【通用版】中考数学专题冲刺训练《第24课时 直角三角形和勾股定理》(解析版)
数学中考全程演练 第24课时 直角三角形和勾股定理

第24课时直角三角形和勾股定理(60分)一、选择题(每题5分,共25分)1.[2016·毕节]下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是 (B)A.3,4, 5 B.1,2, 3C.6,7,8 D.2,3,42.如图24-1,在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是 (A)A.365B.1225C.94D.334【解析】在Rt△ABC中,AC=9,BC=12,根据勾股定理得AB=AC2+BC2=15,过C作CD⊥AB,交AB于点D,又S△ABC=12AC·BC=12AB·CD,∴CD=AC·BCAB=9×1215=365,则点C到AB的距离是365.故选A.图24-1 第2题答图3.[2017·甘孜]如图24-2,点D 在△ABC 的边AC 上,将△ABC 沿BD 翻折后,点A 恰好与点C 重合.若BC =5,CD =3,则BD 的长为(D) A .1 B .2 C .3D .44.将一个有45°角的三角板的直角顶点放在一张宽为 3 cm 的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图24-3,则三角板最长边的长为(D)A .3 cmB .6 cmC .3 2 cmD .62 cm图24-3 第4题答图【解析】 如答图,过点C 作CD ⊥AD 于点D , ∴CD =3.在直角三角形ADC 中, ∵∠CAD =30°, ∴AC =2CD =2×3=6.又∵三角板是有45°角的三角板, ∴AB =AC =6,∴BC 2=AB 2+AC 2=62+62=72,图24-2∴BC =62,故选D.5.直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图24-4那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是(C) A.247B.73C.724D.13图24-4【解析】 在Rt △BCE 中,设CE =x ,则BE =EA =8-x ,根据勾股定理有(8-x )2=x 2+62,解得x =74,∴tan ∠CBE =CE BC =746=724.二、填空题(每题5分,共25分)6.[2016·内江]在△ABC 中,∠B =30°,AB =12,AC =6,则BC =7.[2017·凉山]已知直角三角形两边的长分别是3和4,则第三边的长为__58.将一副三角尺按图24-5所示叠放在一起,若AB =14 cm,则阴影部分的面积是__492__cm2.【解析】∵∠B=30°,∴AC=12AB=7 cm,易证AC=CF,∴S△ACF=12AC·CF=12AC2=12×72=492(cm2).9.[2017·无锡]如图24-6,△ABC中,CD⊥AB于D,E是AC的中点,若AD=6,DE=5,则CD的长等于__8__.【解析】∵△ABC中,CD⊥AB于D,E是AC的中点,DE =5,∴DE=12AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD=AC2-AD2=102-62=8.10.[2016·遵义]我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图24-7①).图24-7②由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若正方形EFGH的边长为2,则S 1+S2+S3=__12__.图24-6图24-7【解析】 ∵八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形, ∴CG =NF ,CF =DG =KF , ∴S 1=(CG +DG )2 =CG 2+DG 2+2CG ·DG =GF 2+2CG ·DG ,S 2=GF 2,S 3=(KF -NF )2=KF 2+NF 2-2NF ·KF =GF 2-2CG ·DG , ∴S 1+S 2+S 3=GF 2+2CG ·DG +GF 2+GF 2- 2CG ·DG =3GF 2=12. 三、解答题(共20分)11.(10分)如图24-8,在Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,CD =5 cm ,求AB 的长.【解析】 要求的AB 在Rt △ABC 中,∠A =30°,故只需求BC 的长,在Rt △BCD 中,DC =5 cm ,∠DBC =12∠ABC =30°,故可求出BD ,BC 的长,从而根据AB =2BC 计算出结果.图24-8解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC,∠ABC=60°.∵BD是∠ABC的平分线,∴∠ABD=∠CBD=30°.∵在Rt△CBD中,CD=5 cm,∴BD=10 cm,∴BC=5 3 cm,∴AB=2BC=10 3 cm.12.(10分)如图24-9,Rt△ABC中,∠C=90°,AD 平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.解:(1)在Rt△ABC中,∠C=90°,∴AC⊥CD.又∵AD平分∠CAB,DE⊥AB,∴DE=CD,又∵CD=3,∴DE=3;(2)在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=AC2+BC2=62+82=10,∴S△ADB=12AB·DE=12×10×3=15.(20分)图24-913.(6分)[2017·荆门]如图24-10,已知圆柱底面的周长为4 dm,圆柱高为2 dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为(A)A.4 2 dm B.2 2 dmC.2 5 dm D.4 5 dm图24-10 第13题答图【解析】如答图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4 dm,圆柱高为2 dm,∴AB=2 dm,BC=BC′=2 dm,∴AC2=22+22=4+4=8,∴AC=22,∴这圈金属丝的周长最小为2AC=4 2 dm.14.(6分)[2016·台州]如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是(A)A.8 cm B.5 2 cmC.5.5 cm D.1 cm【解析】易知最长折痕为矩形对角线的长,根据勾股定理对角线长为62+52=61≈7.8,故折痕长不可能为8 cm.15.(8分)[2016·铜仁]如图24-11,在矩形ABCD中,BC=6,CD=3,将△BCD 沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则线段DE的长为(B)A.3 B.15 4C.5 D.15 2【解析】设ED=x,则AE=6-x;∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC,由题意得∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x,由勾股定理得BE2=AB2+AE2,即x2=32+(6-x)2,解得x=15 4,∴ED=154.(10分)16.(10分)[2016·潍坊]如图24-12,正△ABC的边长图24-11为2,以BC 边上的高AB 1为边作正△AB 1C 1,△ABC 与△AB 1C 1公共部分的面积记为S 1;再以正△AB 1C 1边B 1C 1上的高AB 2为边作正△AB 2C 2,△AB 1C 1与△AB 2C 2公共部分的面积记为S 2,…,以此类推,则__S n =2·⎝ ⎛⎭⎪⎫34n__.(用含n 的式子表示)【解析】 ∵等边三角形ABC 的边长为2,AB 1⊥BC , ∴BB 1=1,AB =2, 根据勾股定理得AB 1=3, ∴S 1=12×34×(3)2=32·⎝ ⎛⎭⎪⎫341; ∵等边三角形AB 1C 1的边长为3,AB 2⊥B 1C 1, ∴B 1B 2=32,AB 1=3, 根据勾股定理得AB 2=32,∴S 2=12×34×⎝ ⎛⎭⎪⎫322=32·⎝ ⎛⎭⎪⎫342;…以此类推,S n =32·⎝ ⎛⎭⎪⎫34n .。
中考数学直角三角形与勾股定理专题训练(含答案)

中考数学直角三角形与勾股定理专题训练一、选择题1. 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A.B.3 C.D.52. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.3. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米4. 如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点,则点D的个数共有()B,C),若线段AD长为正整数...A. 5个B. 4个C. 3个D. 2个5.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于A.1和2之间B.2和3之间C.3和4之间D.4和5之间6. 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x-y2=3B. 2x-y2=9C. 3x-y2=15D. 4x-y2=218. 已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.32B.332C.32D. 不能确定二、填空题9. 如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).10. 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F.过点E,F作直线EF,交AB于点D,连接CD,则CD的长是________.11. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是 .12. 如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC 绕点C 逆时针旋转60°得到△DEC ,连接BD ,则BD 2的值是 .13. (2019•通辽)腰长为5,高为4的等腰三角形的底边长为__________.14. 如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于________.15. 在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为________.16. (2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的△是直角三角形时,则CD的长为__________.点E处,当BDE三、解答题17. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.18. 已知:整式A=(n2-1)2+(2n)2,整式B>0.[尝试] 化简整式A.[发现] A=B2,求整式B.[联想] 由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-1 2n B勾股数组Ⅰ8勾股数组Ⅱ3519. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.20. 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完.............成解答过程.....21.如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1. 732);(2)确定C港在A港的什么方向.22. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.答案一、选择题1. 【答案】B2. 【答案】D[解析]如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.3. 【答案】C[解析]在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A'BD中,∵∠A'DB=90°,A'D=2米,BD2+A'D2=A'B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).4. 【答案】C【解析】如解图,当AD⊥BC时,∵AB=AC,∴D为BC的中点,BD=CD=12BC=4,∴AD=AB2-BD2=3;又∵AB=AC=5,∴在BD和CD之间一定存在AD=4的两种情况,∴点D的个数共有3个.5. 【答案】C【解析】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=22222313+=+=,∴P点所表示的数就是OA AB13,∵91316<<,<<,∴3134即点P所表示的数介于3和4之间,故选C.6. 【答案】A[解析]过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2+.7. 【答案】B【解析】连接DE,过点A作AF⊥BC,垂足为F,过E作EG⊥BC,垂足为G.∵AB=AC,AF⊥BC,BC=12,∴BF=FC=6,又∵E是AC的中点,EG⊥BC,∴EG∥AF,∴CG=FG=12CF=3,∵在Rt△CEG中,tan C=EG CG,∴EG=CG×tan C=3y;∴DG=BF+FG-BD=6+3-x=9-x,∵HD是BE的垂直平分线,∴BD=DE=x,∵在Rt△EGD中,由勾股定理得,ED2=DG2+EG2,∴x2=(9-x)2+(3y)2,化简整理得,2x-y2=9.8. 【答案】B【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题9. 【答案】45[解析]本题考查三角形的外角,可延长AP交正方形网格于点Q,连接BQ,如图所示,经计算PQ=BQ=,PB=,∴PQ2+BQ2=PB2,即△PBQ为等腰直角三角形,∴∠BPQ=45°,∴∠P AB+∠PBA=∠BPQ=45°,故答案为45.10. 【答案】5【解析】由题意知EF垂直平分AB,∴点D是AB的中点,∵∠ACB=90°,∴CD为斜边AB的中线,∴CD=12AB.∵BC=6,AC=8,∴AB=AC2+BC2=82+62=10,∴CD=5.11. 【答案】15-5[解析]过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC×sin30°=10=5,CM=BC×cos30°=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.12. 【答案】8+4[解析]如图,连接AD,设AC与BD交于点O,由题意得CA=CD,∠ACD=60°,∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°.