高中数学第二章数列(二)教学设计新人教A版必修5

合集下载

人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】

人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】

2.2等差数列的概念与通项公式一、教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。

2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力3.情感目标:①通过个性化的学习增强学生的自信心和意志力。

②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。

③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。

二、教学重点:研究等差数列的概念以及通项公式的推导。

教学难点;(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

三、学情及导入分析:高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。

本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.弄清楚等差数列与通项公式的含义以及通项公式的推导过程。

四、教学过程:教学环节教学内容师生活动设计意图复习旧知识,引入新1、知识链接;数列的通项公式与递推关系.学生回答,引导温故知新。

由复习引入,通过数学知识的内部提出问题。

知归纳抽象形成概念比较分析,深化认识创设问题情景:1.下述数列有什么共同特点?根据下述数列的共同特点,可以给出等差数列的定义吗?能将以上的文字语言转换成数学符号语言吗?[来源:学#科#网Z#X#X#K]引例1:从0开始,将5的倍数从小到大排列,得到的数列?引例2:从1开始,将自然数从小到大排列,得到的数列?引例3:为了保证考试笔试的秩序,每次放入2个人考试,依次排列下去,已经考试的人员组成一个什么数列?得出等差数列的定义:从第二项起,每一项与它前一项的差(公差d)为同一常数,这样的一组数列,叫做等差数列”。

高中数学 第二章 数列 数列极限教学设计 新人教A版必修5(2021年整理)

高中数学 第二章 数列 数列极限教学设计 新人教A版必修5(2021年整理)

数列极限“数列极限"这节内容为一课时(45分钟),在课堂上很圆满地完成本节课的教学任务。

对本节课的教学我从如下的五个方面进行说明:一、教材分析1.教材的地位和作用(1)在数学中的地位和作用众所周知,对数列极限这个概念的理解是学习导数所必备的知识.另外,极限也是从初等数学的思维方式到高等数学的思维方式的质的转变,在重点考察思维方法的高考命题中是最好的命题素材之一.(2)在全章中的地位和作用《数列的极限》安排在高中数学第三册(选修2)第二章、第二节,是数列极限的起始课.这部分内容在课本第73页至76页。

是全章内容的起点,重点 .2.本节内容的课标要求从数列的变化趋势来理解极限的概念;能初步利用极限定义确定某些简单的数列极限;体会极限思想.3.教学重点、难点、关键的确定教学重点:数列极限的概念教学难点:如何从变化趋势的角度, 来正确理解数列极限的概念教学关键:教学中启发学生在分析问题时抓住问题的本质(即定义)确立依据:这样确定重难点及教学关键,主要是基于课标要求和对本节课全面分析。

二、教学目标分析根据我对教材的分析以及对新课程的教学理念的认识,确定教学目标如下:(1)知识目标:使学生理解极限的概念,能初步利用极限定义确定某些简单的数列极限;(2)能力目标:1、通过设置问题情境、数列变化趋势的分析,使学生理解数列极限的定义,学会数学语言的表述,培养学生观察、分析、概括的能力.2、通过分层练习,使学生的基础知识得到进一步的巩固,进而学会数列极限的分析方法,体会在探索问题中由静态到动态、由有限到无限的辨证观点和“从具体到抽象,从特殊到一般再到特殊”的认识过程.(3)情感态度与价值观目标:1、通过介绍我国古代思想家庄周和数学家刘徽,激发学生的民族自尊心和爱国主义思想情感。

2、通过介绍生活中的极限运动和极限精神,激发提高学生的学习积极性,优化学生的思维品质。

确立依据:基于对教材、教学大纲和教学内容的分析,制定相应的教学目标。

高中数学 第二章 数列 数列求通项、求和 求数列通项公式累乘和累加法学案(无答案)新人教A版必修5

高中数学 第二章 数列 数列求通项、求和 求数列通项公式累乘和累加法学案(无答案)新人教A版必修5

专题:求数列的通项公式——累加法和累乘法学习目标1. 掌握并能熟练应用数列通项公式的常用方法:累加法和累乘法;2. 通过对例题的求解引导学生从中归纳相应的方法,明确不同的方法适用不同的前提、形式,使学生形成解决数列通项公式的通法;3. 感受知识的产生过程,通过方法的归纳,形成事物及知识间联系与区别的哲学观点,体会数学累加思想和累乘思想。

________________________________________________________________________________ 自学探究:回顾等差、等比数列的通项公式推导过程,完成下列任务。

例:已知数},{n a 其中,,111n a a a n n +==+①求它的通项n a 。

变题1:把①式改为;11+=+n n a a变题2:把①式改为;21n n n a a +=+小结1:通过求解上述几个题,你得到什么结论?变题3:把①式改为;11n n a nna +=+变题4:把①式改为;21n n a a =+小结2:通过求解上述2个题,你得到什么结论?挑战高考题:1.(2015.某某.17)已知数列{}n a 满足n nn a a a 2,211==+,)*∈N n (。

(1)求n a2.(2008.某某.5)在数列{}n a 中,)11ln(,211na a a n n ++==+,则=n a ( ). A.n ln 2+ B.n ln 1-n 2)(+ C.n n ln 2+ D.n n ln 1++你能否自己设计利用累加法或累乘法求解数列通项公式的题?通过本节课的学习你收获了什么?。

2021年高中数学人教A版必修五第二章数列第二课时 等差数列的前n项和的最值及应用

2021年高中数学人教A版必修五第二章数列第二课时 等差数列的前n项和的最值及应用

5
课前预习
课堂互动
课堂小结
@《创新设计》
知识点2 裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求和.
常见的拆项方法:
(1)n(n1+k)=_1k__1n_-__n_+1__k__;
(2)
1 n+k+
=_1k___n_+___k_-___n__;
n
(3)(2n-1)1(2n+1)=_12_2_n__1-__1_-__2_n_1+__1__.
绕天心石砌9块扇面形石板构成第一环,向外每环依次
增加9块.下一层的第一环比上一层的最后一环多9块.向
外每环依次也增加9块.已知每层环数相同,且下层比中
层多729块,则三层共有扇面形石板(不含天心石)( )
A.3 699块
B.3 474块
C.3 402块
D.3 339块
@《创新设计》
18
课前预习
课堂互动
7
课前预习
课堂互动
@《创新设计》 课堂小结
@《创新设计》
2.数列{an}的通项公式 an=
1 n+
n+1,其前
n
项和
Sn=9,则
n=________.
解析
an=
1 n+
n+1=
n+1-
n,
∴Sn=( 2-1)+( 3- 2)+…+( n+1- n)
= n+1-1=9,∴n=99. 答案 99
8
课前预习
25
课前预习
课堂互动
课堂小结
(1)若{an}是等差数列,则ana1n+1=1da1n-an1+1,ana1n+2=21da1n-an1+2.
(2)n(n1+k)=1k1n-n+1 k.

