反比例函数复习课课件

合集下载

反比例函数-ppt课件

反比例函数-ppt课件

读 范围.
27.1 反比例函数
归纳总结


由于反比例函数表达式中只有一个待定系数 k,因此求

单 反比例函数的表达式只需一组对应值或一个条件即可.


27.1 反比例函数
对点典例剖析


典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4

单 .


(1)求 y 与 x 之间的函数表达式;


题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.


27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型

例 2 某公司将特色农副产品运往邻市市场进行销售,

型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶

破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=


时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=


清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与



读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+


.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与

第26章反比例函数复习与小结ppt课件

第26章反比例函数复习与小结ppt课件

(1)过P作x轴的垂线 , 垂足为 A, 则:
SOAP
1 2
OA
AP
1 2
|
m
|

|
n
|
1 2
|
k
|
y
y
P(m,n)
P(m,n)
o
Ax
oA
x
想一想
若将此题改为过P点 作y轴的垂线段,其结
论成立吗?
y
P(m,n) oA x
y A P(m,n)
o
x
SOAP
1 2
OA
AP
1 2
|
m
|

|
n
|
1 2
p(Pa)
4000
3000
2000
A(0.25,1000)
1000
O 0.1 0.2 0.3 0.4 S(m2)
解:(1)设 p与S之间的函数关系式为p=k/s ∵该函数的图像经过点A(0.25,1000) ∴1000=k/0.25,即k=250 所以p与s之间的函数关系式为p=250/s
(2)把S=0.5代人P=250/S中,得 P=500
2.反比例函数的图象和性质:
(1).反比例函数的图象是双曲线; (2).图象性质见下表:
y= k
K>0
K<0
x
图 象
当k>0时,函数图象 当k<0时,函数图象
的两个分支分别在第 的两个分支分别在第
性 一、三象限,在每个 二、四象限,在每个
质 象限内,y随x的增大 象限内,y随x的增大
而减小.
而增大.
x
足分别为A、B,则
S矩形OAPB
=OA·AP=|m|

《反比例函数》中考总复习_课件

《反比例函数》中考总复习_课件
函数 解析式 图象形状
位置
反比例函数
y k 或y kx 1或xy k (k 0) x
双曲线 双曲线两分支分别在 第一、第三象限
k>0
增减性 在每一个象限内y随x的增大而减小; 位置
k<0
增减性
双曲线两分支分别在 第二、第四象限 在每一个象限内y随x的增大而增大
比一比
函数 表达式 正比例函数 反比例函数
另外:在正比例函数中k的绝对值越大,直线越靠近y轴,远离x轴。在反
比例函数中k的绝对值越大,双曲线越远离两坐标轴。
练习2:
1 1.函数 y 的图象位于第二、四 象限, 2x
在每一象限内,y的值随x的增大而 增大 , 当x>0时,y ﹤ 0,这部分图象位于第 四 象限.
k 2.若点(-m,n)在反比例函数 y x
B
P(m,n) A
o
x
2 1.如图,点P是反比例函数 y 图象上 x 的一点,PD⊥x轴于D.则△POD的面积为
.
练习4:
1
1 1 |k| 2 1 2 2
yHale Waihona Puke k 2 S ΔPODo
P
D x
1 2、如图:A、C是函数 y 的图象上任意两点, x
过A作x轴的垂线, 垂足为B.过C作y轴的垂线, 垂足为D.记RtAOB的面积为S1 , RtOCD的面积为S 2 , 则 ___ C.
A.S = 1 C.S = 2
B.1<S<2 D.S>2
y
解:设P(m,n),则P(-m,-n). AP | 2m|,AP | 2n|; 1 S | AP AP| ΔPAP 2 1 | 2m|| 2n| 2 2|k|