∵∠ABC=90°,AB=BC=2,∴AC=CD=2.∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=AC=,OD=CD·sin60°=,∴BD=,∴BD 2=()2=8+4.13. 【答案】6或25或45【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3,当5AB AC ==,4CD =时,则223AD AC CD =-=,∴8BD =,∴45BC = ∴此时底边长为56或54514. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC=90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.15. 【答案】13 或10 【解析】(1)如解图①所示,当P 点靠近B 点时,∵AC =BC =3,∴CP =2,在Rt △ACP 中,由勾股定理得AP =13;(2)如解图②所示,当P 点靠近C 点时,∵AC =BC =3,∴CP =1,在Rt △ACP 中,由勾股定理得AP =10.综上可得:AP 长为13 或10.16. 【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△,∴6AE AC ==,1064BE =-=,设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-,解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠, ∴AEF EBD △∽△,∴AF EF ED BD=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-, ∴68x x x x -=-,解得247x =,∴247CD =, 综上所述,CD 的长为3或247,故答案为:3或247.三、解答题17. 【答案】解:(1)4(2)∵AC=AD ,∠CAD=60°,∴△CAD 是等边三角形,∴CD=AC=4,∠ACD=60°.过点D 作DE ⊥BC 于E ,∵AC ⊥BC ,∠ACD=60°,∴∠BCD=30°.在Rt △CDE 中,CD=4,∠BCD=30°,∴DE=CD=2,CE=2,∴BE=,在Rt△DEB中,由勾股定理得DB=.18. 【答案】解:[尝试] A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2. [发现] ∵A=B2,B>0,∴B==n2+1.[联想] ∵2n=8,∴n=4,∴B=n2+1=42+1=17.∵n2-1=35,∴B=n2+1=37.∴填表如下:直角三角形三n2-1 2n B边勾股数组Ⅰ8 17勾股数组Ⅱ35 3719. 【答案】解:(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF.(2)∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=3.20. 【答案】解:如解图,过点A作AD⊥BC,垂足为点D,设BD=x,则CD=14-x,根据勾股定理可得:AD2=AB2-BD2=AC2-CD2,即152-x2=132-(14-x)2,解得x=9.(3分)∴AD2=152-x2=152-92=144.(5分)∵AD>0,∴AD=12.(8分)∴S△ABC=12BC·AD=12×14×12=84.(10分)21. 【答案】(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴22AB BC102.答:A、C两地之间的距离为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏东15°的方向上.22. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎪⎨⎪⎧EC =DC ∠ACE =∠BCD AC =BC,(3分)∴△ACE ≌△BCD(SAS ).(4分)(2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分)∴∠EAD =∠EAC +∠CAD =90°,在Rt △EAD 中,ED 2=AD 2+AE 2,∴ED 2=AD 2+BD 2,(8分)又ED 2=EC 2+CD 2=2CD 2,∴2CD 2=AD 2+DB 2.(10分)。
中考数学勾股定理复习题及解析

中考数学勾股定理复习题及解析一、选择题1.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于,,D E 连接BD ,则CD 的长为( )A .1B .54C .74D .254 2.如图,ABC 中,有一点P 在AC 上移动.若56AB AC BC ===,,则AP BP CP ++的最小值为( )A .8B .8.8C .9.8D .103.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .984.如图,小红想用一条彩带缠绕易拉罐,正好从A 点绕到正上方B 点共四圈,已知易拉罐底面周长是12 cm ,高是20 cm ,那么所需彩带最短的是( )A .13 cmB .4cmC .4cmD .52 cm 5.将6个边长是1的正方形无缝隙铺成一个矩形,则这个矩形的对角线长等于( ) A 37B 13C 3713D 371376.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( )A .24B .30C .40D .487.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是( )A .5.3尺B .6.8尺C .4.7尺D .3.2尺8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )A .1B .2021C .2020D .20199.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( )A .h≤15cmB .h≥8cmC .8cm≤h≤17cmD .7cm≤h≤16cm 10.下列各组数据,是三角形的三边长能构成直角三角形的是( )A .2,3,4B .4,5,6C .2223,4,5D .6,8,10 二、填空题11.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.12.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,BD CD ⊥,则AD BC +等于_________.13.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =42AC =DA 的长为______.14.如图,O 为坐标原点,四边形OABC 为矩形,()20,0A ,()0,8C ,点D 是OA 的中点,点P 在边BC 上运动,当ODP ∆是以OD 为腰的等腰三角形时,则P 点的坐标为______.15.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______16.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.17.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.18.四边形ABCD 中AB =8,BC =6,∠B =90°,AD =CD =52,四边形ABCD 的面积是_______.19.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.20.四个全等的直角三角形按图示方式围成正方行ABCD ,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM 为Rt △ABM 的较长直角边,AM =7EF ,则正方形ABCD 的面积为_______.三、解答题21.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求线段PQ 的长;(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形;(3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.22.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.25.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.26.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________;(2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P是直线AC上的一点,且13CP AC,连接PE,直接写出PE的长.27.如图1, △ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且点A、D、E在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).28.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.29.如图,在△ABC 中,D 是边AB 的中点,E 是边AC 上一动点,连结DE,过点D 作DF ⊥DE 交边BC 于点F(点F 与点B 、C 不重合),延长FD 到点G,使DG=DF,连结EF 、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG ≌△BDF ;(2)请你连结EG,并求证:EF=EG ;(3)设AE=x ,CF=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(4)求线段EF 长度的最小值.30.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD()1如图1,若2BD =,4DC =,求AD 的长;()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F . ①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据勾股定理的逆定理证明△ABC 是直角三角形,根据垂直平分线的性质证得AD=BD ,由此根据勾股定理求出CD.【详解】∵AB=10,AC=8,BC=6,∴2222228610AC BC AB +=+==,∴△ABC 是直角三角形,且∠C=90°,∵DE 垂直平分AB ,∴AD=BD ,在Rt △BCD 中,222BD BC CD =+ ,∴222(8)6CD CD -=+,解得CD=74, 故选:C. 【点睛】此题考查勾股定理及其逆定理,线段垂直平分线的性质,题中证得△ABC 是直角三角形,且∠C=90°是解题的关键,再利用勾股定理求解.2.C解析:C【分析】由AP+CP=AC 得到AP BP CP ++=BP+AC ,即计算当BP 最小时即可,此时BP ⊥AC ,根据三角形面积公式求出BP 即可得到答案.【详解】∵AP+CP=AC ,∴AP BP CP ++=BP+AC ,∴BP ⊥AC 时,AP BP CP ++有最小值,设AH ⊥BC ,∵56AB AC BC ===,∴BH=3, ∴224AH AB BH =-=, ∵1122ABC SBC AH AC BP =⋅=⋅, ∴1164522BP ⨯⨯=⨯, ∴BP=4.8,∴AP BP CP ++=AC+BP=5+4.8=9.8,故选:C.【点睛】此题考查等腰三角形的三线合一的性质,勾股定理,最短路径问题,正确理解AP BP CP ++时点P 的位置是解题的关键.3.C解析:C【分析】依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值. 【详解】解:由题可得:222321,42,521=-==+…… 2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴==79x y ∴+=故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.4.D解析:D【解析】【分析】本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决..要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】如图,由图可知,彩带从易拉罐底端的A处绕易拉罐4圈后到达顶端的B处,将易拉罐表面切开展开呈长方形,则螺旋线长为四个长方形并排后的长方形的对角线长,设彩带最短长度为xcm,∵∵易拉罐底面周长是12cm,高是20cm,∴x2=(12×4)2+202∴x2=(12×4)2+202,所以彩带最短是52cm.故选D.【点睛】本题考查了平面展开−−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,5.C解析:C【分析】如图1或图2所示,分类讨论,利用勾股定理可得结论.【详解】当如图1所示时,AB=2,BC=3,∴2223=13;当如图2所示时,AB=1,BC=6,∴AC=221+6=37;故选C.【点睛】本题主要考查图形的拼接,数形结合,分类讨论是解答此题的关键.6.A解析:A【解析】已知△ABC的三边分别为6,10,8,由62+82=102,即可判定△ABC是直角三角形,两直角边是6,8,所以△ABC的面积为12×6×8=24,故选A.7.D解析:D【分析】根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA是x尺,根据题意可得:x2+62=(10-x)2,解得:x=3.2,答:折断处离地面的高度OA是3.2尺.故选D.【点睛】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.8.B解析:B【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可.【详解】解:由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2020次后形成的图形中所有的正方形的面积和为2021,故选:B.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.9.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.10.D解析:D【分析】根据勾股定理的逆定理对各选项进行判断即可.【详解】解:A 、∵22+32=13≠42,∴不能构成直角三角形,故本选项不符合题意;B 、∵42+52=41≠62,∴不能构成直角三角形,故本选项不符合题意;C 、∵222222(3)(4)337(5)+=≠,∴不能构成直角三角形,故本选项不符合题意;D 、∵62+82=100=102,∴能构成直角三角形,故本选项符合题意.