高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5

高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5
根据等比数列的性质 a5a6=a1a10=a2a9=a3a8=a4a7=9, ∴a1a2…a9a10=(a5a6)5=95, ∴log3a1+log3a2+…+log10.
名师点评
抓住各项序号的数字特征,灵活运用等比数列的性质,可以顺利地 解决问题.
1234
4.an=2n+3n,判断数列{an}是不是等比数列? 不是等比数列. ∵a1=21+31=5,a2=22+32=13,a3=23+33=35, ∴a1a3≠a22, ∴数列{an}不是等比数列.
1234
课堂小结
1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法. 2.所谓通式通法,指应用通项公式,前n项和公式,等差中项,等比中 项等列出方程(组),求出根本量. 3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.
探究点2 等比数列的性质
命题角度1 序号的数字特征 例2 {an}为等比数列. (1)假设an>0,a2a4+2a3a5+a4a6=25,求a3+a5;
a2a4+2a3a5+a4a6=a23+2a3a5+a25 =(a3+a5)2=25, ∵an>0, ∴a3+a5>0, ∴a3+a5=5.
(2)假设an>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.
方法二 设这四个数依次为2qa-a,aq,a,aq(q≠0),
2qa-a+aq=16, 由条件得aq+a=12,
解得aq==82,
a=3, 或q=13.
当a=8,q=2时,所求的四个数为0,4,8,16;
当 a=3,q=13时,所求的四个数为 15,9,3,1. 故所求的四个数为0,4,8,16或15,9,3,1.
2.等比数列项的运算性质 在等比数列{an}中,若 m+n=p+q(m,n,p,q∈N*),则 am·an= ap·aq . ①特别地,当 m+n=2k(m,n,k∈N*)时,am·an= a2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的 积 ,

