙2人参加了5次考试,成绩统计如下:第一次 第二次 第三次 第四次 第五次 甲的成绩 82 82 79 95 87 乙的成绩9575809085(1)根据有关统计知识回答问题:若从甲、乙2人中选出1人上岗,你认为选谁合适?请说明理由;(2)根据有关概率知识解答以下问题:若一次考试两人成绩之差的绝对值不超过3分,则称该次考试两人“水平相当”.由上述5次成绩统计,任意抽查两次考试,求至少有一次考试两人“水平相当”的概率.19.2020年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分.根据调查数据制成如下表格和频率分布直方图.已知评分在[80,100]的居民有600人. 满意度评分 [40,60)[60,80)[80,90)[90,100]满意度等级不满意基本满意满意非常满意(1)求频率分布直方图中a的值及所调查的总人数;η<,则防疫工作需要进行大的调(2)定义满意指数η=满意程度的平均分/100,若0.8整,否则不需要大调整.根据所学知识判断该区防疫工作是否需要进行大调整?(3)为了解部分居民不满意的原因,从不满意的居民(评分在[40,50)、[50,60))中用分层抽样的方法抽取6名居民,倾听他们的意见,并从6人中抽取2人担任防疫工作的监督员,求这2人中仅有一人对防疫工作的评分在[40,50)内的概率.20.《复仇者联盟4:终局之战》是安东尼·罗素和乔·罗素执导的美国科幻电影,改编自美国漫威漫画,自2019年4月24日上映以来票房火爆.某电影院为了解在该影院观看《复仇者联盟4》的观众的年龄构成情况,随机抽取了100名观众的年龄,并分成(0,10),[10,20),[20,30),[30,40),[40,50),[50,60),[60,70]七组,得到如图所示的频率分布直方图.(1)求这100名观众年龄的平均数(同一组数据用该区间的中点值作代表)、中位数;(2)该电影院拟采用抽奖活动来增加趣味性,观众可以选择是否参与抽奖活动(不参与抽奖活动按原价购票),活动方案如下:每张电影票价格提高10元,同时购买这样电影票的a+每位观众可获得3次抽奖机会,中奖1次则奖励现金a元,中奖2次则奖励现金10元,中奖三次则奖励现金3a 元,其中8a ≥且a N ∈,已知观众每次中奖的概率均为15. ①以某观众三次抽奖所获得的奖金总额的数学期望为评判依据,若要使抽奖方案对电影院有利,则a 最高可定为多少;②据某时段内的统计,当8a =时该电影院有600名观众选择参加抽奖活动,并且a 每增加1元,则参加抽奖活动的观众增加100人.设该时间段内观影的总人数不变,抽奖活动给电影院带来的利润的期望为Z ,求Z 的最大值.21.进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”,该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:(1)根据上面的列联表判断,能否有99%的把握认为“赞同限行与是否拥有私家车”有关; (2)为了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1名“没有私家车”人员的概率.参考公式:K 2=()()()()2()n ad bc a b c d a c b d -++++22.近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中4a b =.(I )求,a b 的值;(Ⅱ)求被调查的市民的满意程度的平均数,众数,中位数;(Ⅲ)若按照分层抽样从[)50,60,[)60,70中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在[)50,60的概率.23.研究发现,北京 PM 2.5 的重要来源有土壤尘、燃煤、生物质燃烧、汽车尾气与垃圾焚烧、工业污染和二次无机气溶胶,其中燃煤的平均贡献占比约为 18%.为实现“节能减排”,还人民“碧水蓝天”,北京市推行“煤改电”工程,采用空气源热泵作为冬天供暖.进入冬季以来,该市居民用电量逐渐增加,为保证居民取暖,市供电部门对该市 100 户居民冬季(按 120 天计算)取暖用电量(单位:度)进行统计分析,得到居民冬季取暖用电量的频率分布直方图如图所示.(1)求频率分布直方图中a 的值;(2)从这 100 户居民中随机抽取 1 户进行深度调查,求这户居民冬季取暖用电量在[3300,3400]的概率;(3)在用电量为[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四组居民中,用分层抽样的方法抽取 34 户居民进行调查,则应从用电量在[3200,3250)的居民中抽取多少户? 24.孝感市旅游局为了了解双峰山景点在大众中的熟知度,从年龄在15~65岁的人群中随机抽取n 人进行问卷调查,把这n 人按年龄分成5组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的样本的频率分布直方图如右:调查问题是“双峰山国家森林公园是几A级旅游景点?”每组中回答正确的人数及回答正确的人数占本组的频率的统计结果如下表.组号分组回答正确的人数回答正确的人数占本组的频率第1组[15,25)50.5第2组[25,35)18x第3组[35,45)y0.9第4组[45,55)9a第5组[55,65]7b(1)分别求出n,x,y的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人;(3)在(2)抽取的6人中随机抽取2人,求所抽取的两人来自不同年龄组的概率.25.