江西省2012年高考数学试题评价与2013届高三复习备考建议—高三数学二轮复习

合集下载

高三数学复习教学计划

高三数学复习教学计划

高三数学复习教学计划(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、总结报告、演讲致辞、规章制度、自我鉴定、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as workplace documents, contract agreements, summary reports, speeches, rules and regulations, self-assessment, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!高三数学复习教学计划高三数学复习教学计划范文时间过得可真快,从来都不等人,为了以后教学质量不断提高,是时候写一份详细的教学计划了。

2024届高三数学二轮复习策略课件

2024届高三数学二轮复习策略课件

1.离心率的计算 2.圆锥曲线与三角形内心、重心相关的 问题
3.圆锥曲线与内接三角形 4.圆锥曲线中常用的二级结论

1.函数的图像与性质 2.利用导数研究函数的性质
题 函数与导数 3.导数与恒成立问题

4.导数与不等关系 5.导数与函数的零点
1.抽象函数的性质 2.切线与公切线 3.以指数、对数为载体的情景题 3.导数中的构造问题 4.端点效应问题
【分析】当x 时0 , xf (x) ,f (x即) 0 [xf (x)] 0
构造函数 g(x) xf (x)
A 【例 1】(2020 新课标Ⅱ理11)若 2x 2y 3x 3y ,则 (
)
A. ln(y x 1) 0 B. ln(y x 1) 0
C. ln | x y | 0
二轮复习六大专题:
大专题
专 三角函数、 题 解三角形 一 和平面向量
专 题 数列 二
专 题 立体几何 三
子专题
微专题
1.三角恒等变换 2.三角函数的图像与性质 3.解三角形
1.平面向量数量积的求解策略 2.三角函数中与 相关的问题探究 3.三角形中的特殊线段 4.三角中的数学建模与情景题
1.数列的通项求法
【案例3】 微专题:同构式
【引例】(2015 年理12 改编)设函数 f (x) 是奇函数 f (x)(x R)的导
函数, f (1) 0 ,当 x 0 时,xf '(x) f (x) 0 ,则使得 xf (x) 0
成立的 x 的取值范围是(

A.,1 0,1
B.1,0 0,1
C.,1 1,0 D.0,1 1,
3.确定备考策略
(1)对数列的概念及表示方法的理解和应用; (2)等差数列、等比数列的性质、通项公式、递推公式、前项和公式中基本量的运算或者利用它们之 间的关系式通过多角度观察所给条件的结构,深入剖析其特征,利用其规律进行恰当变形与转化求解 数列的问题; (3)会利用等差、等比数列的定义判断或证明数列问题; (4)通过转化与化归思想利用错位相减、裂项相消、分组求和等方法求数列的前项和; (5)数列与不等式、函数等的交汇问题; (6)关注数学课本中有关数列的阅读与思考、探究与发现的学习材料,有意识地培养学生的阅读能力 和符号使用能力,也包括网络资料中与数列有关的数学文化问题,与实际生活有关的数列的应用问题; (7)关注结构不良试题、举例问题等创新题型。

2012高考江西卷数学真题及答案

2012高考江西卷数学真题及答案

第- 1 -/7页2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B = ▲ .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生.3.设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值 为 ▲ .4.右图是一个算法流程图,则输出的k 的值是 ▲ . 5.函数()f x 的定义域为 ▲ .6.现有10个数,它们能构成一个以1为首项,3-等比数列,若从这10个数中随机抽取一个数,则它小于8 的概率是 ▲ .开始 结束输出k Y (第4题)第- 2 -/7页7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率 m 的值为 ▲ .9.如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若AB AF = AE BF的值是 ▲ . 10.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上, 0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则4sin 2125απ⎛⎫+= ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC =.(1)求证:tan 3tan B A =; (2)若cos C =求A 的值.DABC1C 1D 1A1B(第7题)(第9题)第- 3 -/7页16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.18.(本小题满分16分)已知a ,b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;1A1C(第16题)FDCABE1B第- 4 -/7页(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛ ⎝⎭都在椭圆上,其中e 为椭圆的离心率. (1)求椭圆的离心率;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线与直线2BF 平行,2AF 与1BF 交于点P .(i )若12AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:1n a n *+=∈N .(1)设11n n n b b n a *+=+∈N ,,求证:数列2nn b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值.(第19题)第- 5 -/7页数学Ⅱ(附加题)21.【选做题】 本大题包括A 、B 、C 、D 四小题,请选定期中两小题,并在相应的..............答题区域内作答.......,若多做,则按作答的前两小题评分. 解答时应写出文字说明、证明过程或演算步骤。

2012年江西高考数学理科试卷(带详解)

2012年江西高考数学理科试卷(带详解)