高中数学第二章数列 第2课时等差数列的性质学案含解析新人教A版必修

高中数学第二章数列 第2课时等差数列的性质学案含解析新人教A版必修

第2课时等差数列的性质[目标] 1.记住等差数列的一些常见性质;2.会用等差数列的性质解答一些简单的等差数列问题.[重点] 等差数列性质的应用.[难点] 等差数列性质的理解.知识点一等差数列的重要性质[填一填]1.a n=a m+(n-m)d(m,n∈N*).2.若m+n=p+q(m,n,q,p∈N*),则a m+a n=a p+a q.[答一答]1.在等差数列{a n}中,若a m+a n=a p+a q(m,n,p,q∈N*),则m+n=p+q成立吗?提示:不一定.若数列{a n}是常数列,则m+n=p+q不一定成立.2.在公差为d的等差数列{a n}中,若m+n=2p(m,n,p∈N*),则2a p与a m,a n有何关系?提示:2a p=a m+a n.3.在等差数列{a n}中,若m+n=p,则a m+a n=a p成立吗?提示:不成立.知识点二等差数列的其他性质[填一填]1.若{a n}是公差为d的等差数列,则下列数列:(1){c+a n}(c为任一常数)是公差为d的等差数列;(2){ca n}(c为任一常数)是公差为cd的等差数列;(3){a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.2.若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.[答一答]4.在等差数列中,如何判断数列的单调性?提示:在等差数列{a n}中,a n=a1+(n-1)d.当d>0时,{a n}是递增数列;当d=0时,{a n}是常数列;当d<0时,{a n}是递减数列.5.判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画“×”. (1)等差数列去掉前面若干项后,剩下的项仍构成等差数列.( √ ) (2)摆动数列不可能是等差数列.( √ )(3)在等差数列{a n }中,若m +n +p =3t ,则a m +a n +a p =3a t .( √ )类型一 等差数列的性质应用[例1] (1)已知等差数列{a n },a 5=10,a 15=25,求a 25的值; (2)已知等差数列{a n },a 3+a 4+a 5+a 6+a 7=70,求a 1+a 9的值;(3)已知数列{a n },{b n }都是等差数列,且a 1=2,b 1=-3,a 7-b 7=17,求a 19-b 19的值. [分析] 分析题目,可利用等差数列的性质,也可利用通项公式求解. [解] (1)方法一:设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+4d =10,a 1+14d =25,解得⎩⎪⎨⎪⎧a 1=4,d =32,故a 25=a 1+24d =4+24×32=40.方法二:因为5+25=2×15,所以在等差数列{a n }中有a 5+a 25=2a 15,从而a 25=2a 15-a 5=2×25-10=40.方法三:因为5,15,25成等差数列,所以a 5,a 15,a 25也成等差数列,因此a 25-a 15=a 15-a 5,即a 25-25=25-10,解得a 25=40.(2)由等差数列的性质,得a 3+a 7=a 4+a 6=2a 5=a 1+a 9,所以a 3+a 4+a 5+a 6+a 7=5a 5=70,于是a 5=14,故a 1+a 9=2a 5=28.(3)令c n =a n -b n ,因为{a n },{b n }都是等差数列,所以{c n }也是等差数列,设其公差为d ,由已知,得c 1=a 1-b 1=5,c 7=17,则5+6d =17,解得d =2,故a 19-b 19=c 19=5+18×2=41.在等差数列中,一般存在两种运算方法:一是利用基本量运算,借助于a 1,d 建立方程组进行运算,这是最基本的方法;二是利用性质运算,运用等差数列的性质可简化计算,往往会有事半功倍的效果.[变式训练1] (1)在等差数列{a n }中,a 2=-5,a 6=a 4+6,则a 1等于( B ) A .-9 B .-8 C .-7 D .-4解析:∵{a n }是等差数列,∴a 6-a 4=6=2d . ∴d =3.∴a 1+d =-5.∴a 1=-8.(2)若数列{a n }的公差为2,则数列{3a n -2}的公差为( D ) A .3 B .4C.5 D.6解析:∵数列{a n}的公差为2,∴数列{3a n-2}的公差为3×2=6.(3)设数列{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,那么由a n+b n所组成的数列的第37项的值为( C )A.0 B.37C.100 D.-37解析:设c n=a n+b n,则c1=a1+b1=25+75=100,c2=a2+b2=100.故d=c2-c1=0.故c n=100(n∈N*).从而c37=100.类型二等差数列的实际应用[例2] 有一批影碟机原销售价为每台800元,在甲、乙两家商场均有销售.甲商场用如下方法促销:买一台单价为780元,买两台单价为760元,以此类推,每多买一台则所买各台单价均减少20元,但每台最低不低于440元;乙商场一律都按原价的75%销售.某单位需购买一批此类影碟机,问去哪一家商场购买花费较少?[分析] 先求出购买n台时甲商场的售价,再与购买n台时乙商场的售价作差比较.[解]设该单位需购买影碟机n台,在甲商场购买单价为a n元,当a n不低于440时,a1,a2,…,a n构成等差数列,则a n=780+(n-1)(-20)=800-20n,解不等式a n≥440,即800-20n≥440,得n≤18.当购买台数小于或等于18台时,每台售价为(800-20n)元,当购买台数大于18台时,每台售价为440元.到乙商场购买,每台售价为800×75%=600(元).又(800-20n)n-600n=20n(10-n),所以,当n<10时,600n<(800-20n)n;当n=10时,600n=(800-20n)n;当10<n≤18时,(800-20n)n<600n;当n>18时,440n<600n.所以当购买台数少于10台时,到乙商场购买花费较少;当购买10台时,到两商场购买花费相同;当购买台数多于10台时,到甲商场购买花费较少.1.在实际问题中,若涉及一组与顺序有关的数的问题,可考虑利用数列方法解决,若这组数依次成直线上升或下降,则可考虑利用等差数列方法解决.2.在利用数列方法解决实际问题时,一定要分清首项、项数等关键问题.[变式训练2] 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?解:由题知:a 1=3,a 2=5,a 3=7,a 4=9,…,可知其是以3为首项,2为公差的等差数列,则a n =2n +1,当n =102时,a 102=205,当a n =999时,2n +1=999,n =499.答:第102个雕塑是由205只蝴蝶组成的;由999只蝴蝶组成的雕塑是第499个. 类型三 等差数列的综合应用[例3] 已知两个等差数列5,8,11,…和3,7,11,…都是100项,求它们有多少个共同的项.[分析] 先写出两数列的通项公式,利用两通项公式寻找共同的项. [解] 解法一:设两个数列分别为{a n }与{b k }, 则a 1=5,d 1=8-5=3,通项a n =5+(n -1)·3=3n +2;b 1=3,d 2=7-3=4,通项b k =3+(k -1)·4=4k -1. 设数列{a n }的第n 项与{b k }的第k 项相同, 即a n =b k ,即3n +2=4k -1. ∵n =43k -1,而n ∈N *,k ∈N *,∴k 必须为3的倍数,设k =3r (r ∈N *),得n =4r -1,由条件知⎩⎪⎨⎪⎧1≤3r ≤100,1≤4r -1≤100,解得12≤r ≤1014,又∵r ∈N *,∴1≤r ≤25(r ∈N *). ∴共有25个共同的项.解法二:由解法一知两数列的通项分别为a n =3n +2,b k =4k -1,设共同项构成新数列{c n },则c 1=11,∵数列{a n },{b n }均为等差数列,∴数列{c n }仍为等差数列,且公差为d =12. ∴c n =11+(n -1)·12=12n -1. 又∵a 100=302,b 100=399, ∴c n =12n -1≤302,∴n ≤25.25,∴两数列有25个共同项.本题是探求两个数列的公共项问题,解法一是常规解法,解法二利用了最小公倍数.通常是从通项公式入手,建立a n =b m 这样的方程,再求其一定范围内的整数解.本题常见的错误是求得数列a n =3n +2,b n =4n -1,即令3n +2=4n -1,解得n =3,所以有一个公共项11,这显然是错误的.[变式训练3] 把数列{2n +1}中的项依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,…循环,为:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,则第104个括号内的各数之和为( D )A .2 036B .2 048C .2 060D .2 072解析:由观察发现,每四个括号是一个循环,一个循环由10个数组成,104个括号有26个循环,则第104个括号内有四个数,这四个数为数列3,5,7,9,…的第257项、第258项、第259项、第260项,分别为3+(257-1)×2,3+(258-1)×2,3+(259-1)×2,3+(260-1)×2,即515,517,519,521,其和为2 072.故选D.1.等差数列{a n }中,若a 2+a 4 024=4,则a 2 013=( A ) A .2 B .4 C .6 D .-2解析:∵2a 2 013=a 2+a 4 024=4,∴a 2 013=2.2.已知等差数列{a n }中,a 7=π4,则tan(a 6+a 7+a 8)等于( C )A .-33B .- 2C .-1D .1解析:∵在等差数列{a n }中,a 6+a 7+a 8=3a 7=3π4,∴tan(a 6+a 7+a 8)=tan 3π4=-1.3.如果等差数列{a n }中,a 1=2,a 3=6,则数列{2a n -3}是公差为4的等差数列. 解析:设数列{a n }的公差为d ,则a 3-a 1=2d =4, 即d =2.故数列{2a n -3}的公差为4.4.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=13. 解析:设等差数列{a n }的公差为d . ∵a 5=a 2+6,∴a 5-a 2=6,即3d =6,d =2. ∴a 6=a 3+3d =7+3×2=13. 5.在等差数列{a n }中: (1)若a 5=a ,a 10=b ,求a 15; (2)若a 3+a 8=m ,求a 5+a 6; (3)若a 5=6,a 8=15,求a 14. 解:(1)∵a 5+a 15=2a 10,∴a 15=2a 10-a 5=2b -a .(2)解法一:∵a 3+a 8=(a 1+2d )+(a 1+7d ) =2a 1+9d =m ,∴a 5+a 6=(a 1+4d )+(a 1+5d )=2a 1+9d =m . 解法二:∵5+6=3+8, ∴a 5+a 6=a 3+a 8=m .(3)解法一:∵a 8=a 5+(8-5)d , 即15=6+3d ,∴d =3.∴a 14=a 8+(14-8)d =15+6×3=33. 解法二:∵数列{a n }是等差数列,∴数列a 5,a 8,a 11,a 14,…是等差数列,首项a 5=6,公差d =a 8-a 5=15-6=9, ∴第四项a 14=6+3×9=33.——本课须掌握的问题运用等差数列的性质,能够简化问题,提高准确性.常用的性质主要有: (1)d =a m -a n m -n(m ,n ∈N *,且n ≠m ); (2)a n =a m +(n -m )d (n ,m ∈N *); (3)若m +n =p +q (m ,n ,p ,q ∈N *), 则a m +a n =a p +a q .特别地,若m +n =2p (m ,n ,p ∈N *), 则a m +a n =2a p .在解决等差数列问题时要注意项数(即项的下标)之间的关系.。

高中数学人教A版必修五教学课件:第二章 《数列》 2.4 第2课时 等比数列的性质

高中数学人教A版必修五教学课件:第二章 《数列》 2.4 第2课时 等比数列的性质

-6 解析:a4a7=a1· a10= =-2. 3
答案:B
3. 等比数列{an}中, 若 a9=-2, 则此数列前 17 项之积为____________.
解析:由题意得 a1a2a3…a15a16a17 =(a1a17)· (a2a16)· (a3a15)· …· a9
17 17 =a17 9 =(-2) =-2 .
2 ∴a6 =a2· a10,
1 ∴a10=162 × =13 122. 2
2
法三:由公式 ap· aq=ap+k· aq-k 得
2 a2· a10=a2+4· a10-4=a6 .
1 ∴a10=1622× =13 122. 2
答案:13 122
探究二
an+1=can+d(c≠1,cd≠0)的递推关系
利用等比数列的性质解题 (1)基本思路:充分发挥项的 “下标”的指导作用,分析等比数列项 与项之间的关系,选择恰当的性质解题. (2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.
1.在等比数列中,若 a2=2,a6=162,则 a10=________.
解析:法一:∵a6=a2q4,其中 a2=2,a6=162, ∴q4=81, ∴a10=a6q4=162×81=13 122. 法二:∵2,6,10 三数成等差数列, ∴a2,a6,a10 成等比数列.