某网站从春节期间参与收发网络红包的手机用户中随机抽取10000名进行调查,将受访用户按年龄分成5组:[10,20),[20,30),…,[50,60],并整理得到如下频率分布直方图:(Ⅰ)求a的值;(Ⅱ)从春节期间参与收发网络红包的手机用户中随机抽取一人,估计其年龄低于40岁的概率;(Ⅲ)估计春节期间参与收发网络红包的手机用户的平均年龄.26.某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,, 1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m 、n 、t 的值; (2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数求X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:设应抽取的男生人数为x ,根据分层抽样的定义对应成比例可得35400300400x=+,解出方程即可.详解:设应抽取的男生人数为x ,∴35400300400x=+,解得20x,即应抽取的男生人数为20,故选B.点睛:本题考查应从高一年级学生中抽取学生人数的求法,考查分层抽样等基础知识,考查运算求解能力,是基础题.2.C解析:C 【分析】设乙得到十位市民的幸福感指数分别为111220,,,x x x ,根据这10个数据的平均数为8、方差为2.2可得221120662x x ++=,再根据方差的公式可求20个数据的方差.【详解】设甲得到的十位市民的幸福感指数分别为1210,,,x x x ,乙得到十位市民的幸福感指数分别为111220,,,x x x ,故这20位市民的幸福感指数的方差为()22222212101120120x x x x xx++++++-,因为乙得到十位市民的幸福感指数的平均数为8、方差为2.2,11122081080x x x +++=⨯=,故56677778891087.520x ++++++++++⨯==,而()221120164 2.210x x ++-=,故221120662x x ++=,而222222222121056647289502x x x +++=+++⨯+⨯+=,故所求的方差为()215026627.5 1.9520+-=, 故选:C. 【点睛】本题考查方差的计算,注意样本数据12,,,n x x x 的方差为()211nii x xn =-∑,也可以是2211n ii x x n =-∑,本题属于中档题. 3.D解析:D 【分析】计算得到5x =,3y =,再计算概率得到答案. 【详解】78798080859296857x x +++++++==,解得5x =;8180822y++=,解得3y =;故232615C p C ==.故选:D . 【点睛】本题考查了平均值,中位数,概率的计算,意在考查学生的应用能力.4.D解析:D 【分析】利用系统抽样可知,这10个人中男生有6人,女生有4人,计算出所抽3人全是男生或女生的概率,利用对立事件的概率公式可计算出结果. 【详解】利用系统抽样从这700名学生中抽取10人进行问卷调查,分段间隔为70, 由于第一组抽到的号码为030,所抽取的10人号码依次为030、100、170、240、310、380、450、520、590、660,其中男生6人,女生4人,因此,从这10名学生中随机抽取3人进行数据分析,则这3人中既有男生又有女生的概率是3346310415C C P C +=-=. 故选:D. 【点睛】本题考查古典概型概率的计算,考查了系统抽样、组合计数原理以及对立事件概率公式的应用,考查计算能力,属于中等题.5.B解析:B 【分析】先计算数据平均值,再利用方差公式得到答案. 【详解】数据12345x ,x ,x ,x ,x 恰好构成公差为5的等差数列331245+++x x x x x +5x x ==2222221050510505s ++++==故答案选B 【点睛】本题考查了数据的方差的计算,将平均值表示为3x 是解题的关键,意在考查学生的计算能力.6.B解析:B 【解析】 【分析】计算各岗位的平均薪资,即可比较各岗位平均工资的高低. 【详解】由表格中的数据可知,数据开发岗位的平均薪资为0.750.08 1.50.25 2.50.3240.25 2.235⨯+⨯+⨯+⨯=(万元),数据分析岗位的平均薪资为0.750.15 1.50.36 2.50.3240.17 2.1325⨯+⨯+⨯+⨯=(万元),数据挖掘岗位的平均薪资为0.750.09 1.50.12 2.50.2840.51 2.9875⨯+⨯+⨯+⨯=(万元),数据产品岗位的平均薪资为0.750.07 1.50.17 2.50.4140.35 2.7325⨯+⨯+⨯+⨯=(万元),因此,各类岗位的薪资水平高低情况为:数据挖掘>数据产品>数据开发>数据分析, 故选B . 【点睛】本题考查平均数的计算,考查学生对数据的收集和分析能力,解题关键就是频率分布表中平均数公式的应用,考查计算能力,属于中等题.7.C解析:C 【分析】由题意知这是一个分层抽样问题,根据青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,得到要从该单位青年职员中抽取的人数,根据每人被抽取的概率为0.2,得到要求的结果 【详解】由题意知这是一个分层抽样问题,青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,∴要从该单位青年职员中抽取的人数为:10200801087⨯=++每人被抽取的概率为0.2,∴该单位青年职员共有804000.2= 故选C 【点睛】本题主要考查了分层抽样问题,运用计算方法求出结果即可,较为简单,属于基础题.8.D解析:D 【分析】利用方差公式比较两组数据的方差大小,进而可得出结论. 