反比例函数应用课件ppt课件

反比例函数应用课件ppt课件
反比例函数应用课 件ppt课件
目录
• 反比例函数的概念 • 反比例函数的应用 • 反比例函数与实际问题 • 反比例函数与其他函数的关系 • 反比例函数的扩展知识 • 复习与练习
01
CATALOGUE
反比例函数的概念
反比例函数的定义
函数表达式:$y = \frac{k}{x}$(其中k为常数,且k≠0) 定义域:x≠0
在储蓄和投资中,反比例函数可以用来描述本金、利率和时间之间的关系。本金 和时间是成正比的,而利息和时间是成反比的。
反比例函数在药物作用时间中的应用
在药物作用时间中,药物浓度和作用时间之间的关系可以用反比例函数表示。当 药物浓度固定时,作用时间和效果成反比。
数学中的应用
反比例函数在解方程中的应用
在解方程中,有些方程可以通过变形转化为反比例函数的形式,从而更容易求 解。
反比例函数在函数图像中的应用
在函数图像中,反比例函数的图像是双曲线,具有渐近线、焦点和离心率等特 性。
03
CATALOGUE
反比例函数与实际问题
金融领域中的应用
01
02
03
投资组合问题
利用反比例函数关系,计 算不同投资项目的组合收 益率,以制定最佳投资策 略。
货币时间价值
通过反比例函数,计算不 同利率和投资期限下的未 来现金流现值,以评估投 资项目的经济价值。
3
复数在反比例函数中的应用
在复平面上,反比例函数可以表示为两个点之间 的距离,这个距离随着k值的增大而减小,当k为 无穷大时,两个点重合。
三角函数与反比例函数
三角函数的定义
01
三角函数包括正弦、余弦、正切等,它们是描述角度和三角形
边长之间关系的数学工具。

反比例函数图象性质及应用复习课件

反比例函数图象性质及应用复习课件

04
反比例函数的实际应用案 例
电流与电阻的关系
总结词
电流与电阻成反比关系,当电阻增大时,电流减小;反之亦然。
详细描述
在电路中,电流与电阻之间的关系表现为反比例关系。当电路中的电压保持恒定时,电阻的阻值增大,会导致电 流减小;反之,如果电阻的阻值减小,电流则会增大。这一关系在电子设备和电路设计中具有重要应用。
答案解析
针对每个练习题,提供 详细的答案解析,帮助 学生理解解题思路和过
程。
感谢您的观看
THANKS
表达式
一般形式为 y = k/x,其中 k 是 常数且 k ≠ 0。
图像特点
双曲线
反比例函数的图像是双曲线,分布在两个象限内。
渐近线
图像分别渐近于 x 轴和 y 轴。
变化趋势
随着 x 的增大或减小,y 的值会无限接近于 0 但永远不会等于 0。
渐近线与对称性
渐近线
对于反比例函数 y = k/x (k > 0),其图像在第一象限和第三象限内,当 x 趋于正无穷 或负无穷时,y 值趋于 0,因此渐近于 x 轴;当 y 趋于正无穷或负无穷时,x 值趋于 0 ,因此渐近于 y 轴。对于 k < 0 的情况,图像在第二象限和第四象限内,渐近线为 y
反比例函数图象性质及 应用复习ppt课件
目录 CONTENT
• 反比例函数的基本性质 • 反比例函数的图像绘制 • 反比例函数的应用场景 • 反比例函数的实际应用案例 • 反比例函数与其他知识点的关联 • 复习与巩固
01
反比例函数的基本性质
定义与表达式
定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 x 是自变量, y 是因变量。

反比例函数复习课课件

反比例函数复习课课件

2023
REPORTING
THANKS
感谢观看
2023
PART 05
反比例函数的易错点与难 点解析
REPORTING
易错点的解析
混淆反比例函数与正比例函数
01
正比例函数是y=kx,而反比例函数是xy=k。学生常常将两者混
淆,导致在解题时出现错误。
忽视反比例函数的定义域
02
反比例函数的定义域是x不为0的实数,学生常常忽视这一点,
导致在解题时出错。
2023
PART 04
反比例函数的综合题解析
REPORTING
反比例函数的综合题解析
01
分析与照顾 into acts' intoic andic. of course, and will,, on the在这
பைடு நூலகம்02
saidcoupled =oman ofic ofic of and ofic and of intoic of and, and other神话 top similar 觉ungais'hipster
描述反比例函数的定义
详细描述
反比例函数是一种数学函数,其定义为 y = k/x,其中 k 是常数且 k ≠ 0。当 x 取任意非零实数时,y 的值都存在。
反比例函数的图像
总结词
描述反比例函数的图像特点
详细描述
反比例函数的图像通常在 x 轴和 y 轴上都有渐近线,即当 x 或 y 趋于无穷大时 ,函数值趋于 0。图像通常位于第一象限和第三象限。
反比例函数的性质
总结词:列举反比例函数 的性质
1. 当 k > 0 时,函数图像 在第一象限和第三象限;
3. 反比例函数是奇函数, 即 f(-x) = -f(x);