1n-1 4n-1 n-1 第 n 个图形的周长 3 ×(3×4 )=3×3 .
[感悟提高]
(1)解决此类问题,需要抓住变中的不变量,即数据在改
变,但其变化规律不改变,事实上,给出的图形只是问题的载体,我 们只需从“形”中抽象出“数”,即可将问题归结为等比数列.
a1=1, 1 ∴ 或 1 q = . q=2,

人教A版高中数学高二版必修5教师用书 第二章 数列

人教A版高中数学高二版必修5教师用书 第二章 数列

知识点新课程标准的要求层次要求领域目标要求数列的概念与递推公式1.了解数列的概念,体会数列是一种特殊函数,能根据数列的前几项写出简单数列的通项公式2.类比函数理解数列的几种表示方法(列表、图象、通项公式等),能根据项数多少、数列的性质对数列分类3.了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项,能求某些数列的通项公式1.本章学习应使学生认识到数学来源于生活实际,生活中又充满了数学,数学中有无穷的奥秘.学会从生活实际中发现数学规律,体会数学美,体验探索的乐趣.了解我国数学家对数列的贡献,培养学生的爱国热情.通过了解数学家对数列问题锲而不舍的探索过程,培养学生学习数学的兴趣2.养成收集资料、自主探索、合作交流的习惯,提高数学建模能力,提高应用意识和实践能力3.进一步体会从特殊到一般,由已知到未知,从有限到无限的认识事物的规律,养成既大胆猜想又严格证明的科学精神等差数列1.掌握等差数列和等差中项的概念,会用定义判定数列是否是等差数列2.掌握等差数列的通项公式及推导方法,会应用直线、一次函数等有关知识研究等差数列的性质,能熟练运用通项公式求有关的量:a1,d,n,a n,S n3.掌握等差数列的前n项和公式及推导方法,能熟练运用通项公式、前n项和公式,对于a1,d,n,a n,S n中已知三个量求另外两个量;能灵活运用公式解决与等差数列有关的综合问题;能构建等差数列模型解决实际问题等比数列1.掌握等比数列和等比中项的概念,能利用定义判定数列是否是等比数列2.掌握等比数列的通项公式及推导方法,能类比指数函数利用等比数列的通项公式研究等比数列的性质,能熟练运用通项公式求有关的量:a1,q,n,a n,S n3.掌握等比数列的前n项和公式及推导方法,能熟练运用通项公式、前n项和公式,对于a1,q,n,a n,S n中已知三个量求另外两个量;能灵活运用公式解决有关等比数列的综合问题;能构建等比数列模型解决实际问题等差数列与等比数列的综合应用1.能通过类比、转化等方法解决与等差数列、等比数列有关的一些问题2.能用等差数列、等比数列的知识解决实际问题数列是高中数学的主干知识之一,是衔接初等数学与高等数学的桥梁,其中等差、等比数列是最重要、最基本的两种特殊数列,包含的主要内容有等差、等比数列的概念、判定、通项公式、前n项和公式、性质、简单应用等.在教学过程中应注意以下几点:1.注重基础,要求学生熟练掌握两类数列的通项公式、求和公式等,能灵活应用数列的性质.2.授课时有意识地总结一些常用的解题方法:通项公式的求法,等差、等比数列的判定,常用的求和方法等.3.强化训练,提升学生的计算能力,数列的很多题目计算量比较大,等比数列运算中常常会综合指数幂的运算等,这些都要求学生多加训练.4.强化思想方法的应用,本章用得较多的有函数与方程思想、分类讨论思想、化归与转化思想等.5.在平时的练习中,要注意引导学生对一些易错点多总结,如在利用等比数列求和公式时要注意公比为1的情况,数列求和中对项数的确定等.第1课时数列的概念与简单表示法1.掌握数列、数列中的项、数列的通项公式等概念,能根据数列的前几项求数列的通项公式.2.能根据数列的通项公式求数列中的指定项.3.掌握数列的一些简单性质以及递增数列、递减数列等概念.4.了解递推公式是给出数列的一种方法,会根据递推公式写出数列的前几项.重点:由数列的前几项写出其通项公式.难点:理解数列是一种特殊的函数.小明妈妈从小明1周岁开始在每年的生日这天都要给小明测出身高,并按时间顺序记录下来,得到一列数.日常生活中你还能举出这样的例子吗?问题1:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.数列中排在第n位的数称为这个数列的第n项,记为a n.问题2:(1)数列的一般形式可以写成:a1,a2,a3,…,a n,…,简记为{a n}.(2)如果数列{a n}的第n项a n与n之间的关系可以用一个公式来表示,那么这个公式就叫作这个数列的通项公式.(3)数列的分类分类标准名称含义例子数列按项的个数有穷数列项数有限的数列1,2,3,…,10无穷数列项数无限的数列1,4,9,…,n2,…按项的变递增数列自第二项起,每一项大2,4,6,8,…化趋势于它的前一项的数列递减数列自第二项起,每一项小于它的前一项的数列1,,,,…常数列各项都相等的数列2,2,2,…摆动数列自第二项起,有些项大于它的前一项,有些项小于它的前一项的数列1,-2,3,-4,…问题3:数列概念的本质:从映射、函数的观点来看,数列也可以看作是一个定义域为正整数集(N*)或它的有限子集({1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值.数列的通项公式a n就是相应函数的解析式f(n).问题4:数列中的项与集合中的元素相比较,有哪些异同?在世界数学史上,对数列的讨论具有悠久的历史.中国、巴比伦、古希腊、埃及和印度等,都曾经研究过数列,中国古代数学名著《周髀算经》《九章算术》《孔子算经》《张邱建算经》等,对等差数列和等比数列都列举过计算的例子,说明中国古代对数列的研究做出过一定的贡献.1.已知数列{a n},a n=(n∈N*),那么是这个数列的第()项.A.9B.10C.11D.12【解析】由=可解得n=10或n=-12(舍去),所以n=10.【答案】B2.图中表示的1,4,9,16,…这样的数称为正方形数.那么第n个正方形数为().A.nB.n(n+1)C.n2D.n2+1【解析】各正方形数依次构成一个数列,记作{a n},则a1=1=12,a2=4=22,a3=9=32,a4=16=42,所以第n 个正方形数为a n=n2.【答案】C3.已知数列的前四项是3,5,9,17,则该数列的第5项是.【解析】归纳前四项可得a1=21+1,a2=22+1,a3=23+1,a4=24+1,所以第5项为a5=25+1=33.【答案】334.已知数列{a n}中,a n=n+3(n∈N*,n≤7),试用图象表示出这个数列.【解析】如图所示.根据数列的前几项归纳数列的通项公式写出下面各数列的一个通项公式,使它的前几项分别是下列各数.(1)1,2,3,4;(2),-1,,-,;(3)9,99,999,9999.【方法指导】根据给定的项,写出数列的一个通项公式,关键是找到n与a n的关系.