【详解】 由于数据1x 、2x 、、2020x 、2020的平均值为2020,即122020202020202021x x x ++++=,所以,21220202020x x x +++=,所以,数据1x 、2x 、、2020x 的平均值为12202020202020x x x +++=,则数据1x 、2x 、、2020x 、2020的方差为()()()222122020212020202020202021x x x s -+-++-=,数据1x 、2x 、、2020x 的方差为()()()222122020222020202020202020x x x s -+-++-=,所以,2212s s ≤. 因此,数据1x 、2x 、、2020x 相对于原数据变得更不稳定或一样稳定.故选:D. 【点睛】本题考查平均值、方差的计算,熟悉平均值公式和方差公式是解题的关键,考查计算能力,属于中等题.9.D解析:D 【分析】由2013年到2019年全社会固定资产的投资数额,可得判定A 项正确;由平均数的计算公式,可得B 项正确;由2014年的全社会固定资产投资增长率为21.7%,可得C 项正确;由2016年和2017年全社会固定资产投资的增长率呈现增长趋势,可得D 项错误. 【详解】由题意,从2013年到2019年全社会固定资产的投资分别为415.8,506.1,590.8,687.7,800.8,939.9,1054.1,所以A 项正确;因为415.8506.1590.8687.7800.8939.91054.1713.67++++++=,所以B 项正确;由2014年的全社会固定资产投资增长率为21.7%,为2013年到2019年的最大值,故C 项正确;由2016年和2017年全社会固定资产投资的增长率均为16.4%,均呈现增长趋势,故D 项错误. 故选:D. 【点睛】本题主要考查了统计图表的应用,以及增长率和平均数的计算公式的应用,着重考查分析问题和解答问题的能力.10.C解析:C 【分析】观察图表,判断四个选项是否正确.由表易知A 、B 、D 项均正确,2010年中国GDP 为1.4670413.55%≈万亿元,2018年中国GDP 为3.6990904.11%=万亿元,则从2010年至2018年,中国GDP 的总值大约增加49万亿,故C 项错误. 【点睛】本题考查统计图表,正确认识图表是解题基础. 11.A解析:A 【分析】利用数据的平均数和方差的性质及计算公式直接求解. 【详解】一组数据123,,,,n x x x x 的平均数是4,方差为10,∴另一组数1232,32,32n x x x ---的平均数和方差分别是34210x =⨯-=,2231090S =⨯=,故选:A 【点睛】本题主要考查平均数、方差的求法,解题时要认真审题,注意平均数、方差的性质的合理运用,属于容易题.12.A解析:A 【分析】对于①可根据图像一得到是正确的;对于②因为243360.86228228≈,可得到正确;因为6.5%28.4%23.4%13.5%71.8%70%+++=>,故正确. 【详解】2018年全年全国居民人均可支配收入的平均数的增长率为8.7%,而2017年全年全国居民人均可支配收入的平均数的增长率为9%,故①正确;因为243360.86228228≈,所以2018年全年全国居民人均可支配收入的中位数约是平均数的86%,故②正确;因为6.5%28.4%23.4%13.5%71.8%+++=,2018年全年全国居民衣(衣着)食(食品烟酒)住(居住)行(交通通信)的支出超过人均消费的70%,故③正确.故正确的个数有3个.故答案为A. 【点睛】这个题目考查了学生对图表的解读和应用,有较强的实际应用性,题目比较基础. 13.A【解析】试题分析:因为样本数据1210,,,x x x 的平均数是1,所以1210,,...y y y 的平均数是121012101210.........1101010y y y x a x a x a x x x a a ++++++++++++==+=+;根据i i y x a =+(a 为非零常数,1,2,,10i =),以及数据1210,,,x x x 的方差为4可知数据1210,,,y y y 的方差为2144⨯=,综上故选A.考点:样本数据的方差和平均数.二、解答题14.(1)平均数为7.96,中位数为283t =吨;(2)13吨. 【分析】(1)由频率分布直方图中平均数与中位数的计算方法计算即可;(2)根据样本中心点过回归方程得前6个月水费的平均数为40y =,进而得7月份的水费为54.6元,再根据居民月用水量t 吨与相应的水费()f t 元之间的函数关系式()4,012,6.631.2,1214,7.848,146,t t f t t t t t <≤⎧⎪=-<≤⎨⎪-<≤⎩即可得张某7月份的用水吨数.【详解】(1)可估计全市民用水价格的平均数的平均数为()10.0230.0450.0870.190.13110.08130.03150.0227.96⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯=,由于前4组的频率之和为0.040.080.160.20.48+++=, 前5组的频率之和为0.040.080.160.20.260.74++++=,故中位数在第5组中,设中位数为t 吨,则有()80.130.02t -⨯=,所以2813t = 即所求的中位数为283t =吨; (2)设李某2019年1~6月份的月用水费y (元)与月份x 的对应点为(),1,2,3,4,5,6i i x y i =,它们的平均值分别为,x y ,则126216x x x x ++⋯+==, 又点(),x y 在直线233y x =+上, 所以40y =,因此116240y y y ++⋯+=, 所以7月份的水费为294.624054.6-=元,设居民月用水量为t 吨,相应的水费为()f t 元,则()()()4,012,4812 6.6,1214,61.2147.8,1416,t t f t t t t t ⎧<≤⎪=+-⨯<≤⎨⎪+-⨯<≤⎩即()4,012,6.631.2,1214,7.848,1416,t t f t t t t t <≤⎧⎪=-<≤⎨⎪-<≤⎩当13t =时,() 6.61331.254.6f t =⨯-=, 所以李某7月份的用水吨数约为13吨. 