故选:D .【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.二、填空题11.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】 本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.12.3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.13.6或2.【分析】由于已知没有图形,当Rt △ABC 固定后,根据“以BC 为斜边作等腰直角△BCD”可知分两种情况讨论:①当D 点在BC 上方时,如图1,把△ABD 绕点D 逆时针旋转90°得到△DCE ,证明A 、C 、E 三点共线,在等腰Rt △ADE 中,利用勾股定理可求AD 长;②当D 点在BC 下方时,如图2,把△BAD 绕点D 顺时针旋转90°得到△CED ,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D 点在BC 上方时,如图1所示,把△ABD 绕点D 逆时针旋转90°,得到△DCE ,则∠ABD=∠ECD ,CE=AB=22,AD=DE ,且∠ADE=90°在四边形ACDB 中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A 、C 、E 三点共线.∴AE=AC+CE=42+22=62在等腰Rt △ADE 中,AD 2+DE 2=AE 2,即2AD 2=(62)2,解得AD=6②当D 点在BC 下方时,如图2所示,把△BAD 绕点D 顺时针旋转90°得到△CED ,则CE=AB=22,∠BAD=∠CED ,AD=AE 且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A 、E 、C 三点共线.∴AE=AC-CE=42-22=22在等腰Rt △ADE 中,2AD 2=AE 2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.14.()4,8或()6,8或()16,8【分析】当ODP ∆是以OD 为腰的等腰三角形时,分为两种情况①点O 是顶角顶点时,②D 是顶角顶点时,根据勾股定理求出CP ,PM 即可.【详解】解:OD 是等腰三角形的一条腰时:①若点O 是顶角顶点时,P 点就是以点O 为圆心,以10为半径的弧与CB 的交点, 在直角△OPC 中,CP=22221086OP OC -=-=,则P 的坐标是(6,8). ②若D 是顶角顶点时,P 点就是以点D 为圆心,以10为半径的弧与CB 的交点, 过D 作DM ⊥BC 于点M ,在直角△PDM 中,22221086PD DM -=-= ,当P 在M 的左边时,CP=10-6=4,则P 的坐标是(4,8);当P 在M 的右侧时,CP=10+6=16,则P 的坐标是(16,8).故P 的坐标为:(6,8)或(4,8)或(16,8).故答案为:(6,8)或(4,8)或(16,8).【点睛】本题主要考查等腰三角形的性质及勾股定理的运用,注意正确地进行分类,考虑到所有的可能情况是解题的关键.15.322或11或5或109 5【分析】分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.【详解】解:①过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12 BC同理:DH=12 AC又∵BC=AC∴DG=DH在Rt△DGE和Rt△DHF中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL)∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴C G=HC∴CE=GC-GE=CH-HF=CF=AB-BF=3223332+=②过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D 是AB 的中点, ∴DG=12BC 同理:DH=12AC 又∵BC=AC∴DG=DH在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=CF=AC+AE=AB+BF=7+4=11∴EF=221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,∴∠1+∠2=45°∴∠EDF=2(∠1+∠2)=90°∴△EDF 为等腰直角三角形可证AED CFD △△≌∴AE=CF=3,CE=BF=4∴2222435EF CE CF =+=+=④有第③知,EF=5,且△EDF 为等腰直角三角形,∴ED=DF=522,可证△E CF E DE ''∆∽,2223y x +=5252x =+综上可得:25x =∴2222E F DE DF DE '''''=+=1095E F ''= 【点睛】本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.16.4或2510【分析】分三种情况讨论:①以A 为直角顶点,向外作等腰直角三角形DAC ;②以C 为直角顶点,向外作等腰直角三角形ACD ;③以AC 为斜边,向外作等腰直角三角形ADC .分别画图,并求出BD .【详解】①以A 为直角顶点,向外作等腰直角三角形DAC ,如图1.∵∠DAC =90°,且AD =AC ,∴BD =BA +AD =2+2=4;②以C 为直角顶点,向外作等腰直角三角形ACD ,如图2.连接BD ,过点D 作DE ⊥BC ,交BC 的延长线于E .∵△ABC 是等腰直角三角形,∠ACD =90°,∴∠DCE =45°.又∵DE ⊥CE ,∴∠DEC =90°,∴∠CDE =45°,∴CE =DE =222⨯=. 在Rt △BAC 中,BC 2222=+= 22,∴BD 22222222BE DE ()()=+=++= 25;③以AC 为斜边,向外作等腰直角三角形ADC ,如图3.∵∠ADC =90°,AD =DC ,且AC =2,∴AD =DC =AC sin45°=2222⨯=. 又∵△ABC 、△ADC 是等腰直角三角形,∴∠ACB =∠ACD =45°,∴∠BCD =90°.又∵在Rt △ABC 中,BC 2222=+= 22, ∴BD 222222210BC CD =+=+=()().故BD 的长等于4或510.故答案为4或510.【点睛】本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题, 17.169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512+=169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.18.49【解析】连接AC ,在Rt △ABC 中,∵AB =8,BC =6,∠B =90°,∴AC =22AB BC + =10. 在△ADC 中,∵AD =CD =52,∴AD 2+CD 2=(52)2+(52)2=100.∵AC 2=102=100,∴AD 2+CD 2=AC 2,∴∠ADC =90°,∴S 四边形ABCD =S △ABC +S △ACD =12AB •BC +12AD •DC =12×8×6+12×52×52=24+25=49.点睛:本题考查的是勾股定理及勾股定理的逆定理,不规则几何图形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.17,144,145【分析】由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.【详解】解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,继续观察可知弦-股=1,利用勾股定理假设股为m ,则弦为m+1,所以有22217(1)m m +=+,解得144m =,1145m +=,即第8组勾股数为17,144,145.故答案为17,144,145.【点睛】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可.20.32【分析】由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.【详解】解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,∵AM EF ,2,,2a a ∴== ∵正方形EFGH 的面积为4,∴24b =,∴正方形ABCD 的面积=2224+832.a b b ==故答案为32.【点睛】本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.三、解答题21.(1)出发2秒后,线段PQ 的长为2)当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【分析】(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答; (3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.【详解】(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,∵∠B=90°,由勾股定理得:===∴出发2秒后,线段PQ 的长为(2)BQ=2t ,BP=8−t由题意得:2t=8−t解得:t=83∴当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形;(3) ∵∠ABC=90°,BC=6,AB=8,∴=10.①当CQ=BQ 时(图1),则∠C=∠CBQ ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒;②当CQ=BC时(如图2),则BC+CQ=12∴t=12÷2=6秒③当BC=BQ时(如图3),过B点作BE⊥AC于点E,∴BE=6824105 AB BCAC⋅⨯==,所以CE=22BC BE-=185=3.6,故CQ=2CE=7.2,所以BC+CQ=13.2,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点睛】本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.22.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22CD CE -222520-,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.23.(1)90°;(2)证明见解析;(3)变化,234l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.24.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =+4.【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.25.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab ,∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.26.(1)2,2)证明见解析(3)7(4【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,∴122BC AB ==,∴AC = (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中,∵122BE AE AB ===,DE =∴BD =,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形;(3))由(1)(2)可知,AC ,AD=4,∴CD =∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯,∴7BF =(4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1, ∵=23AC ,∴=3CQ QA =,①若点P 在线段AC 上, 则23=3333PQ CQ CP =-=, ∴2223PE PQ EQ =+; ②若点P 在线段AC 的延长线上, 则2533333PQ CQ CP =+=, ∴22221=PE PQ EQ =+; 综上,PE 23221. 【点睛】 本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF 的长,二是对点P 的位置要分情况进行讨论.27.(1)见解析;(2)26;(323+3 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出3,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH 和△BEH 中,∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,∴∠BEH=∠ACH=90°,∴△ABE 为直角三角形由勾股定理得2222AB=AE BE =2410=26++(3)由(1)(2)可得△ACD ≌△BCE ,∴∠DAC=∠EBC ,∵△ACB ,△DCE 都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM ⊥DE ,∴∠CMD=90°,DM=EM ,∴CD=CE=2CM ,CM∴∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°, ∴∠NBE=30°,∴BE=2EN ,EN∵BN=a∴BE=2EN=3a =AD∴AE=AD+DE=3+a 【点睛】 本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键.28.(1)1(491)2-;1(491)2+;(2)21(1)2n -;21(1)2n +;(3)21m -;21m +;(4)10;26; 12;35;【解析】【分析】(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35.【详解】解:(1)依据规律可得,如果勾为7,则股24=1(491)2-,。
中考数学总复习 第四单元 三角形 第24课时 解直角三角形的应用课件

(
A.4.64 海里
B.5.49 海里
C.6.12 海里
D.6.21 海里
)
第十一页,共三十八页。
课前双基巩固
[答案] B
[解析] 如图所示,
由题意知,∠BAC=30°,∠ACB=15°,
作 BD⊥AC 于点 D,以点 B 为顶点,BC 为边,在△ABC 内部作∠CBE=∠ACB=15°,则∠BED=30°,BE=CE.