2012年普通高等学校招生全国统一考试(江西卷)数学(理科)第I 卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合11A =-{,}02B ={,},,则集合,,Z Z x y x A y B =+∈∈{}中的元素的个数为( )A .5 B. 4 C. 3 D. 2 【测量目标】集合的含义.【考查方式】考查了集合的互异性. 【难易程度】容易 【参考答案】C【试题解析】集合A 、B 中元素两两相加得到1-,1,1,3,由集合的互异性可知集合 ,,Z Z x y x A y B =+∈∈{}中的元素的个数为3. 2.下列函数中,与函y =定义域相同的函数为 ( ) A .1sin y x =B. ln x y x =C. 2e y x = D. sin x x【测量目标】函数的定义域.【考查方式】考查了有关对数函数、指数函数、分式函数的定义域. 【难易程度】容易 【参考答案】D 【试题解析】函数y =的定义域为()(),00,-∞+∞,而答案中只有sin xy x=的定义域为 ()(),00,-∞+∞.故选D.3.若函数21(1)()lg (1)x x f x x x ⎧+=⎨>⎩,则((10))f f = ( )A. lg101B.2C. 1D. 0 【测量目标】分段函数.【考查方式】考查分段函数的求值. 【难易程度】容易 【参考答案】B【试题解析】101>,(10)lg101f ∴==.2((10))(1)112f f f ∴==+=.4.若1tan 4tan θθ+=,则sin 2θ= ( )A .15 B.14 C. 13 D. 12【测量目标】二倍角.【考查方式】考查三角恒等变形式以及转化与化归的数学思想. 【难易程度】容易 【参考答案】D【试题解析】221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===, 1sin 22θ∴=. 5.下列命题中,假命题为 ( ) A .存在四边相等的四边形不.是正方形. B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数. C .若,x y ∈R ,且2x y +>则,x y 至少有一个大于1.D .对于任意01,C C n n n ∈++N …C nn +都是偶数.【测量目标】四种命题及其之间的关系.【考查方式】以命题的真假为切入点,综合考查了充要条件,复数、特称命题、全称命题、二项式定理等. 【难易程度】容易 【参考答案】B【试题解析】(验证法)对于B 项,令121i,9i()z m z m m =-+=-∈R ,显然128z z +=∈R ,但12,z z 不互为共轭复数,故B 为假命题,应选B.6.观察下列各式:223344551,3,4,7,11a b a b a b a b a b +=+=+=+=+=,…,则1010a b += ( )A .28B .76C .123D .199 【测量目标】合情推理.【考查方式】考查归纳推理的思想方法. 【难易程度】中等 【参考答案】C【试题解析】观察各等式的右边,它们分别为1,3,4,7,11,…,发现从第3项开始,每一 项就是它的前两项之和,故等式的右边依次为1,3,4,7,11,18,29,47,76,123,…,故1010123a b +=.7.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点, 则222PA PB PC+= ( )A .2B .4C .5D .10【测量目标】三种距离公式.【考查方式】主要考查两点间的距离公式,以及坐标法这一重要的解题方法和数形结合的数学思想.【难易程度】中等 【参考答案】D【试题解析】取特殊的等腰直角三角形,令4AC BC ==,42AB =,1222CD AB ==122PC PD CD ===,22PA PB AD PD ==+()()2222210=+=2221010102PA PB PC++∴==. 8.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植 年产量/亩年种植成本/亩每吨售价黄瓜 4吨 1.2万元 0.55万元 韭菜6吨 0.9万元 0.3万元为使一年的种植总利润(总利润总销售收入总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为 ( ) A .50,0 B .30,20 C .20,30 D .0,50 【测量目标】二元线性规划的实际应用.【考查方式】考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及 实践能力.【难易程度】较难 【参考答案】B【试题解析】设黄瓜和韭菜的种植面积分别为,x y 亩,总利润为z 万元,则目标函数为()()0.554 1.20.360.90.9z x x y y x y =⨯-+⨯-=+.(步骤1)线性约束条件为50,1.20.954,0,0,x y x y x y +⎧⎪+⎪⎨⎪⎪⎩ 即50,43180,0,0,x y x y x y +⎧⎪+⎪⎨⎪⎪⎩(步骤2)做出不等式组50,43180,0,0,x y x y x y +⎧⎪+⎪⎨⎪⎪⎩表示的可行域,易求得点()0,50A ,()30,20B ,()0,45C .(步骤3)平移直线0.9z x y =+,可知当直线0.9z x y =+经过点()30,20B ,即30,20x y ==时,z 取得最大值,且max 48z =(万元).(步骤4)故选B.第8题图9.样本(1x ,2x ,…,)n x 的平均数为x ,样本(1y ,2y ,…,)m y 的平均数为()y x y ≠,若样本(1x ,2x ,…,n x ,1y ,2y ,…,)m y 的平均数()1z ax a y =+-,其中102a <<,则,n m 的大小关系为 ( )A .n m <B .n m >C .n m =D .不能确定 【测量目标】用样本数字特征估计总体数字特征.【考查方式】考查统计中的平均数,作差法比较大小以及整体思想. 【难易程度】较难 【参考答案】A【试题解析】由统计学知识,可得12x x ++…n x nx +=,12y y ++…m y my +=,12x x ++…n x ++12y y ++…()()()1m y m n z m n ax a y ⎡⎤+=+=++-⎣⎦()()()1m n ax m n a y =+++-,()()()1nx my m n ax m n a y ∴+=+++-.(步骤1)()()(),1.n m n a m m n a =+⎧⎪∴⎨=+-⎪⎩故()()()()121n m m n a a m n a -=+--=+-⎡⎤⎣⎦.(步骤2)10,2102a a <<∴-<.0n m ∴-<.即n m <.(步骤3)10.如图,已知正四棱锥S —ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分,记(01)SE x x =<<,截面下面部分的体积为()V x ,则函数()y V x =的图像大致为 ( )第10题图A B C D第10题图【测量目标】函数图象的判断.【考查方式】本题综合考查了棱锥的体积公式,线面垂直,同时考查了函数的思想,导数法解决几何问题等重要的解题方法. 【难易程度】较难 【参考答案】A【试题解析】(定性法)当102x <<时,随着x 的增大,观察图形可知,()V x 单调递减,且递减的速度越来越快;当112x <时,随着x 的增大,观察图形可知,()V x 单调递减,且递减的速度越来越慢;再观察各选项中的图象,发现只有A 图象符合.故选A. 第Ⅱ卷注:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 二.填空题:本大题共4小题,每小题5分,共20分. 11.计算定积分()121sin xx dx -+=⎰___________【测量目标】微积分基本定理求定积分.【考查方式】考查有关多项式函数,三角函数定积分的应用. 【难易程度】中等 【参考答案】23【试题解析】()31211111112sin cos cos1cos1333333x x x dx x --⎛⎫-⎛⎫⎛⎫+=-=---=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰. 12.设数列{}n a ,{}n b 都是等差数列,若117a b +=,3321a b +=,则55a b += ___________ 【测量目标】等差数列的性质.【考查方式】考查等差中项的性质及整体代换的数学思想. 【难易程度】中等【参考答案】35 【试题解析】解法一:数列{}n a ,{}n b 都是等差数列,∴数列{}n n a b +也是等差数列.故由等差中项的性质,得551133()()2()a b a b a b +++=+,即55()7221a b ++=⨯,解得5535a b +=.解法二:设数列{}n a ,{}n b 的公差分别为1d ,2d ,()()()()()3311121112122227221a b a d b d a b d d d d +=+++=+++=++=,127d d ∴+=,()()553312235a b a b d d ∴+=+++=.13.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是1F ,2F .若1AF ,12F F ,1F B 成等比数列,则此椭圆的离心率为_______________.【测量目标】椭圆的简单几何性质与等比数列的性质.【考查方式】着重考查等比中项的性质,以及椭圆的离心率等几何性质,同时考查了函数与方程,转化与化归思想. 【难易程度】中等 【参考答案】5 【试题解析】利用椭圆及等比数列的性质解题.由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故()()()22a c a c c -+=,即2224a c c -=,则225a c =.故5c e a ==.即椭圆的离心率为5. 14.下图为某算法的程序框图,则程序运行后输出的结果是______________.第14题图【测量目标】循环结构的程序框图.【考查方式】考查算法程序框图的应用以及运算求解的能力. 【难易程度】容易 【参考答案】3【试题解析】由程序框图可知: 第一次:π0,1,sin1sin 002T k ===>=成立,1,1,2,26a T T a k ==+==<,满足判断条件,继续循环; (步骤1) 第二次:πsin π0sin12=>=不成立,0,1,3,36a T T a k ==+==<,满足判断条件,继续循环; (步骤2) 第三次: 3πsin1sin π02=->=不成立,0,1,4,46a T T a k ==+==<, 满足判断条件,继续循环; (步骤3) 第四次: 3πsin 2π0sin 12=>=-成立,1,2,5a T T a k ==+==, 满足判断条件,继续循环; (步骤4)第五次: 5πsin1sin 2π02=>=成立,1,2,666a T T a k ==+==<,不成立,不满足判断条件,跳出循环,故输出T 的值3. (步骤5)三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分.本题共5分. 15.(1)(坐标系与参数方程选做题)曲线C 的直角坐标方程为2220x y x +-=,以原点为 极点,x 轴的正半轴为极轴建立积坐标系,则曲线C 的极坐标方程为___________. 【测量目标】极坐标方程与直角坐标方程的互化.【考查方式】考查极坐标方程与直角坐标方程的互化及转化与化归的数学思想. 【难易程度】中等 【参考答案】2cos ρθ=【试题解析】由极坐标方程与直角坐标方程的互化公式cos ,sin ,x y ρθρθ=⎧⎨=⎩得22222cos 0x y x ρρθ+-=-=,又0ρ>,所以2cos ρθ=.15.(2)(不等式选做题)在实数范围内,不等式21216x x -++的解集为___________.【测量目标】绝对值不等式的解法.【考查方式】考查绝对值不等式的解法以及转化与划归、分类讨论的数学思想. 【难易程度】中等 【参考答案】3322x x⎧⎫-⎨⎬⎭⎩【试题解析】原不等式可化为1,212216,x x x ⎧-⎪⎨⎪---⎩①或11,2221216x x x ⎧-<<⎪⎨⎪---⎩②或 1,221216,x x x ⎧⎪⎨⎪-++⎩③由①得3122x--;由②得1122x -<<;由③得1322x, 综上,得原不等式的解集为3322x x⎧⎫-⎨⎬⎭⎩.四.