例如:(1)中的各项可分别写为1+,2+,3+,4+,这样就很容易得出其通项公式;(2)中注意正负号如何调整;(3)中的各项可分别写为101-1,102-1,103-1,104-1.【解析】(1)a n=n+;(2)a n=(-1)n+1;(3)a n=10n-1.【小结】解决此类题目时要把握好以下几个方面:①当给定的项由几部分组成时,我们可以“各个击破”,同时也要注意各部分之间的联系;②正负号可利用(-1)n或(-1)n+1来调整;③熟练掌握常见数列的通项公式,比如:1,2,3,4,…;2,4,6,8,…;1,4,9,16,…;2,4,8,16,…它们的通项公式可以分别为a n=n,a n=2n,a n=n2,a n=2n.根据数列的通项探究数列的项数列{a n}中,已知a n=(n∈N*).(1)写出a10,a n+1,;(2)79是否是数列中的项?若是,是第几项?【方法指导】分别用10,n+1,n2替换通项公式中的n求解出数列中的a10,a n+1,项,再令a n=79求解出n的值进行判断.【解析】(1)∵a n=(n∈N*),∴a10==,a n+1==,==.(2)令79=,解方程得n=15或n=-16,∵n∈N*,∴n=15,即79为该数列的第15项.【小结】该题考查数列通项的定义,判断数列项的归属,由通项公式可以求得数列中的任意一项,也可以由确定性判断一个数是不是数列中的项,判断时假设此数为数列中的第n项,代入通项公式求解n,若求得结果为正整数,则是数列中的项,否则不是.求数列中的最大项已知数列{a n}的通项公式为a n=-n2+7n-50,求数列{a n}中的最大项.【方法指导】由通项公式可知a n是关于n的二次函数,求二次函数最值可采用配方法,此时要注意其中自变量n为正整数.【解析】∵a n=-(n-)2-,∴数列{a n}中的最大项是-.[问题]上述解法正确吗?[结论]错误,在数列{a n}中,n∈N*,故n不能等于.于是,正确的解法如下:(法一)a n=-n2+7n-50=-(n-)2-,其对称轴为n=,所以当n=3或4时,a n取得最大值,为a3=-32+7×3-50=-38,a4=-42+7×4-50=-38.(法二)设数列{a n}中第n项最大,则即解得所以当n=3或4时,a n取得最大值,且最大项为a3=a4=-38.【小结】法一中的关键是配方,障碍点在于n的取值是,还是3,4,或者是3,4中的一个.法二中的关键是不等式组的建立,思维障碍点在于解得后如何处理.求下列数列的一个通项公式:(1)1+,1-,1+,1-,…;(2),,,,,….【解析】(1)a n=1+(-1)n-1.(2)a n=.设数列,,2,,,…,则4是这个数列的().A.第9项B.第10项C.第11项D.第12项【解析】此数列即为,,,,,…通项公式为a n=,令4=,得n=11,∴选C.【答案】C数列{a n}中,a n=n-,求数列{a n}的最大项和最小项.【解析】由题意得a n=n-=-,∴数列{a n}是递增数列,∴数列{a n}的最小项为a1=1-,没有最大项.1.1,,,,…的一个通项公式a n等于().A. B.C.D.【解析】若把换成,同时首项1换成,规律就明显了.其一个通项应该为:a n=.【答案】C2.数列{a n}中,a n=-2n2+16n+3,则其中最大项为().A.a3B.a4C.a1D.a10【解析】a n=-2(n-4)2+35,故当n=4时,a n取最大值.【答案】B3.已知数列1,,,,…,,…,则3是它的第项.【解析】∵a n=,由=3,得n=23,∴3是该数列第23项.【答案】234.已知数列{a n}的通项公式为a n=.(1)求这个数列的第10项;(2)是不是该数列中的项?为什么?【解析】(1)当n=10时,a10==.(2)设是该数列中的第m项,则=,得9m2-303m+100=0,即m=或m=,均不是正整数.故不是数列{a n}中的项.(2013年·陕西卷)观察下列等式(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5……照此规律,第n个等式可为.【解析】根据等式两边的规律可知:第n个等式为(n+1)(n+2)(n+3)…(n+n)=2n×1×3×…×(2n-1).【答案】(n+1)(n+2)(n+3)…(n+n)=2n×1×3×…×(2n-1)1.数列{a n}的通项公式a n=,则-3的项数为().A.3B.5C.9D.10【解析】a n==-,所以令-=-3,所以n=9.【答案】C2.数列,-,,-,…的一个通项公式是().A.a n=(-1)n+1B.a n=(-1)nC.a n=(-1)n+1D.a n=(-1)n【解析】数列,-,,-,…的前四项正负相间隔,奇数项为正,偶数项为负,所以第n项的符号为(-1)n+1,分母为2n,分子为奇数,所以选C.【答案】C3.已知数列{a n}的通项公式a n=n2-4n-12(n∈N*),则(1)这个数列的第4项是;(2)这个数列从第项起,以后各项都为正数.【解析】(1)a4=42-4×4-12=-12;(2)a n=(n+2)(n-6),当n≥7时,a n>0.【答案】-1274.已知数列{a n}的通项公式为a n=n(n+2),问:(1)80、90是不是该数列的项?如果是,是第几项?(2)从第几项开始,该数列的项大于10000?【解析】(1)令n(n+2)=80,得n1=8,n2=-10(舍),∴80是数列的第8项.令n(n+2)=90,此方程无正整数解,∴90不是该数列的项.(2)∵a99=99×101<10000,而a100=100×102>10000,又该数列为递增数列,∴从第100项开始,该数列的项大于10000.5.若数列{a n}的通项公式a n=,记f(n)=2(1-a1)(1-a2)…(1-a n),试通过计算f(1),f(2),f(3)的值,推测出f(n)等于().A.B.C.D.【解析】f(1)=2(1-a1)==,f(2)=2(1-)(1-)==,f(3)=2(1-a1)(1-a2)(1-a3)=2(1-)(1-)(1-)==,可猜测f(n)=.【答案】C6.数列,,,,…,有序数对(a,b)可以是().A.(21,-5)B.(16,-1)C.(-,)D.(,-)【解析】由数列的前4项可归纳出数列分母的通项公式为n(n+2),∴a+b=15;分子的通项公式为,∴==,解得∴选D.【答案】D7.已知数列{a n}的通项公式是a n=,那么这个数列是数列(填“递增”或“递减”).【解析】∵a n+1-a n=-=>0,∴a n+1>a n,数列{a n}为递增数列.【答案】递增8.根据下面数列前几项的值,写出数列的一个通项公式:(1),,,,,…;(2)1,3,3,5,5,7,7,9,9,…;(3)2,-6,12,-20,30,-42,….