【点睛】本题考查频率分布直方图计算平均数,中位数,根据回归直方图估计样本数据.本题第二问解题的关键在于先根据样本中心点过回归直线方程得前6个月水费的平均数为40y =,进而得7月份的水费为54.6元,再结合居民月用水量t 吨与相应的水费()f t 元之间的函数关系式即可求解,是中档题.15.(1)频率为0.3,频率分布直方图见解析;(2)71分;(3)715. 【分析】(1)由所有频率之和为1可求得成绩在[)70,80的频率,从而可补全频率分布直方图; (2)由每组数据的中值乘以频率相加可得均值;(3)成绩在[)40,50的人数为400.14⨯=人,成绩在[)90,100的人数为400.052⨯=人,将分数段[)40,50的4人编号为1A ,2A ,3A ,4A ,将[]90,100分数段的2人编号为1B ,2B ,用列举法写出任取2人的所有基本事件,同时得出同一分数段内所含基本事件,计数后可得概率. 【详解】(1)因为各组的频率之和等于1,所以成绩在[)70,80的频率为1(0.0250.01520.010.005)100.3-+⨯++⨯=.补全频率分布直方图如图所示:(2)利用中值估算学生成绩的平均分,则有450.1550.15650.15750.3850.25950.0571⨯+⨯+⨯+⨯+⨯+⨯=所以本次考试的平均分为71分.(3)成绩在[)40,50的人数为400.14⨯=人,成绩在[)90,100的人数为400.052⨯=人 从成绩在[)40,50和[]90,100的学生中选两人,将分数段[)40,50的4人编号为1A ,2A ,3A ,4A ,将[]90,100分数段的2人编号为1B ,2B ,从中任选两人,则基本事件构成集合{}1213141112232412=A ,A ,A ,A ,A ,A ,A ,B ,A ,B ,A ,A ,(A ,A (B ,B )Ω()()()()()()) 共15个,其中同一分数段内所含基本事件为:()12A A ,,()13,A A ,()14,A A ,()23,A A ,()24,A A ,()34,A A ,12(,)B B 共7个,故所求概率为P =715. 【点睛】方法点睛:本题考查频率分布直方图,考查由频率分布直方图求均值,考查古典概型.求古典概型的方法:列举法,用列举法写出事件空间中的所有基本事件,同时得出所求概率事件中所含有的基本事件,计数后计算概率.如果元素个数较多,事件的个数也可用排列组合知识计算.16.(1)众数为4.6和4.7,中位数为4.75(2)①19140②见解析,3()4E X = 【分析】(1)直接观察茎叶图中的数据即可求出答案(2)①设事件i A ,表示“所选3名学生中有i 名是‘好视力’”(0,1,2,3)i =,设事件A 表示“至少有2名学生是好视力”.由()()213112423331616()C C C P A P A P A C C =+=+求出即可 ②X 近似服从二项分布13,4B ⎛⎫⎪⎝⎭,然后列出分布列和算出期望即可. 【详解】(1)由题意知众数为4.6和4.7, 中位数为4.7 4.84.752+=. (2)①设事件i A ,表示“所选3名学生中有i 名是‘好视力’”(0,1,2,3)i =,设事件A 表示“至少有2名学生是好视力”.则()()213112423331616()C C C P A P A P A C C =+=+ 19140=②因为这16名学生中是“好视力”的频率为14,所以该地区学生中是“好视力”的概率为14. 由于该地区学生人数较多,故X 近似服从二项分布13,4B ⎛⎫ ⎪⎝⎭.3327(0)464P X ⎛⎫===⎪⎝⎭,2131327(1)4464P X C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭, 223139(2)4464P X C ⎛⎫⎛⎫==⨯⨯=⎪ ⎪⎝⎭⎝⎭,311(3)464P X ⎛⎫===⎪⎝⎭, 所以X 的分布列为X 的数学期望为()344E X =⨯=. 【点睛】本题考查的知识点有:茎叶图、众数、中位数、二项分布等,是一道比较典型的概率与统计的题.17.(1)中位数是121.67;平均数是123;(2)35. 【分析】(1)利用中位数左边矩形面积之和为0.5可求出中位数,将每个矩形底边中点值乘以相应矩形的面积,再相加可得出这100名学生语文成绩的平均数;(2)计算出数学成绩在[]130,150、[]140,150的学生人数,列举出所有的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】(1)0.050.40.30.750.5++=>,0.750.50.25-=,∴这100名学生语文成绩的中位数是0.2513010121.670.3-⨯=.这100名学生语文成绩的平均数是:1050.051150.41250.31350.21450.05123⨯+⨯+⨯+⨯+⨯=;(2)数学成绩在[)100,140之内的人数为。