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知数列{}n a 的前n 项和21()2n S n kn k +=-+∈Ν,且n S 的最大值为8. (1)确定常数k ,求n a ; (2)求数列922n na -⎧⎫⎨⎬⎩⎭的前n 项和n T . 【测量目标】错位相减法求和.【考查方式】考查了数列的通项公式n a 与前n 项和n S 之间的关系以及错位相减法求和的应用能力.【难易程度】中等【试题解析】(1)当n k +=∈Ν时,212n S n kn =-+取最大值,即22211822k k k =-+=,故4k =,从而19(2)2n n n a S S n n -=-=-,(步骤1)又1172a S ==,92n a n ∴=-. (步骤2) (2)19222n n n n a n b --==,12n T b b =++...223122n b +=+++ (2)1122n n n n---++, 212111112221 (44222222)n n n n n n n n n n n T T T -----+∴=-=++++-=--=-.(步骤3)17.(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .已知π4A =, ππsin sin 44b C c B a ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭.(1)求证: π2B C -=; (2)若a =ABC △的面积.【测量目标】诱导公式与正弦定理.【考查方式】给出三角形的三条边长及一个角,求证另外两角差为定值,并求三角形的面积. 【难易程度】中等 【试题解析】(1)由ππsin sin 44b C c B a ⎛⎫⎛⎫+-+=⎪ ⎪⎝⎭⎝⎭及正弦定理得: ππsin sin sin sin sin 44B C C B A ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,(步骤1)即22222sin cos sin sin cos sin B C C C B B ⎛⎫⎛⎫+-+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 整理得:sin cos cos sin 1B C B C -=,()sin 1B C ∴-=,(步骤2)又0B <,3π4C <,π2B C ∴-=.(步骤3) (2) 由(1)及3π4B C +=可得5π8B =,π8C =,又π4A =,2a =,sin 5π2sin sin 8a B b A ∴==,sin π2sin sin 8a C c A ==,(步骤4)15ππππ2π1sin 2sin sin 2sin cos sin 28888242ABC S bc A =====△. (步骤5)18.(本题满分12分)如图,从()11,0,0A ,()22,0,0A ,()10,1,0B ,()20,2,0B ,()10,0,1C ,()20,0,2C 这6 个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积0V =).(1)求0V =的概率;(2)求V 的分布列及数学期望.第18题图【测量目标】几何概型.【考查方式】给出样本数据,求概率及其分布列和数学期望. 【难易程度】容易【试题解析】(1)从6个点中随机地选取3个点共有36C 20=种选法,选取的3个点与原点O在同一个平面上的选法有1334C C 12=种,因此0V =的概率()1230205P V ===.(步骤1) (2)V 的所有可能值为0,16,13,2343,因此V 的分布列为: V16 13 2343 P35120320320120(步骤2)由V 的分布列可得:31113234190562032032032040EV =⨯+⨯+⨯+⨯+⨯=(步骤3) 19.(本题满分12分)在三棱柱ABC —111A B C 中,已知15AB AC AA ===,4BC =,1A 在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱1AA 上存在一点E ,使得OE ⊥平面11BB C C ,并求出AE 的长; (2)求平面11A B C 与平面11BB C C 夹角的余弦值.第19题图【测量目标】线面垂直的判定,二面角.【考查方式】给出三棱柱的点、线、面之间的位置关系,求证线面垂直及二面角的余弦值. 【难易程度】较难【试题解析】(1)证明:连接AO ,在1AOA △中,作1OE AA ⊥于点E ,(步骤1)1AA ∥1BB ,1OE BB ∴⊥,(步骤2) 1A O ⊥平面ABC ,1A O BC ∴⊥,(步骤3)AB AC =,OB OC =,∴AO BC ⊥,(步骤4) BC ∴⊥平面1AA O ,BC OE ∴⊥,(步骤5) OE ∴⊥平面11BB C C , (步骤6)又221AO AB BO =-=,15AA =,2215AO AE AA ∴==.(步骤7) (2)如图所示,分别以OA ,OB ,1OA 所在的直线为x ,y ,z 轴建立空间直角坐标系,则()()()()11,0,0,0,2,0,0,0,2,0,2,0A C A B -,(步骤8)由(1)可知115AE AA =得点E 的坐标为42,0,55⎛⎫⎪⎝⎭,由(1)可知平面11BB C C 的法向量是 42,0,55⎛⎫⎪⎝⎭,设平面11A B C 的法向量(),,x y z =n ,(步骤9) 由100AB A C ⎧⨯=⎪⎨⨯=⎪⎩n n ,得200x y y z -+=⎧⎨+=⎩,(步骤10)令1y =,得2,1x z ==-,即()2,1,1=-n (步骤11)30cos ,OE OE OE ⨯∴==⨯n n n(步骤12) 即平面11A B C 与平面11BB C C 夹角的余弦值是3010.(步骤13)第19题图20. (本题满分13分)已知三点()()()0,0,2,1,2,1O A B -,曲线C 上任意一点(),M x y 满足()2MA MB OM OA OB +=++.(1) 求曲线C 的方程;(2)动点()()000,22Q x y x -<<在曲线C 上,曲线C 在点Q 处的切线为l :20024x x y x =-,是否存在定点()()0,0P t t <,使得l 与PA ,PB 都相交,交点分别为D ,E ,且QAB △与PDE △的面积之比是常数?若存在,求t 的值.若不存在,说明理由.【测量目标】平面向量的坐标运算,曲线与方程.【考查方式】给出三点坐标及曲线C 上的点所满足的等式,求曲线方程及动点问题的应用. 【难易程度】较难【试题解析】(1)依题意可得()()2,1,2,1MA x y MB x y =---=--,(步骤1) 由已知得()()()()()22222,,0,22MA MB x y OM OA OB x y y+=-+-⨯+=⨯=,22y =+,(步骤2)化简得曲线C 的方程:24x y = .(步骤3)(2)假设存在点()()0,0P t t <满足条件,则直线PA 的方程是12t y x t -=+,直线PB 的方 程是12ty x t -=+,曲线C 在点Q 处的切线l 的方程为20024x x y x =-,它与y 轴的交点为20,4x F ⎛⎫- ⎪⎝⎭,由于22x -<<,因此0112x -<<.(步骤4)①当10t -<<时,11122t --<<-,存在()02,2x ∈-,使得0122x t -=,即l 与直线PA 平 行,故当10t -<<时不符合题意(步骤5) ②当1t-时,01122x t --<,01122x t->,所以l 与直线PA ,PB 一定相交,分别联立 方程组2001224t y x t x x y x -⎧=+⎪⎪⎨⎪=-⎪⎩,2001224t y x t x x y x -⎧=+⎪⎪⎨⎪=-⎪⎩,(步骤6) 解得D ,E 的横坐标分别是()200421D x tx x t -=+-,()200421E x t x x t +=+-,(步骤7)则()2022041(1)E D x tx x t x t +-=---,(步骤8) 又204x FP t =--,有()22220411=28(1)PDE E D x t t S FP x x t x +-⨯-=⨯--△, (步骤9)又22004141242QABx x S ⎛⎫-=⨯⨯-=⎪⎝⎭△, 于是()()22242220000242220004(1)4(1)4(1)44118164QAB PDEx x t x t x t S S t t x tx t x t ⎡⎤⎡⎤+---+-+-⎣⎦⎣⎦=⨯=⨯--+++△△. (步骤10)对任意()02,2x ∈-,要使QAB △与PDE △的面积之比是常数,只需t 满足()()2224184116t t t t⎧---=⎪⎨-=⎪⎩,(步骤11) 解得1t =-,此时QAB △与PDE △的面积之比为2,故存在1t =-,使QAB △与PDE △的面积之比是常数2.(步骤12)21. (本小题满分14分) 若函数()h x 满足 (1)(0)1,(1)0h h ==;(2)对任意[]0,1a ∈,有(())h h a a =; (3)在()0,1上单调递减.则称()h x 为补函数.已知函数()11()1,01ppp x h x p x λλ⎛⎫-=>-<⎪+⎝⎭.(1)判函数()h x 是否为补函数,并证明你的结论;(2)若存在[]0,1m ∈,使得()h m m =,称m 是函数()h x 的中介元,记()1p n n+=∈N 时()h x 的中介元为i x ,且1nn i i S x ==∑,若对任意的n +∈N ,都有12n S <,求λ的取值范围; (3)当0λ=,()0,1x ∈时,函数()y h x =的图像总在直线1y x =-的上方,求P 的取值范围.【测量目标】函数单调性的判断,不等式恒成立问题.【考查方式】给出一个新函数的定义,证明函数()h x 是否为此类函数,再求解不等式恒成立问题.【难易程度】较难【试题解析】(1)函数()h x 是补函数.证明如下:①111011(0),(1)0101p ph h λ--⎛⎫⎛⎫===⎪ ⎪++⎝⎭⎝⎭;(步骤1)②()1111111(())(())11111ppp p pp pp p a a a a h h a h a aa a λλλλλλ⎛⎫-- ⎪⎛⎫+-+==== ⎪ ⎪-++ ⎪⎝⎭+⎪+⎝⎭;(步骤2)③令()(())pg x h x =,有()()()()()11122111()11p p p p p p p px x x px p x g x x x λλλλλ----+---+'==++,(步骤3)1,0p λ>->,∴当()0,1x ∈时,()0g x '<,()g x ∴在()0,1上单调递减,故函数()h x 在()0,1上单调递减.(步骤4)(2) 当()1p n n+=∈N ,由()h x x =,得:21210n n x x λ+-= ……(*)(步骤5)①当0λ=时,中介元12nn x ⎛⎫= ⎪⎝⎭; (步骤6)②当1λ>-且0λ≠时,由(*)可得()10,1nx =或()10,1n x =; (步骤7)得中介元n n x =,综上有对任意的1λ>-,中介元nn x =()n +∈N(步骤8)于是,当1λ>-时,有111inn nn i i i S x ==⎛⎫===-<⎪⎪⎭∑∑ (步骤9) 当n 无限增大时,n 无限接近于0,n Sn +∈N ,12n S <12,即 [)3,λ∈+∞.(步骤10)(3) 当0λ=时,()1()1p ph x x =-,中介元是112pp x ⎛⎫= ⎪⎝⎭(步骤11)①当01p <时,11p ,中介元为11122pp x ⎛⎫= ⎪⎝⎭,所以点(),()p p x h x 不在直线1y x =-的上方,不符合条件;(步骤12) ②当1p >时,依题意只须()111ppxx ->-在()0,1x ∈时恒成立,也即()11pppx x+-<在()0,1x ∈时恒成立,(步骤13)设()()1pppx x x ϕ=+-,[]0,1x ∈,则()11()1p p px p x x ϕ--⎡⎤'=--⎢⎥⎣⎦,(步骤14)由()0x ϕ'=可得12x =,且当10,2x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'<;当1,12x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'>, (步骤15) 又(0)(1)1ϕϕ==,∴当()0,1x ∈时,()1x ϕ<恒成立.(步骤16)综上:p 的取值范围为()1,+∞.(步骤17)。