【解析】(1)a n=;(2)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,∴a n=n+;(3)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,∴a n=(-1)n+1n(n+1).9.数列{a n}中,a n=3n2-28n+1,则a n取最小值时n的值为.【解析】a n=3n2-28n+1=3(n-)2-,∴n=5时,a n取最小值.【答案】510.数列{a n}中,a n=.(1)求这个数列的第50项;(2)求证:a n∈(0,1);(3)在区间(,)内有无数列的项?若有,有几项?若无,说明理由.【解析】(1)∵a n==,∴a50=.(2)∵a n==1-,n∈N*,又0<<1,∴a n∈(0,1).(3)由<a n<,得<<.∴解得1<n<,∴当且仅当n=2时,在区间(,)内有数列中的一项.第2课时递推公式与数列的函数思想1.了解递推公式是给出数列的一种方法,会根据递推公式写出数列的前几项.2.了解数列的表示法,会用通项公式、列表法、图象法、递推公式法表示数列.3.掌握数列是特殊的函数,能够运用函数的观点认识数列.重点:根据递推公式写出数列的前几项和利用函数的观点认识、解决数列问题.难点:利用函数的观点解决数列中的单调性和最值问题.多米诺骨牌是一种用木制、骨制或塑料制成的长方形骨牌.玩时将骨牌按一定间距排列成行,轻轻碰倒第一枚骨牌,其余的骨牌就会产生连锁反应,依次倒下.问题1:如果数列{a n}的第n项与它前一项或几项的关系可以用一个式子a n=f(a n-1)来表示,那么这个公式叫作这个数列的递推公式.问题2:由递推公式求数列的每一项,需知数列的第一项或前两项.问题3:数列的表示方法有通项公式、列表法、图象法、递推公式.问题4:从函数角度,数列可以看作是一个定义域是正整数集N*(或它的有限子集)的数从小到大依次取值时对应的一列函数值.如果能用解析式表示出来,就是数列的通项公式,也就是第n 项a n与项数n之间的函数关系.函数可以研究函数的单调性和最值等性质,数列也可以研究单调性与最值.公元1202年,一位意大利比萨的商人斐波拉契(Fibonacci,约1170-1250年)在他的《算盘全书》中提出过一个“养兔问题”:某人买回一对小兔,一个月后小兔长成大兔.再过一个月,大兔生了一对小兔,以后,每对大兔每月都生一对小兔,小兔一个月后长成大兔,根据这个规律依次写出每个月的兔子对数的总数,即:1,1,2,3,5,8,13,21,34,55,….这就是著名的斐波拉契数列.1.已知数列{a n}的图象在函数y=的图象上,当x取正整数时,则其通项公式为().A.a n=(x∈R)B.a n=(n∈N*)C.a n=(x∈N)D.a n=(n∈N)【解析】数列{a n}对应的点列为(n,a n),即有a n=(n∈N*).【答案】B2.已知数列{a n}的首项a1=1,且满足a n+1=a n+,则此数列的第三项是().A.1B.C.D.【解析】∵a1=1,a n+1=a n+,∴a2=a1+=1,a3=a2+=,故选C.【答案】C3.数列{a n}中,a1=1,a n=+1,则a4= .【解析】a2=+1=1+1=2,a3=+1=,a4=+1=+1=.【答案】4.数列{a n}中,已知a n=2n+1-3.(1)写出a3,a4;(2)253是否是数列的项?如果是,是第几项?【解析】(1)a3=13,a4=29.(2)令2n+1-3=253,则2n+1=256,∴n+1=8,∴n=7,∴253是第7项.根据递推公式求数列的项已知在数列{a n}中,a1=1,a2=3,a n=a n-1+(n≥3),则a5等于().A. B.C.4 D.5【方法指导】根据已知项和给定的递推关系式逐项写出即可.【解析】根据递推公式可得:a3=a2+=4,a4=a3+=,a5=a4+=.【答案】A【小结】充分利用递推关系,由a1、a2,先依次求出a3、a4,再求出a5.周期变化的数列探究对于数列{a n},a1=4,a n+1=f(a n),n∈N*,依照下表:x12345f(x)54312(1)求a2,a3,a4;(2)求a2015.【方法指导】数列作为特殊的函数,可利用函数方法来解.【解析】(1)a1=4,a2=f(4)=1,a3=f(1)=5,a4=f(5)=2.(2)由(1)知a1=4,a2=1,a3=5,a4=2,a5=f(2)=4,…,该数列是周期为4的周期数列,所以a2015=a3=5.【小结】通过求数列的前几项,发现规律,找到周期是本题的关键.求数列的最大项已知数列{a n}的通项a n=(n+1)()n(n∈N*),试问该数列{a n}有没有最大项?若有,求出最大项和最大项的系数;若没有,请说明理由.【方法指导】数列中寻找最大项,就要判断数列的单调性,判断数列的单调性可以借助函数的单调性判断,也可以只需连续前后两项进行比较,可以用作差法,也可以用作商法判断.【解析】(法一)∵a n+1-a n=(n+2)()n+1-(n+1)·()n=()n·,∵当n<9时,a n+1-a n>0,即a n+1>a n,当n>9时,a n+1-a n<0,即a n+1<a n.∴该数列中有最大项为第9项,且a9=10×()9.(法二)∵a n=(n+1)()n>0,∴=[(n+2)()n+1]÷[(n+1)()n]=.显然当n<9时,有a n+1>a n,当n>9时,a n+1-a n<0,即a n+1<a n.∴该数列中有最大项为第9项,且a9=10×()9.[问题]上述解法正确吗?[结论]忽略了n=9时的情况,a9=a10,则最大项为第9、10项.于是,正确解答如下:(法一)∵a n+1-a n=(n+2)()n+1-(n+1)·()n=()n·,当n<9时,a n+1-a n>0,即a n+1>a n;当n=9时,a n+1-a n=0,即a n+1=a n;当n>9时,a n+1-a n<0,即a n+1<a n.故a1<a2<a3<…<a9=a10>a11>a12>…,∴该数列中有最大项为第9、10项,且a9=a10=10×()9.(法二)∵a n=(n+1)()n>0,∴=[(n+2)()n+1]÷[(n+1)()n]=.令10(n+2)=11(n+1),得n=9.显然n<9时,有a n+1>a n;当n>9时,有a n+1<a n.故a1<a2<a3<…<a9=a10>a11>a12>…,∴该数列中有最大项为第9、10项,且a9=a10=10×()9.【小结】判断数列的单调性可以借助基本函数的单调性,也可以比较连续两项的大小关系.在比较连续两项之间的大小关系时,关键是不等式组或的建立,要注意等号是否成立,即两项有无可能相等.数列{a n}的首项和递推公式分别是a1=0,a n+1=a n+(2n-1)(n∈N*),求其通项公式.