统计练习题小学

统计练习题小学

统计练习题小学统计学是数据分析的一门学科,对于小学生来说,培养他们进行简单的统计学习能力,能够帮助他们提高观察能力、整理信息并做出正确的判断。

下面就为大家介绍一些适合小学生练习的统计题目。

一、调查学生爱好在小学班级中,我们可以通过调查学生的爱好来进行统计。

假设有一个班级共有40名学生,我们可以向他们发放一份调查问卷,采集每个学生的爱好信息。

可以通过以下问题来进行调查:1. 你最喜欢的体育项目是什么?2. 你最喜欢的书籍类型是什么?3. 你最喜欢的电视节目是什么?4. 你最喜欢的动物是什么?根据学生们的回答,我们可以将他们的爱好进行分类统计,并制作柱状图或饼状图展示结果,可以清楚地了解整个班级的兴趣爱好分布情况。

二、调查家庭成员数量通过调查家庭成员数量可以进行简单的统计学习。

同样以一个小学班级为例,可以向学生们提问以下问题:1. 你家有几口人?2. 你是独生子女吗?3. 你有几个兄弟姐妹?根据学生们的回答,我们可以对家庭成员数量进行统计,计算平均家庭成员数量、最常见的家庭类型等,并绘制相应的统计图表。

三、调查最喜欢的水果通过调查学生们最喜欢的水果可以进行统计学习。

以一个小学班级为例,可以向学生们提问以下问题:1. 你最喜欢的水果是什么?2. 你平均每天吃几份水果?根据学生们的回答,我们可以计算每种水果的受欢迎程度,并制作柱状图或饼状图展示结果,可以帮助学生们了解水果的种类和受欢迎程度,培养他们健康饮食的观念。

四、统计学生的身高通过测量学生的身高进行统计学习。

可以向学生们提供一个身高测量表,记录每个学生的身高,并进行统计。

1. 你的身高是多少?2. 身高在120cm以下的有几人?3. 身高在120-140cm之间的有几人?4. 身高在140-160cm之间的有几人?5. 身高在160cm以上的有几人?根据学生们的身高数据,可以制作一个身高统计表,并进行数据分析,了解班级学生的身高分布情况。

通过以上的小学统计练习题目,我们可以帮助小学生培养基本的观察和统计分析能力。

医学统计学试题试卷答案真题

医学统计学试题试卷答案真题

医学统计学试卷一、最佳选择题 (每题1分,共20分)1.关于膀胱癌化疗的随访资料做生存分析,可当作截尾值处理的是()。

A.死于膀胱癌B.死于意外死亡C.死于其它肿瘤D.死于意外死亡和死于其它肿瘤2.总体可分为有限总体和无限总体,其中有限总体是指( )。

A.无法确定数量的总体B.观察单位有限的总体C.在有限时间内确定的总体D.方便研究的总体E.其它选项都不是3.习惯上,下列属于小概率事件的为( )。

A.P=0.99B.P=0.10C.P=0.15D.P=0.03E.其它选项都不是4.当自由度不变时,关于χ2值与P值的关系,下列哪一项是正确的?( )A.χ2值越大,P值越大B.χ2值越大,P值越小C.χ2值变化时,P值不变D.χ2值变化时,P值变大或变小E.χ2值变化时,P值可能变化也可能不变5.方差分析中( )。

A.F值可能是负数B.F值不可能是负数C.组间离均差不会等于组内离均差D.组间离均差不会小于组内离均差E.组间离均差不会大于组内离均差6.为初步了解吸光度与溶液浓度之间的关系,宜选用( )。