“三新”背景下高三数学二轮备考复习策略——2024高考培训心得

“三新”背景下高三数学二轮备考复习策略——2024高考培训心得

“三新”背景下高三数学二轮备考复习策略——2024年3月10日兰州高考研讨会培训总结为了更好赋能2024年新高考,适应新的高考评价要求,精准把握高考命题趋势和方向,提高备考工作的针对性、有效性和科学性,3月10日,我有幸参加了县教育局组织的全省2024年新高考备考研讨会,受益良多,下面结合本次培训浅谈自己的一点备考想法。

一、基于九省联考试题变化对今年数学高考的展望1.引导考生“多想少算”,有利于考查理性思维和核心素养的水平,符合国家对高考改革的要求。

在《深化新时代教育评价改革总体方案》中,对高考的命题改革有明确的要求:改变相对固化的试题形式,增强试题开放性,减少死记硬背和“机械刷题”现象。

这次题数的减少和分数的调整就是一个实实在在落实这个方案的科学举措,与新高考改革的方向是一致的。

《普通高中数学课程标准》指出,数学学科的核心素养是具有数学基本特征的思维品质和关键能力。

在高考命题中,要合理设置题量,给学生充足的思考时间;逐步减少选择题、填空题的题量;适度增加试题的思维量。

在命题中应特别关注数学学习过程中思维品质的形成,关注学生会学数学的能力。

因此,在考试时间不变的情况下,减少试题数量是加强思维考查的必然手段。

基于《中国高考评价体系》,数学高考考查考生理性思维、数学应用、数学探索、数学文化4类学科素养,以及逻辑思维能力、运算求解能力、空间想象能力、数学建模能力、创新能力5种关键能力。

人们通常把数学知识当作数学, 其实是一种误解,学习数学不是以懂多少数学公式为目标,而是要锻炼解决问题的过程中所用到的思维方法,也就是数学思维。

有数学思维的人,不仅做事有条理,而且擅长独立思考,更能多角度开辟思维点,进行逆向思考。

这正是未来培养高科技人才的需要。

数学作为基础学科,为服务国家战略发展,就是要通过高考把真正的创新型人才给筛选出来。

另一方面学习数学的真正目的也是培养一种思维习惯,无论人们日后从事何种行业,这些思维习惯都能让他们受益。

2013江西高考数学试卷评析及备考建议宜春中学杨文涛

2013江西高考数学试卷评析及备考建议宜春中学杨文涛

2013江西高考数学试卷评析及备考建议杨文涛2013年的江西高考数学试卷难度不大,但要拿高分也不容易。

2013年的江西高考数学试卷,遵循《普通高中数学新课程标准(实验)》和《2013年江西省普通高考数学科考试说明》的各项要求。

重点考查高中数学的主体内容,主干知识,适当考查新课标的新增内容,体现了新课程改革的理念。

试卷在考查基础知识、基本技能和基本思想的基础上,突出了对考生空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识的考查。

和2012年高考比较,文理科试卷整体难度都略高于去年,命题上沿袭了去年的风格,如理科小题依旧考了集合、函数的定义域、推理与证明、统计、函数图像、程序框图、数列、圆锥曲线、极坐标与参数方程、不等式等内容;文科小题依然考了复数、集合、三角函数、推理与证明、统计、三视图、圆锥曲线、数列、程序框图、不等式等内容。

概率的大题依然和去年一样与几何相结合。

试卷总体上稳中有变,注重双基,尤其是文理科的第3题,都是来源于课本的数列练习题和二倍角公式运用。

选择题最后一题依然是江西特色的传统题:即函数图像题,但今年难度略低。

文理科大题的技巧和计算量均有一定增加,理科17题数列的裂项相消学生较难看出,文理科第20题方法简单但计算量都比较大。

最后一题难度和计算量都较大。

对支撑高中数学学科的主干知识模块,如三角、数列、概率及统计、函数及导数、立体几何、解析几何等继续进行了重点考查;对新增内容继续进行了部分考查,难度适中,体现命题专家坚定推行新课程改革的决心及勇气,也充分遵循了《考试说明》中“难度适中”的命题原则。

试题很好地照顾了不同层次的考生对基本概念、公式、定理等掌握的情况。

试卷整体具有较高的信度、效度和区分度,达到了考基础、考能力、考素质、考潜能的目标。

有利于为高校选拔人才,使学生进入大学后更快地与大学接轨;有利于中学教学实际,更好地指导中学数学教学;有利于新课标的改革,更好地向新课标过渡;有利于提高各类学生对数学学习的兴趣和学习能力。