【解析】令n=1,2,3,4,得a1=0,a2=a1+1=1=12,a3=a2+3=4=22,a4=a3+5=9=32,a5=a4+7=16=42,可归纳出a n=(n-1)2.已知数列{a n}满足a1=2,a n+1=,求a2013的值.【解析】∵a1=2,a n+1=,∴a n+2====-,于是a n+4=-=a n.∴{a n}为周期数列,周期T=4.又a1=2,a2=-3,a3=-,a4=,a5=2,∴a2013=a4×503+1=a1=2.已知a n=n×0.8n(n∈N*).(1)判断数列{a n}的单调性;(2)求数列{a n}的最大项.【解析】(1)∵a n+1-a n=×0.8n(n∈N*),∴n<4时,a n<a n+1;n=4时,a4=a5;n>4时,a n>a n+1.即a1,a2,a3,a4单调递增,a4=a5,而a5,a6…单调递减.(2)由(1)知,数列{a n}的第4项和第5项相等且最大,最大项是=.1.数列{a n}中,a n+2=a n+1-a n,a1=2,a2=5,则a2015的值是().A.-2B.2C.-5D.5【解析】因为a n+2=a n+1-a n,a1=2,a2=5,所以a3=3,a4=-2,a5=-5,a6=-3,a7=2,a8=5,利用数列的周期为6,a2015=a6×335+5=a5=-5.【答案】C2.已知数列{a n},a n=2n2-10n+3,它的最小项是().A.第一项B.第二项C.第三项D.第二项或第三项【解析】a n=2n2-10n+3=2(n-)2-,而2和3与的距离相等,故最小项是第二项或第三项.【答案】D3.已知数列{a n}中,a1=1,a n+1-a n=(-1)n,则a100= .【解析】由a1=1,得a2=a1-1=0,a3=a2+1=1,a4=a3-1=0,由此可归纳:a2n=0,∴a100=0.【答案】04.若数列{a n}满足a1=,a n=1-(n≥2且n∈N*),求a2015.【解析】a1=,a n=1-(n≥2且n∈N*),令n=2,则有a2=-1;令n=3,a3=2;令n=4,a4=;令n=5,a5=-1;….所以{a n}是以3为最小正周期的数列.则a2015=a671×3+2=a2=-1.(2011年·浙江卷)若数列{n(n+4)()n}中的最大项是第k项,则k= .【解析】设a n=n(n+4)()n,a n+1=(n+1)(n+5)·()n+1,若=>1,则n2>10,即当n≥4,a n≥a n+1;同理得n≤3时,有a n≤a n+1,a3==,a4=,因此第4项最大,k=4.【答案】41.在数列{a n}中,a1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N*),则的值是().A. B. C. D.【解析】由已知得a n=1+,∴a2=1+=2,a3=1+=,a4=1+=3,a5=1+=,∴=×=.【答案】C2.设数列{a n}中,a1=2,a n+1=2a n+3,则a4等于().A.30B.35C.37D.40【解析】a2=2a1+3=7,a3=2a2+3=17,a4=2a3+3=37.【答案】C3.已知数列{a n}的通项公式是a n=(-1)n(n+1),则a1+a2+a3+…+a10= .【解析】由a n=(-1)n(n+1),得a1+a2+a3+…+a10=-2+3-4+5-6+7-8+9-10+11=5.【答案】54.已知数列{a n}的通项a n=(a,b,c均为正实数),比较a n与a n+1的大小关系.【解析】∵a n==(a,b,c均为正实数),f(n)=是减函数,∴a n=是增函数,∴a n<a n+1.5.在数列{a n}中,已知a1=1,且当n≥2时,a1a2…a n=n2,则a3+a5等于()A.B.C.D.【解析】a3==,a5==,∴a3+a5=.【答案】B6.若a n=,则a n与a n+1的大小关系为().A.a n>a n+1B.a n<a n+1C.a n=a n+1D.不能确定【解析】a n==,易知a n是关于n的增函数,故a n<a n+1.【答案】B7.数列{a n}满足a n+1=若a1=,则a20的值为.【解析】逐步计算,可得a1=,a2=-1=,a3=-1=,a4=,a5=-1=,…,这说明数列{a n}是周期数列,且T=3,所以a3×6+2=a2=.【答案】8.设函数f(x)=log2x-log x4(0<x<1),数列{a n}的通项a n满足f()=2n(n∈N*).(1)求数列{a n}的通项公式;(2)证明:数列{a n}是递增数列.【解析】(1)由已知得log2-lo4=2n,即a n-=2n,变形整理得-2na n-2=0⇒a n=n±,又0<x<1,所以0<<1,故a n<0,所以a n=n-.(2)因为a n=n-=-单调递增,所以数列{a n}是递增数列.9.已知数列{a n}的通项公式为a n=(n∈N*,且n≤20),则数列{a n}的最小项为第项.【解析】可结合函数f(x)==1+,作出f(n)=a n=的图象,观察知数列{a n}的最小项为a3.【答案】310.已知数列{a n}的通项公式为a n=试判断该数列是递增数列还是递减数列,并证明你的结论.【解析】数列{a n}为递增数列.证明:当n≥2时,a n+1=(n+2)+log2(),a n+1-a n=1+log2().显然log2()>0,故a n+1>a n.又a2=3+log2=log2>log2=,∴a2>a1,∴{a n}是递增数列.第3课时等差数列的概念及其性质1.理解等差数列、公差、等差中项的概念.2.探索并掌握等差数列的通项公式,灵活运用通项公式求解计算,做到“知三求一”.重点:等差数列的概念和通项公式.难点:等差数列通项的求法及其应用.《蒙学诗》一去二三里,烟村四五家,亭台六七座,八九十枝花.它的意思是:我到外面游玩,不知不觉离家已有两、三里地,看到不远处的小村庄里,有四、五户人家已经冒起了炊烟.我信步走来,又看到路边有六、七处精美的亭阁楼台,独自静静观赏,才发现身边的树枝上挂着……八朵、九朵,哦,不,十朵花,真是赏心悦目!这首五言绝句是描写风景的优美.它把“一”到“十”的数字嵌入诗中,组合成一幅静美如画的山村风景图,质朴素淡,令人耳目一新.问题1:(1)等差数列的概念:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫作等差数列,这个常数叫作等差数列的公差.(2)等差中项的概念:如果a,A,b成等差数列,那么A叫作a与b的等差中项.其中A= .问题2:等差数列{a n}的首项为a1,公差为d,等差数列的通项公式是a n=a1+(n-1)d ,如何推导的?