A.直方图B.圆图C.条图D.半对数线图E.散点图7.若上海市健康女工744人血红蛋白含量的均数为12.239g%,标准差为0.998g%,则下列哪个最有理由认为是正常范围?()A.11.24-11.3237B.9.654-14.814C.10.283-14.195D.10.592-13.886E.10.952-13.5168.两变量(x和y)作相关分析时,算得r=0.38,可以说( )。

A.x和y无关,因r值较小B.x和y相关不很密切,因r值不到1C.不能确定x和y的相关密切程度,因不知n的大小D.虽然x和y相关,但不能认为x和y有因果关系E.可以认为x和y存在直线相关关系9.直线回归中X与Y的标准差相等时,以下叙述( )正确。

A.b=aB.b=rC.b=1D.r=1E.其它选项都不正确10.各年龄的死亡水平发生改变都会影响平均寿命的大小,其中哪个年龄别的影响最大?( )A.65岁到70岁以前组B.30岁到35岁以前组C.零岁到1岁以前组D.25岁到30岁以前组11.甲乙两人分别从随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得,则理论上( )。

高中数学-《统计》测试题

高中数学-《统计》测试题

《统计》测试题(满分150分,时间120分钟)一、选择题(每小题5分,共50分)1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是() A.抽签法B.随机数法C.系统抽样法D.分层抽样法2.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>a C.c>a>b D.c>b>a3.2014年某大学自主招生面试环节中,七位评委为一考生打出分数的茎叶图如图2-1,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为()图2-1A.84,4.84 B.84,1.6C.85,1.6 D.85,44.甲、乙、丙、丁四人参加射击项目选拔赛,四人平均成绩和方差如下:甲乙丙丁平均环数x8.6 8.9 8.9 8.2方差s2 3.5 3.5 2.1 5.6A.甲B.乙C.丙D.丁5.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,则n =()A.660B.720 C.780D.8006.下表是某小卖部一周卖出热茶的杯数与当天气温的对比表:气温/℃1813104-1若热茶杯数y()A.y=x+6 B.y=x+42 C.y=-2x+60 D.y=-3x+787.x是x1,x2,…,x100的平均数,a是x1,x2,…,x40的平均数,b是x41,x42,…,x100的平均数,则下列各式正确的是()A.x=40a+60b100 B.x=60a+40b100 C.x=a+b D.x=a+b28.在抽查某产品的尺寸过程中,将其尺寸数据分成若干组,[a,b]是其中一组,抽查出的个体数在该组上的频率是m,该组上的直方图的高为h,则|a-b|=()A.h·m B.hm C.mh D.与m,h无关9.甲、乙、丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图2-2,图2-3和图2-4,若s甲,s乙,s丙分别表示他们测试成绩的标准差,则() A.s甲<s乙<s丙B.s甲<s丙<s乙C.s乙<s甲<s丙D.s丙<s甲<s乙图2-2 图2-3图2-410.图2-5是某县参加2014年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A m(如A2表示身高(单位:cm)在[150,155)内的学生人数).图2-6是统计图中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是()图2-5图2-6A.i<9? B.i<8? C. i<7? D.i<6?二、填空题(每小题5分,共20分)11.下列四种说法中,①数据4,6,6,7,9,3的众数与中位数相等;②一组数据的标准差是这组数据的方差的平方;③数据3,5,7,9的标准差是数据6,10,14,18的标准差的一半;④频率分布直方图中各小长方形的面积等于相应各组的频数.其中正确的有__________(填序号).12.将参加数学竞赛的1000名学生编号如下:0001,0002, 003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法把编号分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,那么抽取的第40个号码为________.13.超速行驶已成为马路上最大杀手之一,已知某中段属于限速路段,规定通过该路段的汽车时速不超过80 km/h,否则视为违规.某天,有1000辆汽车经过了该路段,经过雷达测速得到这些汽车运行时速的频率分布直方图如图2-7,则违规的汽车大约为________辆.图2-714.已知回归直线斜率估计值为1.23,样本点中心为(4,5),则回归方程是____________.三、解答题(共80分)15.(12分)某校500名学生中,O型血有200人,A型血有125人,B型血有125人,AB型血有50人,为了研究血型与色弱的关系,用分层抽样的方法抽取一个容量为20的样本,则各种血型的人分别抽多少?写出抽样过程.16.(12分)对甲、乙两名自行车赛手在相同条件下进行了8次测试,测得他们的最大速度(单位:m/s)的数据如下表:(1)(2)分别求出甲、乙两名自行车赛手最大速度(单位:m/s)的数据的平均数、中位数、标准差,并判断选谁参加比赛更合适(可用计算器).17.(14分)有一个容量为100的样本,数据的分组及各组的频数如下:[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)数据落在[18.5,27.5)范围内的可能性为百分之几?18.(14分)为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8:00~12:00间各自的车流量(单位:百辆),得如图2-8所示的统计图,根据统计图:(1)甲、乙两个交通站的车流量的极差分别是多少?(2)甲交通站的车流量在[10,40]间的频率是多少?(3)甲、乙两个交通站哪个更繁忙?并说明理由.图2-819.(14分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如图2-9),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.(1)求第四小组的频率和参加这次测试的学生人数;(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?图2-920.(14分)某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:(1)(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程;(3)据(2)的结果估计当销售额为1亿元时的利润额.第二章自主检测 1.D 2.D3.C 解析:平均分为80+15(4×3+6+7)=85,s 2=15[3×(84-85)2+(86-85)2+(85-87)2]=1.6.4.C 5.B 6.C 7.A 8.C 9.D 10.B 11.①③12.0795 解析:抽取的第40个号码为0015+39×20=0795. 13.28014.y ^=1.23x +0.0815.解:用分层抽样方法抽样.∵20500=250,∴200×250=8,125×250=5,50×250=2. 故O 型血抽8人,A 型血抽5人,B 型血抽5人,AB 型血抽2人. 16.解:(1)茎叶图如图D31,中间数为数据的十位数.图D31从这个茎叶图上可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是35,甲的中位数是33.因此乙发挥比较稳定,总体得分情况比甲好.(2)利用科学计算器,得x 甲=34,x 乙=35.75;s 甲≈7.55,s 乙≈5.70;甲的中位数是33,乙的中位数是35. 综合比较,选乙参加比赛更合适.17.解:(1)样本的频率分布表如下:分组 频数 频率 [12.5,15.5) 6 0.06 [15.5,18.5) 16 0.16 [18.5,21.5) 18 0.18 [21.5,24.5) 22 0.22 [24.5,27.5) 20 0.20 [27.5,30.5) 10 0.10 [30.5,33.5] 8 0.08 合计1001.00(2)图D32(3)0.18+0.22+0.20=0.60=60%.18.解:(1)甲交通站的车流量的极差为73-8=65; 乙交通站的车流量的极差为71-5=66. (2)甲交通站的车流量在[10,40]间的频率为414=27.(3)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方.从数据的分布情况来看,甲交通站更繁忙.19.解:(1)第四小组的频率=1-(0.1+0.3+0.4)=0.2, 因为第一小组的频数为5,其频率为0.1, 所以参加这次测试的学生人数为5÷0.1=50(人).(2)0.3×50=15,0.4×50=20,0.2×50=10,则第一、第二、第三、第四小组的频数分别为5,15,20,10.所以学生跳绳次数的中位数落在第三小组内. (3)跳绳成绩的优秀率为(0.4+0.2)×100%=60%. 20.解:(1)销售额和利润额的散点图如图D33.图D33(2)销售额和利润额具有相关关系,列表如下:x i 3 5 6 7 9 y i 2 3 3 4 5 x i y i615182845x =6,y =3.4,51i i i x y =∑=112,521i i x =∑=200所以b ^=112-5×6×3.4200-5×62=0.5,11 / 11 a ^=y -b ^x =3.4-6×0.5=0.4.从而得回归直线方程y ^=0.5x +0.4.(3)当x =10时,y ^=0.5×10+0.4=5.4(百万元).故当销售额为1亿元时,利润额估计为540万元.。