45°,那么铁塔的高度是
m.(精确到 0.1 m)
在 Rt△ACE 中,CE=AE·tan45°=6DE 中,DE=AE·tan30°=60× 3 =20 3.
所以铁塔的高度为 CE+DE=60+20 3≈94.6(m).
图 24-4
第七页,共三十八页。
课前双基巩固
5. [九下 P115 问题 3 改编] 如图 24-5,为了测量旗杆的高度,小明在 M 处用高 1 米(DM=1 米)
(2)由(1)得:PE=0.63CE=31.5(m),
∴AC=BP-PE=90-31.5=58.5(m),58.5÷3=19.5,∴点 C 位于第 20 层.
答:点 C 位于第 20 层.
图 24-13
第二十页,共三十八页。
高频考向探究
3. [2016·徐州 25 题] 如图 24-14,为了测出旗杆 AB 的高度,在旗杆前的平地上选择一点 C,测得旗杆顶部 A 的仰
形(一般同时得到两个直角三角形)是解决这类问题的常用方法;在多个直角三角形中一定要认真分析各条
线段之间的关系(包括三角函数关系、相等关系),运用方程求解,有时可起到事半功倍之效.注意下面两个基
最新九年级数学中考复习微专题 勾股定理(解析版)

中考数学复习解答题专题练勾股定理1.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,求点D到BC的距离.2.在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P 作PD⊥AB于点D,PE⊥AC于点E,求PD+PE的长.3.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP 沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,求AP的长.4.如图为一个棱长为1的正方体的展开图,A,B,C是展开后小正方形的顶点,则∠ABC的度数为________.5.如图,已知AB=12,AB⊥BC于点B,AB⊥AD于点A,AD=5,BC=10.点E是CD的中点,求AE的长.6.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长.(2)在△ABC中,求BC边上高的长.7.如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,试判断三角形的形状.8.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.9.已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长.10.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动,点Q从点B开始沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为多少?11如图,在四边形ABCD中,AB∶BC∶CD∶DA=2∶2∶3∶1,且∠ABC=90°,求∠DAB的度数.12.在三角形ABC中,D为BC的中点,AB等于5,AD等于6,AC 等于13,试判断AD与AB的位置关系.13.如图,已知△ABC,AB=8,BC=10,AC=6.(1)判断△ABC是什么三角形?(2)用尺规作图法作出边BC的垂直平分线,交BC于点D,交AB于点E.(3)连接CE,求CE的长.14.在某小区的A处有一个凉亭,道路AB,BC,AC两两相交于点A,B,C,并且道路AB与道路BC互相垂直,如图所示.已知点A与点B之间的距离为20m,若有两个小朋友在与点B相距10m的点D处玩耍,玩累了他们分别沿不同的路线D→B→A,D→C→A到凉亭A处喝水休息,已知路线D→B→A与D→C→A路程相等,求AC的长度.15.如图,是某次机器人创意大赛中一位参赛队员设计的机器人行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了B.问从点A到点B的直线距离是多少?2020年中考数学复习解答题专题练勾股定理(解析版)1. 如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,求点D到BC的距离.【解析】选A.过D点作DE⊥BC于E.因为∠A=90°,AB=4,BD=5,所以AD2=BD2-AB2=52-42=9,所以AD=3,因为BD平分∠ABC,∠A=90°,所以点D到BC的距离DE=AD=3.2. 在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,求PD+PE的长.【解析】过A点作AF⊥BC于点F,连接AP,因为△ABC 中,AB=AC=5,BC=8,所以BF=4,所以在Rt △ABF 中,AF2=AB2-BF2=9,所以AF=3. 所以12×8×3=12×5×PD+12×5×PE ,12=12×5×(PD+PE),PD+PE=4.8. 3. 如图,矩形ABCD 中,AB=8,BC=6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE=OD ,求AP 的长.【解析】如图:设AP=x ,则DP=AD-AP=6-x ,因为将△ABP 翻折至△EBP ,所以EP=AP=x ,EB=AB=8,∠E=∠A=90°,因为∠D=∠E=90°,OE=OD ,∠DOP=∠EOF ,所以△DOP ≌△EOF ,所以EF=DP=6-x ,OP=OF ,因为OE=OD ,所以DF=PE=x ,所以CF=CD-DF=8-x ,因为EF=6-x,BE=8,所以BF=BE-EF=8-(6-x)=x+2,在Rt△BCF中,CF2+BC2=BF2,所以(8-x)2+62=(x+2)2,解得x=4.8,所以AP=4.8.答案:4.84. 如图为一个棱长为1的正方体的展开图,A,B,C是展开后小正方形的顶点,则∠ABC的度数为________.【解析】连接AC,则AC2=22+1=5,BC2=22+1=5,AB2=32+1=10.因为AC2+BC2=AB2,所以△ABC为直角三角形.又因为AC2=BC2,所以AC=BC,所以∠CAB=∠ABC=45°.5.如图,已知AB=12,AB⊥BC于点B,AB⊥AD于点A,AD=5,BC=10.点E是CD的中点,求AE的长.【解析】如图,延长AE交BC于点F.因为AB⊥BC,AB⊥AD,所以AD∥BC所以∠D=∠C,∠DAE=∠CFE,又因为点E是CD的中点,所以DE=CE.因为在△AED与△FEC中,∠D=∠C,∠DAE=∠CFE,DE=CE,所以△AED≌△FEC(AAS),所以AE=FE,AD=FC.因为AD=5,BC=10.所以BF=5.在Rt△ABF中,AF2=AB2+BF2=122+52=169,AF=6.5.所以AF=13,所以AE=126. 如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长.(2)在△ABC中,求BC边上高的长.【解析】(1)因为DB⊥BC,BC=4,CD=5,所以BD2=52-42=9,所以BD=3.(2)延长CB,过点A作AE⊥CB延长线于点E,因为DB⊥BC,AE⊥BC,所以AE∥DB,因为D为AC边的中点,AE,所以AE=6,即BC边上高的长为6.所以BD=127. 如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,试判断三角形的形状.【解析】因为a2+b2+c2+50=6a+8b+10c,所以a2+b2+c2-6a-8b-10c+50=0,即a2-6a+9+b2-8b+16+c2-10c+25=0,所以(a-3)2+(b-4)2+(c-5)2=0,所以a=3,b=4,c=5,因为a2+b2=c2,所以三角形为直角三角形.8. 如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【解析】设EC=xcm,则DE=(8-x)cm,由折叠可知,EF=DE,AD=AF,在直角△ABF中,由勾股定理得AB2+BF2=AF2,即82+BF2=102,所以BF=6cm,所以FC=10-6=4(cm).在直角△EFC中,由勾股定理得FC2+CE2=EF2,即42+x2=(8-x)2,解之得x=3,即EC的长度为3cm.9. 已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长.【解析】过D作DE⊥AB,垂足为E,因为∠1=∠2,所以CD=DE=15,在Rt△BDE中,BE2=BD2-DE2=252-152=202,所以BE=20,因为∠1=2,∠C=∠DEA=90°,AD=AD ,所以Rt △ACD ≌Rt △AED ,又因为AB2=AC2+BC2,即(AC+20)2=AC2+(15+25)2,解得AC=30.10. 如图所示,在△ABC 中,AB ∶BC ∶CA=3∶4∶5,且周长为36cm ,点P 从点A 开始沿AB 边向B 点以每秒1cm 的速度移动,点Q 从点B 开始沿BC 边向点C 以每秒2cm 的速度移动,如果同时出发,则过3秒时,△BPQ 的面积为多少?【解析】设AB 为3xcm ,BC 为4xcm ,AC 为5xcm ,因为周长为36cm ,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9cm ,BC=12cm ,AC=15cm.因为AB2+BC2=AC2,所以△ABC 是直角三角形,过3秒时,BP=9-3×1=6(cm),BQ=2×3=6(cm),所以S △BPQ=12BP ·BQ=12×6×6=18(cm2). 11如图,在四边形ABCD 中,AB ∶BC ∶CD ∶DA=2∶2∶3∶1,且∠ABC=90°,求∠DAB的度数.【解析】设AB=2a,BC=2a,CD=3a,DA=a.因为∠ABC=90°,AB=BC,所以∠BAC=∠BCA=45°,在Rt△ABC中,AC2=AB2+BC2=(2a)2+(2a)2=8a2,又AD2=a2,CD2=(3a)2=9a2.所以AC2+AD2=CD2,所以△ACD是以∠CAD为直角的直角三角形,所以∠CAD=90°,所以∠DAB=∠BAC+∠CAD=45°+90°=135°.12.在三角形ABC中,D为BC的中点,AB等于5,AD等于6,AC 等于13,试判断AD与AB的位置关系.【解析】延长AD至点E,使DE=AD,并连接BE,因为D为BC的中点,所以CD=BD,因为∠ADC=∠EDB,所以△ADC≌△EDB,所以EB=AC=13,因为AD=6,所以AE=12,因为52+122=132,即AB2+AE2=EB2,所以∠EAB=90°,所以AD⊥AB.13.如图,已知△ABC,AB=8,BC=10,AC=6.(1)判断△ABC是什么三角形?(2)用尺规作图法作出边BC的垂直平分线,交BC于点D,交AB于点E.(3)连接CE,求CE的长.【解析】(1)因为AB=8,BC=10,AC=6,所以102=82+62,即BC2=AB2+AC2,所以△ABC是直角三角形.(2)作图如图1:(3)连接CE,如图2:设CE为x,因为边BC的垂直平分线交BC于点D,交AB于点E,所以CE=BE=x,在Rt△ACE中,CE2=AE2+AC2,即x2=(8-x)2+62,解得x=6.25,所以CE=6.25.14. 在某小区的A处有一个凉亭,道路AB,BC,AC两两相交于点A,B,C,并且道路AB与道路BC互相垂直,如图所示.已知点A与点B之间的距离为20m,若有两个小朋友在与点B相距10m的点D处玩耍,玩累了他们分别沿不同的路线D→B→A,D→C→A到凉亭A处喝水休息,已知路线D→B→A与D→C→A路程相等,求AC 的长度.【解析】设AC的距离为xm,则DC的长为(30-x)m,则BC的长为(40-x)m,在Rt△ABC中,由勾股定理得:AB2+BC2=AC2,即202+(40-x)2=x2,解得x=25.答:AC之间的距离是25m.15. 如图,是某次机器人创意大赛中一位参赛队员设计的机器人行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了B.问从点A到点B的直线距离是多少?【解析】过点B作BC⊥AD于C,从图中可以看出AC=4-2+0.5=2.5(m),BC=4.5+1.5=6(m),在Rt△ABC中,AB为斜边,,则AB2=AC2+BC2=1694m.所以AB=132答:从点A到点B的直线距离是13m.2。