2013年江西省高考数学试卷(文科)及解析

2013年江西省高考数学试卷(文科)及解析

2013年江西省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、(5分)复数z=i(﹣2﹣i)(i为虚数单位)在复平面内所对应的点在()A、第一象限B、第二象限C、第三象限D、第四象限2、(5分)若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a=()A、4B、2C、0D、0或43、(5分)若sin=,则cosα=()A、﹣B、﹣C、D、4、(5分)集合A={2,3},B={1,2,3},从A,B中各取任意一个数,则这两数之和等于4的概率是()A、B、C、D、5、(5分)总体由编号为01,02,…,19,20的20个个体组成、利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()78166572080263140702436997280198 32049234493582003623486969387481A、08B、07C、02D、016、(5分)下列选项中,使不等式x<<x2成立的x的取值范围是()A、(﹣∞,﹣1)B、(﹣1,0)C、(0,1)D、(1,+∞)7、(5分)阅读如图所示的程序框图,如果输出i=4,那么空白的判断框中应填入的条件是()A、S<8B、S<9C、S<10D、S<118、(5分)一几何体的三视图如图所示,则该几何体的体积为()A、200+9πB、200+18πC、140+9πD、140+18π9、(5分)已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C 相交于点M,与其准线相交于点N,则|FM|:|MN|=()A、2:B、1:2C、1:D、1:310、(5分)如图、已知l1⊥l2,圆心在l1上、半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()A、B、C、D、二、填空题:本大题共5小题,每小题5分,共25分、11、(5分)若曲线y=x a+1(a∈R)在点(1,2)处的切线经过坐标原点,则a=、12、(5分)某班植树小组今年春天计划植树不少于100棵,若第一天植树2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于、13、(5分)设f(x)=sin3x+cos3x,若对任意实数x都有|f(x)|≤a,则实数a的取值范围是、14、(5分)若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是、15、(5分)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为、三、解答题:本大题共6小题,共75分、解答应写出文字说明,证明过程或演算步骤、16、(12分)正项数列{a n}满足:a n2﹣(2n﹣1)a n﹣2n=0、(1)求数列{a n}的通项公式a n;(2)令b n=,求数列{b n}的前n项和T n、17、(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1、(1)求证:a,b,c成等差数列;(2)若C=,求的值、18、(12分)小波已游戏方式决定是去打球、唱歌还是去下棋、游戏规则为以O 为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋(1)写出数量积X的所有可能取值(2)分别求小波去下棋的概率和不去唱歌的概率、19、(12分)如图,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=,AA1=3,E为CD上一点,DE=1,EC=3(1)证明:BE⊥平面BB1C1C;(2)求点B1到平面EA1C1的距离、20、(13分)椭圆C:=1(a>b>0)的离心率,a+b=3、(1)求椭圆C的方程;(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m﹣k为定值、21、(14分)设函数常数且a∈(0,1)、(1)当a=时,求f(f());(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点,试确定函数有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为s(a),求s(a)在区间[,]上的最大值和最小值、2013年江西省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、(5分)复数z=i(﹣2﹣i)(i为虚数单位)在复平面内所对应的点在()A、第一象限B、第二象限C、第三象限D、第四象限分析:化简可得复数z=i(﹣2﹣i)=﹣2i﹣i2=1﹣2i,由复数的几何意义可得答案、解答:解:化简可得复数z=i(﹣2﹣i)=﹣2i﹣i2=1﹣2i,故复数在复平面内所对应的点的坐标为(1,﹣2)在第四象限,故选:D、点评:本题考查复数的代数表示法及其几何意义,属基础题、2、(5分)若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a=()A、4B、2C、0D、0或4分析:当a为零时,方程不成立,不符合题意,当a不等于零时,方程是一元二次方程只需判别式为零即可、解答:解:当a=0时,方程为1=0不成立,不满足条件当a≠0时,△=a2﹣4a=0,解得a=4故选:A、点评:本题主要考查了元素与集合关系的判定,以及根的个数与判别式的关系,属于基础题、3、(5分)若sin=,则cosα=()A、﹣B、﹣C、D、分析:由二倍角的余弦公式可得cosα=1﹣2sin2,代入已知化简即可、解答:解:由二倍角的余弦公式可得cosa=1﹣2sin2=1﹣2×=1﹣=故选:C、点评:本题考查二倍角的余弦公式,把α看做的二倍角是解决问题的关键,属基础题、4、(5分)集合A={2,3},B={1,2,3},从A,B中各取任意一个数,则这两数之和等于4的概率是()A、B、C、D、分析:由分步计数原理可得总的方法种数为2×3=6,由列举法可得符合条件的有2种,由古典概型的概率公式可得答案、解答:解:从A,B中各取任意一个数共有2×3=6种分法,而两数之和为4的有:(2,2),(3,1)两种方法,故所求的概率为:=、故选:C、点评:本题考查古典概型及其概率公式,属基础题、5、(5分)总体由编号为01,02,…,19,20的20个个体组成、利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()78166572080263140702436997280198 32049234493582003623486969387481 A、08 B、07 C、02 D、01分析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字开始向右读,依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,其中08,02,14,07,01符合条件,故可得结论、解答:解:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为:08,02,14,07,01,故第5个数为01、故选:D、点评:本题主要考查简单随机抽样、在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的、6、(5分)下列选项中,使不等式x<<x2成立的x的取值范围是()A、(﹣∞,﹣1)B、(﹣1,0)C、(0,1)D、(1,+∞)分析:通过x=,,2验证不等式是否成立,排除选项B、C、D、即可得到正确选项、解答:解:利用特殊值排除选项,不妨令x=时,代入x<<x2,得到<,显然不成立,选项B不正确;当x=时,代入x<<x2,得到,显然不正确,排除C;当x=2时,代入x<<x2,得到,显然不正确,排除D、故选:A、点评:本题考查分式不等式的解法,由于本题是选择题,利用特殊值验证法是快速解答选择题的一种技巧、当然可以直接解答,过程比较复杂、7、(5分)阅读如图所示的程序框图,如果输出i=4,那么空白的判断框中应填入的条件是()A、S<8B、S<9C、S<10D、S<11分析:由框图给出的赋值,先执行一次运算i=i+1,然后判断得到的i的奇偶性,是奇数执行S=2*i+2,是偶数执行S=2*i+1,然后判断S的值是否满足判断框中的条件,满足继续从i=i+1执行,不满足跳出循环,输出i的值、解答:解:框图首先给变量S和i赋值S=0,i=1,执行i=1+1=2,判断2是奇数不成立,执行S=2×2+1=5;判断框内条件成立,执行i=2+1=3,判断3是奇数成立,执行S=2×3+2=8;判断框内条件成立,执行i=3+1=4,判断4是奇数不成立,执行S=2×4+1=9;此时在判断时判断框中的条件应该不成立,输出i=4、而此时的S的值是9,故判断框中的条件应S<9、若是S<8,输出的i值等于3,与题意不符、故选:B、点评:本题考查了程序框图,考查了循环结构,内含条件结构,整体属于当型循环,解答此题的关键是思路清晰,分清路径,属基础题、8、(5分)一几何体的三视图如图所示,则该几何体的体积为()A、200+9πB、200+18πC、140+9πD、140+18π分析:根据题意,该几何体是下部是长方体、上部是半圆柱所组成、根据所给出的数据可求出体积、解答:解:根据图中三视图可得出其体积=长方体的体积与半圆柱体积的和长方体的三度为:10、4、5;圆柱的底面半径为3,高为2,所以几何体的体积=10×4×5+32π×2=200+9π、故选:A、点评:本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽、9、(5分)已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C 相交于点M,与其准线相交于点N,则|FM|:|MN|=()A、2:B、1:2C、1:D、1:3分析:求出抛物线C的焦点F的坐标,从而得到AF的斜率k=﹣、过M作MP ⊥l于P,根据抛物线物定义得|FM|=|PM|、Rt△MPN中,根据tan∠MNP=,从而得到|PN|=2|PM|,进而算出|MN|=|PM|,由此即可得到|FM|:|MN|的值、解答:解:∵抛物线C:x2=4y的焦点为F(0,1),点A坐标为(2,0)∴抛物线的准线方程为l:y=﹣1,直线AF的斜率为k==﹣,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|∵Rt△MPN中,tan∠MNP=﹣k=,∴=,可得|PN|=2|PM|,得|MN|==|PM|因此,,可得|FM|:|MN|=|PM|:|MN|=1:故选:C、点评:本题给出抛物线方程和射线FA,求线段的比值、着重考查了直线的斜率、抛物线的定义、标准方程和简单几何性质等知识,属于基础题、10、(5分)如图、已知l1⊥l2,圆心在l1上、半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()A、B、C、D、分析:通过t的增加,排除选项A、D,利用x的增加的变化率,说明余弦函数的变化率,得到选项即可、解答:解:因为当t=0时,x=0,对应y=1,所以选项A,D不合题意,当t由0增加时,x的变化率由大变小,又y=cosx是减函数,所以函数y=f(t)的图象变化先快后慢,所以选项B满足题意,C正好相反、故选:B、点评:本题考查函数图象的变换快慢,考查学生理解题意以及视图能力、二、填空题:本大题共5小题,每小题5分,共25分、11、(5分)若曲线y=x