医学统计学试题(卷)与答案解析

医学统计学试题(卷)与答案解析

第一套试卷及参考答案一、选择题(40分)1、根据某医院对急性白血病患者构成调查所获得的资料应绘制( B )A 条图B 百分条图或圆图 C线图 D直方图2、均数和标准差可全面描述 D 资料的特征A 所有分布形式B负偏态分布C正偏态分布D正态分布和近似正态分布3、要评价某市一名5岁男孩的身高是否偏高或偏矮,其统计方法是( A )A 用该市五岁男孩的身高的95%或99%正常值范围来评价B 用身高差别的假设检验来评价C 用身高均数的95%或99%的可信区间来评价D 不能作评价4、比较身高与体重两组数据变异大小宜采用( A )A 变异系数B 方差C 标准差D 四分位间距5、产生均数有抽样误差的根本原因是( A )A.个体差异B. 群体差异C. 样本均数不同D. 总体均数不同6. 男性吸烟率是女性的10倍,该指标为( A )(A)相对比(B)构成比(C)定基比(D)率7、统计推断的内容为( D )A.用样本指标估计相应的总体指标B.检验统计上的“检验假设”C. A和B均不是D. A和B均是8、两样本均数比较用t检验,其目的是检验( C )A两样本均数是否不同B两总体均数是否不同C两个总体均数是否相同 D两个样本均数是否相同9、有两个独立随机的样本,样本含量分别为n1和n2,在进行成组设计资料的t检验时,自由度是( D )(A)n1+ n2(B)n1+ n2–1 (C)n1+ n2 +1 (D) n1+ n2 -210、标准误反映( A )A 抽样误差的大小B总体参数的波动大小 C 重复实验准确度的高低 D 数据的离散程度11、最小二乘法是指各实测点到回归直线的 (C)A垂直距离的平方和最小B垂直距离最小C纵向距离的平方和最小D纵向距离最小12、对含有两个随机变量的同一批资料,既作直线回归分析,又作直线相关分析。