2020年中考数学一轮复习练习题第24课时直角三角形和勾股定理(含答案)

第 24课时直角三角形和勾股定理一、选择题 (每题 5 分,共 35 分 )1. [2019 ·州滨 ]知足以下条件时,△ ABC 不是直角三角形的为 ()A . AB = 41, BC = 4, AC = 5 B .AB ∶BC ∶AC = 3∶ 4∶5 C .∠ A ∶∠ B ∶∠ C = 3∶ 4∶ 5 13 2D . |cos A - 2+ tan B - 3 = 02. [2019 毕·节 ]如图,点 E 在正方形 ABCD 的边 AB 上,若 EB = 1, EC = 2,则正方形ABCD 的面积为 ()A. 3 B . 3 C . 5D . 53.在 Rt △ ABC 中,∠ C = 90°, AC = 9, BC = 12,则点 C 到 AB 的距离是 ()36 12 A. 5B . 259 3 3 C .4D . 44. [2018 长·沙 ]我国南宋有名数学家秦久韶的著作 《数书九章》里记录有这样一道题目:“有沙田一块,有三斜,此中小斜五里,中斜十二里,大斜十三里,欲知为田几何? ”这道题讲的是:有一块三角形沙田,三边长分别为5 里, 12 里, 13 里,问这块沙田面积有多大?题中的 “里 ”是我国市制长度单位, 1 里= 500 m ,则该沙田的面积为 ()A . 7.5 km 2B . 15 km 2C .75 km 2D . 750 km 25. [2018 黄·冈 ]如图,在 Rt △ ABC 中,∠ ACB = 90°, CD 为 AB 边上的高, CE 为 AB 边上的中线, AD = 2, CE = 5,则 CD 的长为 ( )A . 2B . 3C .4D .2 36. [2018 淄·博 ]如图,在 Rt △ ABC 中, CM 均分∠ ACB ,交 AB 于点 M ,过点 M 作MN∥ BC,交 AC 于点 N,且 MN 均分∠ AMC .若 AN= 1,则 BC 的长为 ()A . 4B. 6C.4 3D. 87. [2019 ·波宁 ] 勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记录.如图①,以直角三角形的各边分别向外作正方形,再把较小的两张正方形纸片按图②的方式搁置在最大正方形内.若知道图中暗影部分的面积,则必定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和二、填空题 (每题 5 分,共 25 分 )8. [2018 ·建福 ]如图,在Rt△ABC 中,∠ ACB= 90°, AB= 6, D 为 AB 的中点,则CD=________.9.已知直角三角形的两边长分别是 3 和 4,则第三边的长为________.10.如图,有两棵树,一棵树高12 m,另一棵树高 6 m,两树相距8 m.一只鸟从一棵树的树梢飞到另一棵树的树梢,小鸟起码要飞翔________m.11. [2019 ·京北 ] 以下图的网格是正方形网格,则∠PAB +∠ PBA= ________ °.(点 A,B, P 是网格线交点 ).12. [2019 ·顺安 ] 如图,在 Rt△ ABC 中,∠ BAC = 90°, AB=3, AC= 4,点 D 为斜边BC 上的一个动点,过 D 分别作 DM ⊥ AB 于点 M,作 DN⊥ AC 于点 N,连结 MN ,则线段 MN 长度的最小值为 ________.三、解答题 (共 10 分)13. (10 分 )[2019 福·建改编 ] 如图,在 Rt△ ABC 中,∠ ABC= 90°,∠ ACB = 30°,将△ABC 绕点C 顺时针旋转60°获得△DEC ,点A,B 的对应点分别为D ,E,F 为AC 的中点.连结 BE , BF, FD ,求证:(1)BF=ED ;(2)四边形 BEDF 是平行四边形.14. (10 分)[2018 广·安 ] 如图,有 4张形状、大小完整同样的方格纸,方格纸中的每个小正方形的边长都是 1 ,请在图中的方格纸中分别画出切合要求的图形,所绘图形各极点一定与方格纸中小正方形的极点重合,详细要求以下:(1)画一个直角边长为4,面积为 6 的直角三角形;(2)画一个底边长为4,面积为 8 的等腰三角形;(3)画一个面积为 5 的等腰直角三角形;(4)画一个边长为22,面积为 6 的等腰三角形.15. (10 分 )[2019巴·中 ]等腰直角三角板如图搁置,直角极点 C 在直线 m 上,分别过点A, B 作 AE⊥直线 m 于点 E, BD ⊥直线 m 于点 D.(1)求证: EC= BD ;(2)若设△ AEC 三边分别为a, b,c,利用此图证明勾股定理.16. (10 分 )[2017 宜·昌 ]可以成为直角三角形三条边长的三个正整数a, b, c 称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公a=1m2- n2,2式为b= mn,此中m>n>0,m,n是互质的奇数.当n=1 时,求有一边长为5c=1m2+ n2,2的直角三角形的此外两条边长.参照答案1. C 2.B 3.A 4.A 5.C 6.B 7.C128. 39.5或 710.1011.45 12. 513. (1)略(2)略14.略15. (1)略(2)略16.直角三角形的此外两条边长分别为12,13 或 3,4.。
【中考冲刺】初三数学培优专题 24 平面几何的定值问题(含答案)(难)

平面几何的定值问题【阅读与思考】所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内变化时,与它有关的元素的量保持不变(或几何元素间的某些几何性质或位置关系不变).几何定值问题的基本特点是:题设条件中都包含着变动元素和固定元素,变动元素是指可变化运动的元素,固定元素也就是“不变量”,有的是明显的,有的是隐含的,在运动变化中始终没有发生变化的元素,也就是我们要探求的定值. 解答定值问题的一般步骤是: 1. 探求定值; 2. 给出证明.【例题与求解】【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD⌒上任意一点. 求证:PA PC PB为定值. 解题思路:线段的和差倍分考虑截长补短,利用圆的基本性质,证明三角形全等.P AB CD【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A . 到CD 的距离保持不变 B . 位置不变C . 等分DB⌒ D . 随C 点的移动而移动 (济南市中考试题)解题思路:添出圆中相关辅助线,运用圆的基本性质,用排除法得出结论.A【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足. 求证:不管ST 滑到什么位置,∠SPM 是一定角.(加拿大数学奥林匹克试题)解题思路:不管ST 滑到什么位置,∠SOT 的度数是定值. 从探寻∠SPM 与∠SOT 的关系入手.B【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°. 点C 是AB⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E . 连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形;(2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD 2+3CH 2是定值. (广州市中考试题)解题思路:延长OG 交CD 于N ,利用题中的三等分点、平行四边形和三角形中位线的性质,实现把线段ON 转化成线段CH 的倍分关系,再以Rt △OND 为基础,通过勾股定理,使问题得以解决.BOACE HGD 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点. 若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标;(2)连接MG ,BC ,求证:MG ∥BC ;(3)如图2,过点D 作⊙M 的切线,交x 轴于点P . 动点F 在⊙M 的圆周上运动时,PFOF的比值是否发生变化?若不变,求出比值;若变化,说明变化规律. (深圳市中考试题)解题思路:对于(3)从动点F 达到的特殊位置时入手探求定值.【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点. 求证:P A 2+PB 2+PC 2为定值.解题思路:当点P 与C 点重合时,P A 2+PB 2+PC 2=2BC 2为定值,就一般情形证明.A【能力训练】A 级1. 如图,点A ,B 是双曲线xy 3=上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段. 若S 阴影=1,则=+21S S _______.(牡丹江市中考试题)AABCDEF(第3题图) (第4题图)2. 从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.(全国初中数学联赛试题)3. 