a+1(a∈R)在点(1,2)处的切线经过坐标原点,则a=2、分析:求出函数的导函数,求出x=1时的导数值,写出曲线y=x a+1(a∈R)在点(1,2)处的切线方程,把原点坐标代入即可解得α的值、解答:解:由y=x a+1,得y′=ax a﹣1、所以y′|x=1=a,则曲线y=x a+1(α∈R)在点(1,2)处的切线方程为:y﹣2=a(x﹣1),即y=ax﹣a+2、把(0,0)代入切线方程得,a=2、故答案为:2、点评:本题考查了利用导数研究曲线上某点处的导数,考查了直线方程点斜式,是基础题、12、(5分)某班植树小组今年春天计划植树不少于100棵,若第一天植树2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于6、分析:由题意可得,第n天种树的棵数a n是以2为首项,以2为公比的等比数列,根据等比数列的求和公式求出n天中种树的棵数满足s n≥100,解不等式可求解答:解:由题意可得,第n天种树的棵数a n是以2为首项,以2为公比的等比数列s n==2n+1﹣2≥100∴2n+1≥102∵n∈N*∴n+1≥7∴n≥6,即n的最小值为6故答案为:6点评:本题主要考查了等比数列的求和公式在实际问题中的应用,解题的关键是等比数列模型的确定13、(5分)设f(x)=sin3x+cos3x,若对任意实数x都有|f(x)|≤a,则实数a的取值范围是a≥2、分析:构造函数F(x)=|f(x)|=|sin3x+cos3x|,利用正弦函数的特点求出F (x)max,从而可得答案、解答:解:∵不等式|f(x)|≤a对任意实数x恒成立,令F(x)=|f(x)|=|sin3x+cos3x|,则a≥F(x)max、∵f(x)=sin3x+cos3x=2sin(3x+)∴﹣2≤f(x)≤2∴0≤F(x)≤2F(x)max=2∴a≥2、即实数a的取值范围是a≥2故答案为:a≥2、点评:本题考查两角和与差公式及构造函数的思想,考查恒成立问题,属于中档题、14、(5分)若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是、分析:设出圆的圆心坐标与半径,利用已知条件列出方程组,求出圆的圆心坐标与半径,即可得到圆的方程、解答:解:设圆的圆心坐标(a,b),半径为r,因为圆C经过坐标原点和点(4,0),且与直线y=1相切,所以,解得,所求圆的方程为:、故答案为:、点评:本题考查圆的标准方程的求法,列出方程组是解题的关键,考查计算能力、15、(5分)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为4、分析:判断EF与正方体表面的关系,即可推出正方体的六个面所在的平面与直线EF相交的平面个数即可、解答:解:由题意可知直线EF与正方体的左右两个侧面平行,与正方体的上下底面相交,前后侧面相交,所以直线EF与正方体的六个面所在的平面相交的平面个数为4、故答案为:4、点评:本题考查直线与平面的位置关系,基本知识的应用,考查空间想象能力、三、解答题:本大题共6小题,共75分、解答应写出文字说明,证明过程或演算步骤、16、(12分)正项数列{a n}满足:a n2﹣(2n﹣1)a n﹣2n=0、(1)求数列{a n}的通项公式a n;(2)令b n=,求数列{b n}的前n项和T n、分析:(1)通过分解因式,利用正项数列{a n},直接求数列{a n}的通项公式a n;(2)利用数列的通项公式化简b n=,利用裂项法直接求数列{b n}的前n 项和T n、解答:解:(1)由正项数列{a n}满足:﹣(2n﹣1)a n﹣2n=0,可得(a n﹣2n)(a n+1)=0所以a n=2n、(2)因为a n=2n,b n=,所以b n===,T n===、数列{b n}的前n项和T n为、点评:本题考查数列的通项公式的求法,裂项法求解数列的和的基本方法,考查计算能力、17、(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1、(1)求证:a,b,c成等差数列;(2)若C=,求的值、分析:(1)由条件利用二倍角公式可得sinAsinB+sinBsinC=2 sin2B,再由正弦定理可得ab+bc=2b2,即a+c=2b,由此可得a,b,c成等差数列、(2)若C=,由(1)可得c=2b﹣a,由余弦定理可得(2b﹣a)2=a2+b2﹣2ab•cosC,化简可得5ab=3b2,由此可得的值、解答:解:(1)在△ABC中,角A,B,C的对边分别为a,b,c,∵已知sinAsinB+sinBsinC+cos2B=1,∴sinAsinB+sinBsinC=2 sin2B、再由正弦定理可得ab+bc=2b2,即a+c=2b,故a,b,c成等差数列、(2)若C=,由(1)可得c=2b﹣a,由余弦定理可得(2b﹣a)2=a2+b2﹣2ab•cos C=a2+b2+ab、化简可得5ab=3b2,∴=、点评:本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题、18、(12分)小波已游戏方式决定是去打球、唱歌还是去下棋、游戏规则为以O 为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋(1)写出数量积X的所有可能取值(2)分别求小波去下棋的概率和不去唱歌的概率、分析:(1)由题意可得:X的所有可能取值为:﹣2,﹣1,0,1,(2)列举分别可得数量积为﹣2,﹣1,0,1时的情形种数,由古典概型的概率公式可得答案、解答:解:(1)由题意可得:X的所有可能取值为:﹣2,﹣1,0,1,(2)数量积为﹣2的有,共1种,数量积为﹣1的有,,,,,共6种,数量积为0的有,,,共4种,数量积为1的有,,,共4种,故所有的可能共15种,所以小波去下棋的概率P1=,去唱歌的概率P2=,故不去唱歌的概率为:P=1﹣P2=1﹣=点评:本题考查古典概型及其概率公式,涉及平面向量的数量积的运算,属中档题、19、(12分)如图,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=,AA1=3,E为CD上一点,DE=1,EC=3(1)证明:BE⊥平面BB1C1C;(2)求点B1到平面EA1C1的距离、分析:(1)过点B作BF⊥CD于F点,算出BF、EF、FC的长,从而在△BCE中算出BE、BC、CE的长,由勾股定理的逆定理得BE⊥BC,结合BE⊥BB1利用线面垂直的判定定理,可证出BE⊥平面BB1C1C;(2)根据AA1⊥平面A1B1C1,算出三棱锥E﹣A1B1C1的体积V=、根据线面垂直的性质和勾股定理,算出A1C1=EC1=3、A1E=2,从而得到等腰△A1EC1的面积=3,设B 1到平面EA1C1的距离为d,可得三棱锥B1﹣A1C1E的体积V=××d=d,从而得到=d,由此即可解出点B 1到平面EA1C1的距离、解答:解:(1)过点B作BF⊥CD于F点,则:BF=AD=,EF=AB=DE=1,FC=EC﹣EF=3﹣1=2在Rt△BEF中,BE==;在Rt△BCF中,BC==因此,△BCE中可得BE2+BC2=9=CE2∴∠CBE=90°,可得BE⊥BC,∵BB1⊥平面ABCD,BE⊂平面ABCD,∴BE⊥BB1,又∵BC、BB1是平面BB1C1C内的相交直线,∴BE⊥平面BB1C1C;(2)∵AA1⊥平面A1B1C1,得AA1是三棱锥E﹣A1B1C1的高线∴三棱锥E﹣A 1B1C1的体积V=×AA1×=在Rt△A1D1C1中,A1C1==3同理可得EC1==3,A1E==2∴等腰△A1EC1的底边A1C1上的中线等于=,可得=×2×=3设点B 1到平面EA1C1的距离为d,则三棱锥B1﹣A1C1E的体积为V=××d=d,可得=d,解之得d=即点B1到平面EA1C1的距离为、点评:本题在直四棱柱中求证线面垂直,并求点到平面的距离、着重考查了线面垂直的判定与性质、勾股定理与其逆定理和利用等积转换的方法求点到平面的距离等知识,属于中档题、20、(13分)椭圆C:=1(a>b>0)的离心率,a+b=3、(1)求椭圆C的方程;(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m﹣k为定值、分析:(1)由题目给出的离心率及a+b=3,结合条件a2=b2+c2列式求出a,b,则椭圆方程可求;(2)设出直线方程,和椭圆方程联立后解出P点坐标,两直线方程联立解出M 点坐标,由D,P,N三点共线解出N点坐标,由两点求斜率得到MN的斜率m,代入2m﹣k化简整理即可得到2m﹣k为定值、解答:(1)解:因为,所以,即a2=4b2,a=2b、又a+b=3,得a=2,b=1、所以椭圆C的方程为;(2)证明:因为B(2,0),P不为椭圆顶点,则可设直线BP的方程为、联立,得(4k2+1)x2﹣16k2x+16k2﹣4=0、所以,、则、所以P()、又直线AD的方程为、联立,解得M()、由三点D(0,1),P(),N(x,0)共线,得,所以N()、所以MN的斜率为=、则、所以2m﹣k为定值、点评:本题考查了椭圆的标准方程,考查了直线与圆锥曲线的关系,训练了二次方程中根与系数关系,考查了由两点求斜率的公式,是中高档题、21、(14分)设函数常数且a∈(0,1)、(1)当a=时,求f(f());(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点,试确定函数有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为s(a),求s(a)在区间[,]上的最大值和最小值、分析:(1)当a=时,根据所给的函数解析式直接求值即可得出答案;(2)根据二阶周期点的定义,分段进行求解,找出符号定义的根即为所求;(3)由题意,先表示出s(a)的表达式,再借助导数工具研究s(a)在区间[,]上的单调性,确定出最值,即可求解出最值、解答:解:(1)当a=时,求f ()=,故f (f ())=f ()=2(1﹣)=(2)f (f (x ))=当0≤x ≤a 2时,由=x ,解得x=0,因为f (0)=0,故x=0不是函数的二阶周期点;当a 2<x ≤a 时,由=x ,解得x=因为f ()==≠,故x=是函数的二阶周期点;当a <x ≤a 2﹣a +1时,由=x ,解得x=∈(a ,a 2﹣a +1),因为f()=,故得x=不是函数的二阶周期点;当a 2﹣a +1<x ≤1时,由,解得x=∈(a 2﹣a +1,1),因为f ()=≠,故x=是函数的二阶周期点;因此函数有两个二阶周期点,x 1=,x 2=(3)由(2)得A (,),B (,)则s (a )=S △OCB ﹣S △OCA =×,所以s′(a )=×, 因为a ∈(),有a 2+a <1,所以s′(a )=×=>0(或令g (a )=a 3﹣2a 2﹣2a +2利用导数证明其符号为正亦可) s (a )在区间[,]上是增函数,故s(a)在区间[,]上的最小值为s ()=,最大值为s ()=点评:本题考查求函数的值,新定义的理解,利用导数求函数在闭区间上的最值,第二题解答的关键是理解定义,第三题的关键是熟练掌握导数工具判断函数的单调性,本题考查了方程的思想,转化化归的思想及符号运算的能力,难度较大,综合性强,解答时要严谨认真方可避免会而作不对现象的出现、21/ 21。