令对相关系数检验的t值为t r,对回归系数检验的t值为t b,二者之间具有什么关系?(C)A t r>t bB t r<t bC t r= t b D二者大小关系不能肯定13、设配对资料的变量值为x1和x2,则配对资料的秩和检验(D )A分别按x1和x2从小到大编秩B把x1和x2综合从小到大编秩C把x1和x2综合按绝对值从小到大编秩D把x1和x2的差数按绝对值从小到大编秩14、四个样本率作比较,χ2>χ20.05,ν可认为( A )A各总体率不同或不全相同B各总体率均不相同 C各样本率均不相同D各样本率不同或不全相同15、某学院抽样调查两个年级学生的乙型肝炎表面抗原,其中甲年级调查35人,阳性人数4人;乙年级调查40人,阳性人数8人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计检测题
一;填空画图
1.常见的统计图有(),(),()。

2.条形统计图可以表示()的多少。

3.在制作统计图表前我们要做的工作有:()。

4.这是六(1)班同学水果喜好情况统计表(见下表)(10分)
(1)
(2)请根据上表画出统计图。

(3)认真观察上面的统计图,你还能提出什么数学问题?
5下图是深圳某公司一车间中三个小组男、女工人数统计图
①男工人数最多的是()小组,最少的是()小组; 女工人数最多的
是()小组,最少的是()小组; 从图上可以看出()小组的人数最多,()小组的人数最少.
②通过计算,能知道第一小组是()人,人数最少;第二小组是()人,人数最多;第三小组是()人.
③第一小组男工人数是女工人数的()倍。

④第二小组男工人数占第二小
组人数的()⑤全车间有工人()人,其中女工()人,占()。

⑥第一小组女工人数比男工人数少()% 。

⑦全车间男工人数比女工人数
多()% 。

6. 下图是北京市和深圳市的气温统计图。

2005年2月
①浅色直条表示(),深色直条()。

②每个单位长度直条表示()。

③ 看了这幅复式条形统计图,你还知道些什么?请把它转换成折线统计图。

7.根据上面的统计图,回答问题。

( l )游览两个庙会的人数分别在哪一天到达峰值,然后开始下降?( 2 )哪个庙会的游览人数上升得快,下降得也快?( 3 )假如明年要游览庙会,你认为哪天比较好? 4 )从统计图中,你还能得到哪些信息?你还能提出哪些问题?
8.扇形统计图是利用圆和_______表示______和部分的关系,圆代表的是总体, 即100%,扇形代表______,圆的大小与总数量无关.
9.扇形统计图能清楚地表示出各部分在总体中所占的_______.
10.如图1,如果用整个图表示总体,那么_______扇形表示总体的1
3,______ 扇形表示总体
的1
2_______.
11.红星村今年对农田秋季播种作物如图2规划,且只种植这三种农作物,则该村种植的大麦占种植所有农作物的
____%.
(1)
C A B
300亩油菜
500亩小麦450亩大麦
(2)
A 65%
B 28%
(3)
C
60以下20%
91~10025%
60~75
25%76~9030%
(4)
12.光明中学对图书馆的书分成3类,A 表示科技类,B 表示科学类,C 表示艺术类,所占的百分比如图3所示,如果该校共有图书8500册,则艺术书共有______册. 二、选择题:
1.某校对初一300名学生数学考试作一次调查,在某范围内的得分率如图4的扇形,则在
60分以下这一分数线中的人数为( )
A.75
B.60
C.90
D.50
2.某公司有员工700人,元旦举行活动,图5,A 、B 、C 分别表示参加各种活动的人数的百分比,规定每人只参加一项且每人均参加,则不下围棋的人共有( )
A.259人
B.441人
C.350人
D.490人
3.某校男、女生比例如图6中的扇形区,则男生占全校人数的百分数 为( ) A.48% B.52% C.92.3% D.4%
三、解答题:(共25分)
1.(15分)全班约25是男生,约3
5是女生,请根据所给数据完成扇形统
计图.
2.(10分)(1)由图中提供信息:乒乓球、排球、足球、篮球4项球类活动中, 哪一类球类
运动能够获得全班近1
4的支持率?
C
打扑克
B
下围棋37%
A
下象棋
(5)
女生288
男生312
(6)
(2)若全班人数为50人,体育委员组织一次排球比赛, 估计会有多少人
蓝球
16%
排球
18%
足球
24%
其它
乒乓球
32%。

相关文档
最新文档