反比例函数概念复习课件

反比例函数概念复习课件

A
解:由上述性质(3)可知, S△ABC = 2|k| = 2
x
B
C
6.(武汉 市2000年)
1 如图:A、C是函数 y 的图象上任意两点, x
过 A作x轴 的垂 线 垂足为 过 , B. C作y轴 的垂线 , 垂足为 记 ΔAOB的面积为S1 , D. Rt RtΔOC D的面积为 S2 , 则 C ___.
y
A.S1>S2 B.S1<S2 C.S1 = S2 D.S1和S2的大小关系不能确定.
由上述性质1可知选C
o
S2
S1
A
B
x
C
D
1 8.如图, 在y ( x 0)的图像上有三点 , B, C , A x 经过三点分别向 轴引垂线, 交x轴于A1 , B1 , C1三点, x 边结OA, OB, OC, 记OAA , OBB1 , OCC1的 1
1.若点(-m,n)在反比例函数 y k 的图象上, x 那么下列各点中一定也在此图象上的点是(
C
)
A. (m,n)
C. (m,-n)
B. (-m,-n)
D. (-n,-m)
y 2 2.若反比例函数的图象过点(-1,2),则其解析式为 x .
3.如果反比例函数 y
1 3m x 的图象位于第二、四象限,
则y1与y2的大小关系(从大到小)

y2> y1
.
A B
y
y2 y1
o
-2 -1
x
4.已知点A(-2,y1),B(-1,y2) 1<0<x2 A(x1,y1),B(x2,y2)且x
k4 都在反比例函数 y y x(k<0) 的图象上, x