2012年高考数学分值及分析

2012年高考数学分值及分析

数学Ⅰ(必做题)一、填空题:(共14小题,每小题5分,共计70分)二、解答题:15.(本小题满分14分)16.(本小题满分14分)17.(本小题满分14分)18.(本小题满分16分)19.(本小题16分)20.(本小题满分16分)数学Ⅱ(附加题)21.【选做题】:A.[选修4-1:几何证明选讲](本小题满分10分)B.[选修4-2:矩阵与变换](本小题满分10分)C.[选修4-4:坐标系与参数方程] (本小题满分10分)D.[选修4-5:不等式选讲] (本小题满分10分)【必做题】第22题、第23题,每题10分,共计20分22. (本小题满分10分)23. (本小题满分10分)2012年江苏高考数学试卷分析一、试卷整体评价2012年江苏高考数学试卷整体难度较去年有所上升,试卷中的基础题所涉及的知识面有所增加,中难题要求的数学运算能力有所加强。

整份试卷的区分度较好,能较好的测试出学生的水平和能力。

从下表的最近5年江苏高考数学均分统计数据也可以看出,今年江苏高考试卷难度较去年有所提高,去前年基本持平。

年份2008年2009年2010年2011年2012年89/160 98/160 83.5/160 90/160 82/160平均分值(不含附加题)二、2012年江苏高考数学试卷分析(1) 近几年主要知识点考查情况比较2008年2009年2010年2011年2012年分数比重分数比重分数比重分数比重分数比重集合 5 2.70% 5 2.70% 5 2.70% 10 6% 5 2.9% 函数40 22% 31 17% 31 17% 50 28% 45 26.5% 三角函数19 11% 19 11% 34 19% 24 13.30% 19 11.2% 平面向量10 6% 5 2.70% 14 7.77% 5 2.70% 5 2.9% 数列21 12% 29 16.10% 21 12% 21 12% 21 12.4% 不等式 5 2.70% 16 8.88% 5 2.70% 0 0% 10 5.9% 立体几何24 13% 24 13.30% 14 7.77% 24 13% 19 11.2% 解析几何26 14.40% 31 17.00% 26 14.40% 16 8.88% 31 18.2% 概率10 6% 10 6% 20 11.10% 10 6% 15 8.8%计数原理20 11.10% 10 6% 10 6% 20 11.10% 0 0.0% 总计180 180 180 180 170从以上统计数据可以看出:最近几年各重点知识模块的考查在高考试卷中所占的比例基本不变,只有2012年有所下降,这说明今年的高考试题考查的知识面更宽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2005 理)7.已知函数 y xf ( x) 的图像如右图所示(其中 f ( x ) 是函数 f ( x ) 的导函数) ,下面四个图象中 y f (x) 的图象大致是
(2006 理)12.某地一年的气温 Q(t ) (单位: c )与时间 t (月份) 之间的关系如图(1)所示,已知该年的平均气温为 10 c , 令 G (t ) 表示时间段 0,t 的平均气温, G (t ) 与 t 之间 的函数关系用下列图象表示,则正确的应该是
理解 (1)掌握 (2)理解 (3)理解 (1)了解 (2)理解 (3)理解 (4)理解 (5)理解 (6)理解 (1)理解 (2)理解 (3)掌握 (4)掌握 (5)理解 (6)理解 (1)了解 (2)掌握 (3)掌握 (4)理解 (5)理解 (1)理解 (2)理解 (3)了解
17
18
19
20
21
B. h1 h2 h3
C. h3 h2 h4
D. h2 h4 h1
(2008 理)6.函数 y tan x sin x tan x sin x 在区间 ( ,
3 ) 内的图象是 2 2
y
y
y
y