如图,OA ,OB 是⊙O 任意两条半径,过B 作BE ⊥OA 于E ,又作OP ⊥AB 于P ,则定值OP 2+EP 2为_________.4. 如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( )A . 30°B . 40°C . 50°D . 60°(武汉市竞赛试题)5. 如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作A A '⊥AB ,AB B B ⊥',且A A '=AP ,B B '=BP . 连接B A '',当点P 从点A 移动到点B 时,B A ''的中点的位置( )A .在平分AB 的某直线上移动 B . 在垂直AB 的某直线上移动C . 在弧AMB 上移动D . 保持固定不移动AB'B(第5题图) (第6题图)6. 如图,A ,B 是函数xky图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构成正方形和长方形. 若正方形OCAD 的面积为6,则长方形OEBF 的面积是( ) A . 3 B . 6 C . 9 D . 12(海南省竞赛试题))7. (1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况. 在六种不同情况下,P A ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来. 请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.⑥⑤④③②①)P (B )PB(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.(济南市中考试题)8. 在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线x y =上时停止旋转. 旋转过程中,AB 边交直线x y =于点M ,BC 边交x 轴于点N .(1)求OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.(济宁市中考试题)9. 如图,AB 是半圆的直径,AC ⊥AB ,AC =AB . 在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,BF ⊥AB ,交线段AD 的延长线于点F .(1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等. 指出这两条相等的线段,并予证明.(江苏省竞赛试题)(第9题图) (第10题图) (第11题图)10. 如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O的半径为R . 求证:(1)2222DK CK BK AK +++是定值;(2)2222DA CD BC AB +++是定值.PD CB A A11. 如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:DPCP BPAP ++的值为定值.(克罗地亚数学奥林匹克试题)B 级1.等腰△ABC 的底边BC 为定长2,H 为△ABC 的垂心. 当顶点A 在保持△ABC 为等腰三角形的情况下 改变位置时,面积S △ABC ·S △HBC 的值保持不变,则S △ABC ·S △HBC =________.2. 已知A ,B ,C ,D ,E 是反比例函数xy 16=(x >0)图象上五个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是__________(用含π的代数式表示).(福州市中考试题) 折叠,使点A ,B 落在六边形ABCDEF 的内部,记∠C +∠D +∠E +∠F =α,则下列结论一定正确的是( )A . ∠1+∠2=900°-2αB . ∠1+∠2=1080°-2αC . ∠1+∠2=720°-αD . ∠1+∠2=360°-21α (武汉市竞赛试题)(第3题图) (第4题图)4. 如图,正△ABO 的高等于⊙O 的半径,⊙O 在AB 上滚动,切点为T ,⊙O 交AO ,BO 于M ,N ,则12GF ED CHBAA . 在0°到30°变化B . 在30°到60°变化C . 保持30°不变D . 保持60°不变5. 如图,AB 是⊙O 的直径,且AB =10,弦MN 的长为8. 若MN 的两端在圆上滑动时,始终与AB 相交,记点A ,B 到MN 的距离分别为h 1,h 2,则∣h 1-h 2∣等于( )A . 5B . 6C . 7D . 8(黄石市中考试题)(第5题图)6. 如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A ,C 在x 轴上,点B 坐标为(3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B ,D . (1)求点A 的坐标(用m 表示) (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连接PQ 并延长交BC 于点E ,连接BQ 并延长交AC 于点F . 试证明:FC (AC +EC )为定值.(株洲市中考试题)7. 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A ,B 的点M . 设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N . 证明线段AK 和BN 的乘积与M 点的选择无关.(湖北省选拔赛试题)(第7题图) (第8题图)B NKMB AC HCBA距离变小,这时乘积S △ABC ·S △HBC 的值变小、变大,还是不变?证明你的结论.(全国初中数学联赛试题)9. 如图,在平面直角坐标系xOy 中,抛物线10941812--=x x y 与x 轴的交点为点A ,与y 轴的交点为点B . 过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC . 现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动. 点P 停止运动时,点Q 也同时停止运动. 线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于E ,射线QE 交x 轴于点F . 设动点P ,Q 移动的时间为t (单位:秒). (1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当290<<t 时,△PQF 的面积是否总是定值?若是,求出此值;若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形,请写出解答过程. (黄冈市中考试题)(第9题图) (第10题图)10. 已知抛物线C 1:12121+-=x x y ,点F (1,1). (1)求抛物线C 1的顶点坐标;(2)若抛物线C 1与y 轴的交点为A ,连接AF ,并延长交抛物线C 1于点B ,求证:211=+BFAF . (3)抛物线C 1上任意一点P (x P ,y P )(0<x P <1),连接PF ,并延长交抛物线C 1于点 Q (x Q ,y Q ),试判断211=+QFPF 是否成立?请说明理由.11. 已知A ,B 是平面上的两个顶点,C 是位于AB 一侧的一个动点,分别以AC ,BC 为边在△ABC 外作正方形ACDE 和正方形BCFG . 求证:不论C 在直线AB 同一侧的任何位置,EG 的中点P 的位置不变.(四川省竞赛试题)平面几何的定值问题例 1 延长PC 至E ,使CE =AP ,连结BE ,则△BCE ≌△BAP ,及△PBE 为等腰直角三角形,故2PA PC CE PC PEPB PB PB++=== 例2 B 提示:连结AC ,BC ,可以证明P 为APB 的中点. 例3 ∵SP ⊥OP ,OM ⊥ST ,∴S ,M ,O ,P 四点共圆,于是∠SPM =∠SOM =12∠SOT 为定角. 例4 (1)连结OC 交DE 于M ,则OM =CM , EM =DM ,而DG = HE ,则HM =GM 故四边形OGCH 是平行四边形. (2)DG 不变.DE =OC =OA =3 . DG =13DE =13×3=1. (3)设CD =x ,延长OG 交CD 于N ,则CN=DN =12 x ,229CE x =- , 2214DN x = . ∴22394ON x =-,而ON =32CH ,∴22143CH x =-.故CD 2+3CH 2=x 2+3(4-13x 2)=x 2+12-x 2为定值. 例5 ⑴C (0,4) ⑵先求得AM=CM =5,连接MC 交AE 于N ,由△AO G ∽△ANM ,得OG AO MN AN =,O G =32,38OG OM OC OB ==,又∠BOC =∠G OM ,∴△G OM ∽△COB ,∠G MO =∠CBO ,得M G ∥BC .⑶连结DM ,则DM ⊥PD ,DO ⊥PM ,DO 2=OM •OP ,OP=163.动点F 在⊙M 的圆周上运动时,从特殊位置探求OF PF的值.当F 与点A 重合时,2316523OF AO PF AP ===-;当点F 与点B 重合时,8316583OF OB PF PB ===+;当点F 不与点A ,B 重合时,连接OF 、PF 、MF ,∴DM 2=MO •MP ,∴FM 2=MO •MP ,即FM MPOM FM=,又∠OMP =∠FMP ,∴△MFO ∽△MPF ,35OF MO PF MF ==,故OF PF 的比值不变,比值为35. 例6 ∠BPC =120°,在△BPC 中,由余弦定理得BC 2=PB 2+PC 2-2PB •PC =BC 2,又由上托勒密定理得BC •PA +PC •AB ,而AB =BC =AC ,∴PA =PB +PC ,从而PA 2+PB 2+PC 2=(PB +PC )2+PB 2+PC 2=2 (PB 2+PC 2+PB •PC )=2BC 2=2×23=6.故PA 2+PB 2+PC 2为定值.A 级 1.4 提示:∵S 1+S 阴= S 2+S 阴=xy =3,∴S 1+S 2=2xy -2S 阴=6-2=4.2.273提示:1+3+5=9是等边三角形的高. 3.r 2 提示:先考查OB 与OA 垂直的情形.4.D 提示:延长BF 交DE 于点M ,连接BD ,则△BCD 为等边三角形,BF 平分∠CBD .∵F 为CD 中点,且AD ∥CE ,∴△ADF 与△ECF 关于点F 中心对称.∴CE =AD =CD ,∴∠CEM=30°,∠DMF=60°,5.D 提示:A ′B′的中点均在⊙O 的上半圆的中点处. 