关于反比例函数的ppt课件

关于反比例函数的ppt课件


鼓励提问
02
鼓励学生提出自己的疑问和不解,可以是对知识点的理解问题
,也可以是相关应用问题。
问题记录
03
老师或助教将学生的问题记录下来,以便在后续环节中进行解
答。
小组讨论环节组织安排
分组方式
根据学生的座位或者自愿组合,将学生分成若干小组,每 组4-6人。
讨论时间
给每个小组分配5-8分钟的讨论时间,要求学生在规定时 间内围绕主题展开讨论。
标轴是反比例函数的渐近线。
对称性
反比例函数图像关于原点对称,即 如果(x,y)在图像上,那么(-x,-y)也 在图像上。
增减性
在第一象限和第三象限内,随着x的 增大,y的值逐渐减小;在第二象限 和第四象限内,随着x的增大,y的 值逐渐增大。
与正比例函数关系
• 正比例函数与反比例函数的关系:正比例函数y=kx和反比例函数y=k/x的图像都经过原点,但它们的图像形状和性质完全 不同。正比例函数的图像是一条过原点的直线,而反比例函数的图像是一条以原点为中心的双曲线。当k>0时,正比例函数 的图像在第一、三象限,而反比例函数的图像也在第一、三象限;当k<0时,正比例函数的图像在第二、四象限,而反比例 函数的图像也在第二、四象限。因此,我们可以通过观察函数的图像来判断它是正比例函数还是反比例函数。
变化。
弹簧振子运动规律
胡克定律
描述弹簧伸长或压缩量与弹力之间的关系,即F=kx,其中 k为弹簧常数,x为伸长或压缩量。当弹力固定时,伸长或 压缩量与弹簧常数成反比。
振动周期与弹簧常数
弹簧振子的振动周期与弹簧常数成反比,可以用反比例函 数来描述这种关系。
能量与振幅
弹簧振子的振动能量与其振幅的平方成正比,而振幅与弹 簧常数成反比,因此能量与弹簧常数之间具有复杂的反比 例关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网站版权所有
例1:(2)公司决定把储存室的底面积S定为500 m2 ,施工 队施工时应该向下掘进多深? 解: (2)把S=500代入
104 500 d
解得: d
10 S d
4
,得:
20
答:如果把储存室的底面积定为500 应向地下掘进20m深.
网站版权所有
(1)用含S的代数式表示P,P是S的反比例函数 吗?若是请画出函数的图象.
(2)当木板面积为0.2 ㎡时,压强 是多少? (3)如果要求压强为6000 Pa , 木板面积要多少?
网站版权所有
例 2: 如果人和木板对湿地地面的压力合计为600
N,随着木板面积S(m2)的变化,人和木板对地 面的压强p(Pa)将如何变化? (1)求p与S的函数关系式, 画出函数的图象.
m ,施工时
2
例 1: (3)当施工队按(2)中的计划掘进到地下15m时,碰上 了坚硬的岩石.为了节约建设资金,储存室的底面积 应改为多少才能满足需要(保留两位小数)? 解:(3)根据题意,把d=15代入 S 10
4
10 s 15
2
4
d
,得:
解得: S≈666.67
答:当储存室的深为15m时,储存室的底面积应改为
人教版 九年义务教育 数学九年级(下)
第二十六章 反比例函 数
网站版权所有
例1:市煤气公司要在地下修建一个容积为104 m3 的 圆柱形煤气储存室. (1)储存室的底面积S(单位: m2 )与其深度d(单位:m) 有 怎样的函数关系? (2)公司决定把储存室的底面积S定为500m2 ,施工队 施工时应该向下掘进多深? (3)当施工队按(2)中的计划掘进到地下15m时,碰上了 坚硬的岩石.为了节约建设资金,储存室的底面积应改 为多少才能满足需要(保留两位小数)?
100 (2) cm , 3
125cm .
(3)如果要求长方形的长为10<y<20时,其宽要多少?
(3)25 x 50
网站版权所有
随堂练习 2
1 3 分析: (1)由V Sd , V 1000cm 得 3000 3 S (d 0) S是d的反比例函数. d (2)30厘米 (3)若漏斗深度为50厘米,则漏斗口面积是60厘米2. 因此漏斗深度不得少于50厘米,则漏斗口的面积不 超过60厘米时才符合规定 . 网站版权所有
如图,某玻璃器皿制造公司要制造一种容积为 1升(1升=1立方分米)的圆锥形漏斗. (1)漏斗口的面积S与漏斗的深d有怎样的函数关系? (2)如果漏斗口的面积为100厘米2,则漏斗的深为多少? (3) 若漏斗深度不得少于 50 厘米 , 则漏斗口的面积不超过 多少时才符合规定?
小结
1、通过本节课的学习,你有哪些收获?
(要注意数形结合)
3.理解你所求出值的实际意义.
网站版权所有
随堂练习 1
(1)已知某长方形的面积为500cm2,写出其长y(cm)与 宽x(cm)之间的函数表达式; 500
(1) y
x
( x 0)
(2)当长方形的长为15cm是,求宽为多少?当矩形的 宽为4cm,其长为多少 ?
666.67 m 才能满足需要.
实际 问题
建立数学模型
网站版权所有 运用数学知识解决
反比例 函数
例 2: 某校科技小组进行野外考察,途中遇到片十几米宽 的烂泥湿地.为了安全、迅速通过这片湿地,他们沿 着前进路线铺垫了若干块木板,构筑成一条临时通道, 从而顺利完成了任务. 如果人和木板对湿地地面的压 力合计为600 N,随着木板面积S(m2)的变化,人和木 板对地面的压强p(Pa)将如何变化?
列实际问题的反比例函数解析式 (1)列实际问题中的函数关系式首先应分析清 楚各变量之间应满足的分式,即实际问题中的变 量之间的关系立反比例函数模型解决实际问题; (2)在实际问题中的函数关系式时,一定要在 关系式后面注明自变量的取值范围。
2、利用反比例函数解决实际问题的关键:
建立反比例函数模型.
网站版权所有
分析: 由F PS , F 600 N 得 600 p ( s 0) s
P是如果人和木板对湿地地面的压力合计为600
N,随着木板面积S(m2)的变化,人和木板对地 面的压强p(Pa)将如何变化? 600 p ( s 0) s (2) 当木板面积为0.2 m2时.压强是多少?
当S=0.2m2时,P=600/0.2=3000(Pa)
(3) 如果要求压强不超过6000Pa,木板面积 至少要多大?
当P≤6000时,S≥600/6000=0.1(m2)
网站版权所有
归纳:
利用反比例函数处理实际问题的步骤:
1.列出反比例函数关系式; (要注意X的取值范围) 2.利用反比例函数关系式确定变量的值;
网站版权所有
例 1: 市煤气公司要在地下修建一个容积为104m3 的 圆柱形煤气储存室. (1)储存室的底面积S(单位: m2)与其深度d(单位:m)有 怎样的函数关系? 解:(1)根据圆柱体的体积公式,我们有
s×d=104
变形得:
10 S d
4
(d 0)
即储存室的底面积S是其深度d的反比例函数.
相关文档
最新文档