2

3 2
2

3 2
2 -

2
2 -

2
o 2 -
3.突出数学理性思维,努力倡导通性通法
试卷突出了方程、不等式、向量 等工具知识的作用与能力要求,较全 面地体现了配方、消元、分离变量、 补形、转化等数学方法和方程思想、 函数思想、数形结合思想、分类思想 等数学思想.
4.合理考查新增内容,保持江西试卷特色
对于新教材的选修选考内容的选做题(理 科第15题)难度不大,对中学的新课程教学 起到了导向作用.关注新增知识块的考查,如 理科的第11、14、15题和文科的第1、7、15、 题,而且这些试题没有太大的难度,这对于 稳定和深化新课程改革,有积极的作用. 函数图形题是多年来江西卷一大 亮丽特色,例:文、理科第10题,增强了对 学生分析能力、创新能力的考查,体现了 “考试说明”中指出的“立意鲜明,背景新 颖,设问灵活,层次清晰”的要求.
(1)了解 (2)了解 (1)理解 (2)了解 (3)理解 (1)了解 (2)理解 (3)掌握 理解 理解 理解
15 利用绝对值的几何意义求解简单绝对值不等式 (2)
16
(1)数列的概念和几种简单的表示方法(列表、图像、通项公式) ★(2)数列求和(错位相减法) (1)正弦定理、余弦定理; (2)用正弦定理、余弦定理解决一些简单的三角形度量问题; (3)运用两角和差的正弦、余弦进行简单的恒等变换; (1)棱锥的体积; (2)排列、组合的概念; (3)利用计数原理推导排列数公式、组合数公式解决简单的实际问题; (4)古典概型及其概率计算公式; (5)计算一些随机事件所含的基本事件数及事件发生的概率; (6)离散型随机变量及其分布列的概念; ★(7)随机变量的期望 (1)空间中线面平行、垂直的有关性质与判断定理; (2)平面的法向量; (3)空间向量的线性运算及其坐标表示; (4)空间向量的数量积及其坐标表示; (5)运用向量的数量积判断向量的共线与垂直; (6)用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题 (1)方程的曲线与曲线的方程的对应关系; (2)两点的直线斜率公式; (3)直线方程的几种形式; (4)导数的几何意义; (5)根据公式求函数的导数 (1)函数的单调性; (2)根据公式求函数的导数; (3)求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)
二、试卷基本特点
1.全面考查基础知识,题型维持相对稳定
试卷题量、结构与2011年一样在大纲卷 基础上作了适当的微调,试卷基本涵盖了 《考试说明》的主要内容.
表1:理科考点及考查层次
题号 考点 1 集合的含义 (1)简单函数的定义域和值域; (2)指数函数的概念; 2 (3)对数函数的概念 (4)正弦函数、余弦函数的性质 3 简单的分段函数 (1)同角三角函数的基本关系; 4 (2)三角恒等变换 (1)命题的概念; 5 (2)复数的基本概念; (3)与二项展开式有关的简单问题 6 数列的概念 (1)平面向量的概念; 7 (2)向量的几何表示 (1)二元一次不等式组的几何意义; (2)用平面区域表示二元一次不等式组; 8 (3)从实际情境中抽象出一些简单的二元线性规划问题; (4)并能解决上述问题 (1)取有限个值的离散型随机变量均值的概念; 9 (2)计算简单离散型随机变量的均值 (1)棱锥的体积; 10 (2)简单的分段函数; (3)运用函数图像理解和研究函数的性质 考查层次 了解 (1)了解 (2)理解 (3)理解 (4)理解 了解 (1)理解 (2)理解 (1)理解 (2)理解 (3)理解 了解 (1)理解 (2)理解 (1)了解 (2)理解 (3)了解 (4)理解 (1)理解 (2)理解 (1)了解 (2)了解 (3)理解
平均分 18.15 理科 难度值 0.73 平均分 9.97 文科 难度值 0.4
表4:江西省历年自主命题难度表 年份 2005 2006 2007 2008 2009 2010 2011 2012 文科 平均分 58.13 65.6 73.58 62.98 63.1 77.43 69.14 68.69 难度系数 0.39 0.44 0.49 0.42 0.42 0.52 0.46 0.45 平均分 76.42 69.22 89.24 69.37 69.01 81.99 72.16 84.08 理科 难度系数 0.51 0.46 0.59 0.46 0.46 0.55 0.48 0.56


(2007 理)8.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度 相等、 杯口半径相等的圆口酒杯, 如图所示, 盛满酒后他们约定: 先各自饮杯中酒的一半. 设 剩余酒的高度从左到右依次为 h1 , h2 , h3 , h4 ,则它们的大小关系正确的是
A. h2 h1 h4
江西省2012年高考数学试题评 价与2013届高三复习备考建议
赣州市教科所、教研室 袁明生 ndyms@
一、试卷总体评价
2012年江西省是实行新课标高考的 第二年,数学试题基本按照《考试说明》 要求命题,遵循“考查基础知识的同时, 注重考查能力”的命题原则,突出体现 新课标理念.在降低难度的同时宽视角、 有层次考查了考生的数学素养和学习潜 能.有利于中学数学教学和课程改革,有 利于高校选拔有学习潜能的新生.
表3: 类别 指标 填空题 16题 17题 18题 19题 20题 21题 合计 总计 (25分) (12分) (12分) (12分) (12分) (13分) (14分) (100分) 6.76 0.56 5.46 0.46 6.5 0.54 3.54 0.3 7.13 0.59 5.45 0.45 3.25 0.27 4.96 0.41 3.05 0.23 1.57 0.12 1.29 0.09 1.35 0.1 32.3 46.13 84.08 0.56 68.69 0.46
x
o

A

o 2 -
x

3 2
x o

B
3 2
x
C
D
(2009 理)11.一个平面封闭区域内任意两点距离的最大值称为该区域的“直径” ,封闭区 域边界曲线的长度与区域直径之比称为区域的“周率” ,下面四个平面区域(阴影部分)的 周率从左到右依次记为 1 , 2 , 3 , 4 ,则下列关系中正确的为
表2:文科考点及考查层次
题号 1 (1)复数的基本概念; (2)复数代数形式的四则运算 (1)集合的含义; 2 3 4 5 6 7 (2)给定集合中一个子集的补集的含义; (3)求给定子集的补集 简单的分段函数 (1)同角三角函数的基本关系; (2)三角恒等变换 数列的概念 ★读图、设图能力 (1)识别三视图所表示的简单立体模型; (2)棱柱的体积计算 (1)在具体的问题情境中识别数列的等比关系; 8 (2)并能用有关知识解决相应问题; (3)椭圆的定义、图形、标准方程及简单性质 9 10 (1)三角恒等变换; (2)函数奇偶性的含义 (1)会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数; ★(2)扇形面积公式 (1)了解 (2)了解 (1)了解 (2)理解 (3)掌握 (1)理解 (2)了解 (1)了解 考点 考查层次 (1)理解 (2)了解 (1)了解 (2)理解 (3)了解 了解 (1)理解 (2)理解 了解
10000
15000
20000
25000
5000
0
0~ 10 ~ 20 ~ 30 ~ 40 ~ 50 ~ 60 ~ 70 ~ 80 ~ 10 99 0~ 1 11 09 0~ 1 12 19 0~ 1 13 29 0~ 1 14 39 0~ 15 0 90 ~ 89 79 69 59 49 39握 理解 (1)理解 (2)理解 (1)理解 (2)了解 (1)了解 (2)掌握 (3)掌握 (4)理解 (5)理解 (1)理解 (2)理解 (3)了解
2.贴近中学教学实际,注重文理试卷差异
命题注意到文、理科考生在数学学习 上的差异及高校对文、理科考生的不同要 求,对文、理科考生坚持不同的考查标准, 文理科试卷完全相同题只有理科14题与文 科15题、理科第13题与文科第8题、文理科 20题(1),分值16分.而在2005文理科相 同及姊妹题分值接近90分,2007年76分.
11
12
13
14 15 能进行极坐标和直角坐标的互化 (1)
(1)定积分的概念; (2)微积分基本定理得含义 (1)等差数列的概念; (2)在具体的问题情境中识别数列的等差关系; (3)并能用有关知识解决相应问题 (1)在具体的问题情境中识别数列的等比关系; (2)并能用有关知识解决相应问题; (3)椭圆的定义、图形、标准方程及简单性质 算法框图的三种基本逻辑结构:顺序结构、选择结构、循环结构
相关文档
最新文档