6.B 提示:S 正方形OCAD =OD •OC =A A x y k ==6,∴S OEBF =OE •OF =xB •y B k ==6. 7.⑴略⑵当点P 在⊙O 内时,过P 作直径CD ,则PE •PF =PD •PC =r 2-OP 2为定值;当点P 在⊙O 外时,PE •PF 为定值22OP r -.结论:过不在圆上的一个定点任作一条直线与圆相交,则这点到直线与圆相交点的两条线段长的积为定值. 8.⑴2π⑵22. 5° ⑶P 值无变化.理由如下:如图,延长BA 交y 轴于E 点,可证明△OAE ≌△OCN ,得OE =ON ,AE =CN ,又∠MOE =∠MON =45°,OM =ON ,∴△OME ≌△OMN ,得MN =ME =AM +AE =AM +CN .∴P =MN +BN +BM =AM +CM +CN +BN +BM =AB +AC =4.9.⑴0<x <90 ⑵BE =BF 提示:连接BD ,可证明△BDF ∽△ADB ,△BDE ∽△ADC . 10.⑴作OP ⊥BD 于P ,OQ ⊥AC 于Q ,连接AO ,则AO 2=()()221122BK DK CK AK ⎡⎤⎡⎤-++⎢⎥⎢⎥⎣⎦⎣⎦,又AK •CK =BK •DK ,得AK 2+BK 2+CK 2+DK 2=4R 2为定值. ⑵作直径DE ,连接AE ,BE ,CE ,AB 2+CD 2=4R 2,AD 2+BC 2=4R 2,故AB 2+BC 2+CD 2+DA 2=8K 2为定值. 11.设正方形的边长为a ,根据托勒密定理,对于四边形APBC 和四边形APBD ,有CP •a =AP •a +BP 2a ,DP •a =BP •a +AP 2a ,两式相加并整理得(CP +DP )a =(AP +BP )(a 2a ),从而21AP BPCP DP++为定值.B 级1.1 提示:不妨设∠A 为锐角,AD ,BE ,CF 为△ABC 的三条高,H 为垂心,由AB =AC 知∠HBD =∠HCD =∠HAE ,∠HDC =∠CDA =90°,故R t △CHD ∽R t △ACD .∴AD DC DC HD =,即AD •HD =DC 2=14BC 2=1.∴S △ABC •S △HBC =2111224BC AD BC HD BC ⎛⎫⎛⎫⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭=1.当∠A ≥90°时,结论成立.2.13π-26 提示:∵A ,B ,C ,DE 是反比例函数y =16x(x >0)图象上五个整数点,由图象可知,这些点的横坐标分别为1,2,4,8,16.∴五个正方形的边长分别为1,3,4,2,1.∴这五人橄榄形的面积总和是2221111112211122222444424242πππ⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=5π-10+8π-16=13π-26. 3.B 提示:如图,设FA 的延长线与CB 的延长线交于点P ,G A ′的延长线与HB ′的延长线交于点P ′.由对称性可知∠1=2∠APP ′,∠2=2∠BPP ′.∴∠1+∠2=2∠APB .∵∠APB =540°-α,∴∠1+∠2=1080°-2α. 4.D 5.B 提示:如图,设AB 与MN 交于点C ,过点O 作OD ⊥MN 于D ,连接FO 并延长交EB 于G .由垂径定理,得OD 2254-=3.由△AFO ≌△B G O ,得AF =B G ,即h 1=B G .由AF ⊥MN ,BE ⊥MN ,得△FOD ∽△F G E .∴12OD FO GE FG ==.∴E G =2OD=6,∴12h h AF BE -=-=E G =6. 6.⑴A (3-m ,0) ⑵y =x 2-2x +1⑶过点Q 作QM ⊥AC 于M ,过点Q 作QN ⊥BC 于N ,设Q 点的坐标为(x ,x 2-2x +1),则QM =CN =(x -1)2,MC =QN=3-x .∵QM ∥CE ,∴PQM ∽△PEC .∴QM PM EC PC =,即()2112x x EC --=,得EC =2(x -1).∵QN ∥CF ,∴△BQN ∽△BFC .∴QN BN FC BC =,即()24134x x FC ---=,得FC =41x +.又AC =4,∴FC (AC +EC )= ()44211x x +-⎡⎤⎣⎦+=8为定值. 7.提示:易证△ABK ∽△BNA ,故AK •BN =AB 2为定值,即AK 与BN 的乘积与M 点的选择无关. 8.提示:S △ABC •S △HBC =116BC 4,由于BC 是不变的,所以当点A 至BC 的距离变小时,乘积S △ABC •S △HBC 保持不变. 9.⑴A (18,0),B (0,-10),顶点坐标为(4,-989) ⑵若四边形PQCA 为平行四边形,由于QC ∥PA ,故只要QC =PA 即可,而PA =18-4t ,CQ =t ,故18-4t =t ,得t =185. ⑶设点P 运动t s ,则OP =4t ,CQ =t ,0<t <4. 5.说明P 在线段OA 上,且不与点O ,A 重合.由于QC ∥OP 知△QDC ∽△PDO ,故144QD QC t DP OP t ===.同理QC ∥AF ,故14QC CE AF EA ==,即14t AF =,∴AF =4t =OP .∴PF =PA +AF =PA +OP =18.又点Q 到直线PF 的距离d =10,∴S △PQF =12•PF •d =12×18×10=90.于是S △PQF 的面积总为定值90. ⑷由前面知道,P (4t ,0),F (18+4t ,0),Q (8-t ,-10),0≤t ≤4. 5.构造直角三角形后易得PQ 2=(4t -8+t )2+102=,FQ 2=(18+4t -8+t )2+102=(5t +10)2+100.①若FP =FQ ,即182=(5t +10)2+100,故25(t +2)2=224,(t +2)2=24425.∵2≤t +2≤6. 5,∴t +224441425=.∴t = 4142. ②若QP =QF ,即(5t -8)2+100=(5t +10)2+100,即(5t -8)2=(5t +10)2,无0≤t ≤4. 5的t 满足. ③若PQ =PF ,即(5t -8)2+100=182,∴(5t -8)2=22422415,又0≤5t ≤22. 5,∴-8≤5t -8≤14. 5,14. 52=22984124⎛⎫= ⎪⎝⎭<224.故没有t (0≤t ≤4. 5)满足此方程.综上所述,当t =4142时,△PQ R 为等腰三角形. 10.⑴C 1的顶点坐标为(1,12). ⑵略 ⑶作PM ⊥AB 于M ,作QN ⊥AB 交AB 延长线于N ,∴PM =1-y P ,FM =1-x P .在R t △PMF 中,PF 2=(1-y P )2+(1-x P )2=1-2y P +y P 2+1-2x P +x P 2,又∵点P 在抛物线上,∴y P =12x P 2-x P +1,∴PF 2=1-x P 2+2x P -2+y P 2+1-2x P +x P 2=y P 2,∴PF =y P ,同理,QF =y Q ,易证△PMF ∽△QNF ,则PM QN PF QF =,∴11Q P y y PF QF --=,即11PF QF PF QF --=,∴11PF QF+=2. 11.先从特殊情况出发.当△ABC 是等腰直角三角形时,点P 与点C 重合,此时点P 的位置在AB 的中垂线上,且到AB 的距离为12AB ,如图①所示.下面就一般情况来证明上面的结论(结论②所示).过C ,E ,G 分别作直线AB的垂线CH,EM,G N,垂足分别是H,M,N.容易证明△AEM≌△ACH,△B G N≌△BCH.从而有AM=CH=BN,EM=AH,G N=BH.这样,线段AB的中点O也是线段MN的中点,连接OP,则OP是梯形EMN G的中位线,从而OP⊥AB,OP=12(EM+G N)=12(AH+BH)=12AB.∴无论点C在AB同一侧的位置如何,E G中点P的位置不变.。
备战中考数学(人教版五四学制)巩固复习第二十四章勾股定理(含解析)

2019备战中考数学〔人教版五四学制〕稳固复习-第二十四章勾股定理〔含解析〕一、单项选择题1.以下各组数能构成勾股数的是〔〕A. 2 , ,B. 12 ,16 ,20C. , ,D. 32 , 42 , 522.如图 ,A在O正北方向 ,B在O正东方向 ,且A、B到点O的距离相等 ,甲从A出发 ,以每小时60千米的速度朝正东方向行驶 ,乙从B出发 ,以每小时40千米的速度朝正北方向行驶 ,1小时后 ,位于点O处的观察员发现甲乙两人之间的夹角为45° ,此时甲乙两人相距〔〕千米.A. 80B. 50C. 100D. 1003.以下三条线段不能构成直角三角形的是〔〕A. 32 , 42 , 52B. 5 ,12 ,13C. 24 ,25 ,7D. 1 , ,4.放学以后 ,小明和小强从学校分手 ,分别沿东南方向和西南方向回家 ,假设小明和小强行走的速度都是40米/分 ,小明用15分钟到家 ,小强用20分钟到家 ,小明家和小强家的距离为〔〕A. 600米B. 800米 C. 1000米 D. 不能确定5.如图 ,设正方体ABCD﹣A1B1C1D1的棱长为1 ,黑、白两个甲壳虫同时从点A出发 ,以相同的速度分别沿棱向前爬行 ,黑甲壳虫爬行的路线是AA1→A1D1→… ,白甲壳虫爬行的路线是AB→BB1→… ,并且都遵循如下规那么:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交〔其中n是正整数〕.那么当黑、白两个甲壳虫各爬行完第2019条棱分别停止在所到的正方体顶点处时 ,它们之间的距离是〔〕A. 0B. 1C. D.6.以下各组数为三角形的三条边长 ,其中能作成直角三角形的是〔〕A. 2 ,3 ,4B. 4 ,5 ,6C. 1 , ,D. 2 , ,47.三角形三边长为6、8、10 ,那么最长边上的高为〔〕A. 6B. 4.5C. 4.8D. 88.园丁住宅小区有一块草坪如下图.AB=3米 ,BC=4米 ,CD=12米 ,DA=13米 ,且AB⊥BC ,这块草坪的面积是〔〕A. 24米2B. 36米2 C. 48米2 D. 72米29.一辆拖拉机沿着公路l以20km/h的速度前行 ,幼儿园R距离公路l大约3km ,拖拉机产生的噪音能够影响周围5km的区域 ,那么幼儿园学生受拖拉机噪音影响持续的时间约为〔〕A. 0.4hB. 0.8hC. 1.2hD. 1.5h10.分别以以下四组数为一个三角形的边长〔1〕1 ,2 ,3;〔2〕3 ,4 ,5;〔3〕5 ,12 ,13;〔4〕6 ,8 ,10.其中能组成直角三角形的有〔〕A. 4组B. 3组 C. 2组 D. 1组11.以下各组数中 ,可以构成勾股数的是〔〕A. 13 ,16 ,19B. , ,C. 18 ,24 ,36D. 12 ,35 ,3712.以下各组数为勾股数的是〔〕A. 6 ,12 ,13B. 3 ,4 ,7C. 4 ,7.5 ,8.5D. 8 ,15 ,17二、填空题13.如下图的一块地,∠ADC=90° ,AD=12m ,CD=9m ,AB=25m ,BC=20m ,那么这块地的面积为________ m2.14.观察以下各式 ,你有什么发现?32=4+5 ,52=12+13 ,72=24+25 ,92=40+41 ,…用你的发现解决以下问题:〔1〕填空:112=________ +________ ;〔2〕请用含字母n〔n为正整数〕的关系式表示出你发现的规律:________15.如图 ,线段AB的长为4 ,C为AB上一个动点 ,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD 和△BCE ,那么DE长的最小值是________.16.一艘轮船以16千米/时的速度离开港口向正北方向航行 ,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行 ,它们离开港口半小时后相距________千米.17.在△ABC中,∠A、∠B、∠C的对边分别为a ,b ,c 且满足〔a﹣b〕2+|a2+b2﹣c2|=0 ,那么△ABC是________三角形.18.以下各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有________ (填序号)19.如图 ,把一张矩形的纸沿对角线BD折叠 ,假设AD=8 ,AB=6 ,那么BE=________.20.如图 ,在一个高为BC为6m ,长AC为10m ,宽为2.5m的楼梯外表铺设地毯 ,假设每平方米地毯40元 ,那么铺设地毯至少需要花费________元钱.21.操场上有两棵树 ,一颗高8米 ,另一颗高4米 ,两树相距4米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题冲刺系列(解析版)第24课时 直角三角形和勾股定理(60分)一、选择题(每题5分,共25分)1.[2016·毕节]下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是(B)A.3,4, 5 B .1,2, 3 C .6,7,8D .2,3,42.如图24-1,在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是(A)A.365 B.1225 C.94D.334【解析】 在Rt △ABC 中,AC =9,BC =12,根据勾股定理得AB =AC 2+BC 2=15,过C 作CD ⊥AB ,交AB 于点D ,又S △ABC =12AC ·BC =12AB ·CD ,∴CD =AC ·BC AB =9×1215=365,则点C 到AB 的距离是365.故选A.图24-1 第2题答图3.[2017·甘孜]如图24-2,点D 在△ABC 的边AC 上,将△ABC 沿BD 翻折后,点A 恰好与点C 重合.若BC =5,CD =3,则BD 的长为(D) A .1B .2C .3D .44.将一个有45°角的三角板的直角顶点放在一张宽为3 cm的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图24图24-2-3,则三角板最长边的长为 (D) A .3 cmB .6 cmC .3 2 cmD .62 cm图24-3 第4题答图【解析】 如答图,过点C 作CD ⊥AD 于点D , ∴CD =3.在直角三角形ADC 中, ∵∠CAD =30°, ∴AC =2CD =2×3=6.又∵三角板是有45°角的三角板, ∴AB =AC =6,∴BC 2=AB 2+AC 2=62+62=72, ∴BC =62,故选D.5.直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图24-4那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是(C)A.247 B.73C.724D.13图24-4【解析】 在Rt △BCE 中,设CE =x ,则BE =EA =8-x ,根据勾股定理有(8-x )2=x 2+62,解得x =74,∴tan ∠CBE =CE BC =746=724.二、填空题(每题5分,共25分)6.[2016·内江]在△ABC 中,∠B =30°,AB =12,AC =6,则BC =7.[2017·凉山]已知直角三角形两边的长分别是3和4,则第三边的长为8.将一副三角尺按图24-5所示叠放在一起,若AB =14 cm ,则阴影部分的面积是__492__cm 2.【解析】 ∵∠B =30°, ∴AC =12AB =7 cm ,易证AC =CF ,∴S △ACF =12AC ·CF =12AC 2=12×72=492(cm 2).9.[2017·无锡]如图24-6,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点,若AD =6,DE =5,则CD 的长等于__8__.【解析】 ∵△ABC 中,CD ⊥AB 于D ,E 是AC 的中点,DE =5, ∴DE =12AC =5,∴AC =10.在直角△ACD 中,∠ADC =90°,AD =6,AC =10,则根据勾股定理,得CD =AC 2-AD 2=102-62=8.10.[2016·遵义]我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图24-7①).图24-7②由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若正方形EFGH 的边长为2,则S 1+S 2+S 3=__12__.图24-7【解析】 ∵八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形, ∴CG =NF ,CF =DG =KF , ∴S 1=(CG +DG )2=CG 2+DG 2+2CG ·DG =GF 2+2CG ·DG ,图24-5图24-6S 2=GF 2,S 3=(KF -NF )2=KF 2+NF 2-2NF ·KF =GF 2-2CG ·DG ,∴S 1+S 2+S 3=GF 2+2CG ·DG +GF 2+GF 2- 2CG ·DG =3GF 2=12. 三、解答题(共20分)11.(10分)如图24-8,在Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,CD =5 cm ,求AB 的长.【解析】 要求的AB 在Rt △ABC 中,∠A =30°,故只需求BC 的长,在Rt △BCD 中,DC =5 cm ,∠DBC =12∠ABC =30°,故可求出BD ,BC 的长,从而根据AB =2BC 计算出结果. 解:∵在Rt △ABC 中,∠C =90°,∠A =30°, ∴AB =2BC ,∠ABC =60°. ∵BD 是∠ABC 的平分线, ∴∠ABD =∠CBD =30°. ∵在Rt △CBD 中,CD =5 cm , ∴BD =10 cm , ∴BC =5 3 cm , ∴AB =2BC =10 3 cm.12.(10分)如图24-9,Rt △ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC =6,BC =8,CD =3.(1)求DE 的长; (2)求△ADB 的面积.解:(1)在Rt △ABC 中,∠C =90°, ∴AC ⊥CD .又∵AD 平分∠CAB ,DE ⊥AB , ∴DE =CD ,又∵CD =3, ∴DE =3;(2)在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴AB =AC 2+BC 2=62+82=10, ∴S △ADB =12AB ·DE =12×10×3=15.(20分)图24-8图24-913.(6分)[2017·荆门]如图24-10,已知圆柱底面的周长为4 dm ,圆柱高为2 dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为(A)A .4 2 dmB .2 2 dmC .2 5 dmD .4 5 dm图24-10 第13题答图【解析】 如答图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度.∵圆柱底面的周长为4 dm ,圆柱高为2 dm , ∴AB =2 dm ,BC =BC ′=2 dm , ∴AC 2=22+22=4+4=8, ∴AC =22,∴这圈金属丝的周长最小为2AC =4 2 dm.14.(6分)[2016·台州]如果将长为6 cm ,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是(A) A .8 cm B .5 2 cm C .5.5 cm D .1 cm【解析】 易知最长折痕为矩形对角线的长,根据勾股定理对角线长为62+52=61≈7.8,故折痕长不可能为8 cm.15.(8分)[2016·铜仁]如图24-11,在矩形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E ,则线段DE 的长为(B) A .3 B.154 C .5D.152【解析】 设ED =x , 则AE =6-x ;∵四边形ABCD 为矩形,∴AD ∥BC , ∴∠EDB =∠DBC , 由题意得∠EBD =∠DBC , ∴∠EDB =∠EBD , ∴EB =ED =x , 由勾股定理得BE 2=AB 2+AE 2,即x 2=32+(6-x )2,解得x =154,∴ED =154.(10分)16.(10分)[2016·潍坊]如图24-12,正△ABC 的边长为2,以BC 边上的高AB 1为边作正△AB 1C 1,△ABC 与△AB 1C 1公共部分的面积记为S 1;再以正△AB 1C 1边B 1C 1上的高AB 2为边作正△AB 2C 2,△AB 1C 1与△AB 2C 2公共部分的面积记为S 2,…,以此类推,则__S n =2·⎝ ⎛⎭⎪⎫34n__.(用含n 的式子表示)【解析】 ∵等边三角形ABC 的边长为2,AB 1⊥BC , ∴BB 1=1,AB =2, 根据勾股定理得AB 1=3, ∴S 1=12×34×(3)2=32·⎝ ⎛⎭⎪⎫341; ∵等边三角形AB 1C 1的边长为3,AB 2⊥B 1C 1, ∴B 1B 2=32,AB 1=3, 根据勾股定理得AB 2=32,∴S 2=12×34×⎝ ⎛⎭⎪⎫322=32·⎝ ⎛⎭⎪⎫342;…以此类推,S n =32·⎝ ⎛⎭⎪⎫34n .图24-11图24-12。