(法一)归纳猜想:根据等差数列的定义,将{a n}中的每一项都用a1和d表示出来.a2= a1+d ;a3=a2+d= a1+2d ;a4=a3+d= a1+3d ;…;a n= a1+(n-1)d .(法二)累加法:将各式相加可得a n-a1=(n-1)d,故a n= a1+(n-1)d .问题3:根据等差数列的概念,如何判断数列的单调性,如何判断一个数列是否为等差数列?等差数列满足a n-a n-1=d(d为常数,n≥2)或a n+1-a n=d(d为常数,n∈N*).当d>0时,数列为递增数列;当d<0时,数列为递减数列;当d=0时,数列为常数列.要判断一个数列是否为等差数列,只需判断a n-a n-1=d(d为常数,n≥2)或a n+1-a n=d(d为常数,n∈N*)是否成立.问题4:(1)在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项,即2a n=a n-1+a n+1(n≥2).推广:若m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).(2)等差数列的通项公式a n=a1+(n-1)d 中一共涉及了四个量,用方程的观点来看,如果三个量已知,就可求出剩余的一个未知量,即“知三求一”.(3)用函数的观点来认识等差数列的通项公式,可以发现点(n,a n)分布在一次函数的图象上,结合函数性质可认识数列的增减性.公元前1世纪的《周髀算经》将日行轨道按季节不同分成七个同心圆,称为“七衡图”.已知内衡直径a1=238000里,两衡间距为=19833万里,则其余各衡的直径依次为a2=a1+d,a3=a1+2d,…,a7=a1+6d.显然,从中可归纳出一般等差数列的通项公式a n=a1+(n-1)d.1.已知等差数列{a n}的通项公式a n=3-2n,则它的公差为().A.2B.3C.-2D.-3【解析】依题意可得a n+1-a n=-2或a2-a1=(3-4)-(3-2)=-2.【答案】C2.已知等差数列{a n}中,首项a1=4,公差d=-2,则数列{a n}的通项公式是().A.a n=4-2nB.a n=2n-4C.a n=6-2nD.a n=2n-6【解析】通项公式a n=a1+(n-1)d=4+(n-1)(-2)=6-2n.【答案】C3.与的等差中项是.【解析】因为=2-,=-(+2),由等差中项的定义可知,与的等差中项是[(2-)-(2+)]=-.【答案】-4.已知等差数列的前三项为3,7,11,求该数列的第4项和第10项.【解析】根据题意可知:a1=3,d=7-3=4,∴该数列的通项公式为:a n=3+(n-1)×4,即a n=4n-1(n∈N*),∴a4=4×4-1=15,a10=4×10-1=39.求等差数列的通项已知等差数列{a n}中,a3a7=-16,a4+a6=0,求{a n}的通项公式.【方法指导】根据给定的a3a7=-16,a4+a6=0,可以得到关于a1和d的方程组,通过解方程组可得其通项公式.【解析】设{a n}的首项为a1,公差为d,则即解得或故数列的通项公式为a n=-8+2(n-1)=2n-10或a n=8-2(n-1)=-2n+10.【小结】本题体现了方程(组)的思想,这种思想在数列中经常用到.紧紧把握住等差数列的基本量(首项a1和公差d)是解决此类问题的关键.等差数列的判断已知数列{a n}的通项为a n=lg3n,试判断该数列是否为等差数列.若是,其公差是多少?【方法指导】可以利用等差数列的定义来证明,看a n+1-a n是否等于一个与n无关的常数.【解析】a n=lg3n=n lg3,则a n+1-a n=(n+1)lg3-n lg3=lg3,是常数.故数列{a n}是等差数列,公差为lg3.【小结】判断或证明一个数列为等差数列,主要是利用等差数列的定义,确定a n+1-a n是一个与n 无关的常数.等差数列的实际应用《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为().A.1升B.升C.升D.升【方法指导】设出等差数列{a n}的基本量,将所给条件用基本量表示,利用基本量法求解.【解析】设所构成的等差数列{a n}的首项为a1,公差为d,由题意得即解得所以a5=a1+4d=.【答案】B【小结】求解此类问题的关键是把实际问题转化为等差数列问题,利用等差数列的定义、通项公式设出基本量a1和d,解方程即可.在等差数列{a n}中,已知a1+a6=12,a4=7.(1)求a9.(2)求此数列在[101,1000]内共有多少项.【解析】(1)设{a n}的首项为a1,公差为d,则则∴a9=a1+8d=1+8×2=17.(2)a n=1+(n-1)×2=2n-1,令101≤2n-1≤1000,则51≤n≤500.5,故共有450项.已知数列{a n}中,a1=,数列a n=2-(n≥2,n∈N*),数列{b n}满足b n=(n∈N*),求证:数列{b n}为等差数列.【解析】因为b n===,而b n-1=,所以b n-b n-1=-=1(n≥2,n∈N*),故数列{b n}是首项为-,公差为1的等差数列.夏季高山上的温度从山脚起,每升高100m,降低0.7℃,已知山顶处的温度是14.8℃,山脚处的温度为26℃,求此山相对于山脚处的高度.【解析】因为每升高100m温度降低0.7℃,所以该处温度的变化是一个等差数列问题.山脚温度为首项a1=26,山顶温度为末项a n=14.8,所以26+(n-1)(-0.7)=14.8,解之可得n=17,此山的高度为(17-1)×100=1600(m).答:此山相对于山脚处的高度是1600m.1.lg(-)与lg(+)的等差中项为().A.0B.lgC.lg(5-2)D.1【解析】等差中项为===0.【答案】A2.等差数列的相邻四项是1,a,-7,b,那么a、b的值分别是().A.3,-11B.-3,-11C.-3,11D.3,11【解析】根据等差中项的定义得a==-3,-14=a+b=-3+b,∴b=-11.【答案】B3.已知数列{a n}为等差数列,a3=,a7=-,则a15的值为.【解析】设{a n}的首项为a1,公差为d,则解得所以a15=+(15-1)×(-)=-.4.第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次.奥运会如果因故不能进行,届数照算.(1)试写出由举行奥运会的年份构成的数列的通项公式;(2)2008年北京奥运会是第几届?2050年举行奥运会吗?【解析】(1)由题意知:举行奥运会的年份构成的数列是一个以1896为首项,4为公差的等差数列,∴a n=1896+4(n-1)=1892+4n(n∈N*).(2)令a n=2008,则2008=1892+4n,得n=29,故2008年北京奥运会是第29届奥运会.令a n=2050,则2050=1892+4n,无正整数解,故2050年不举行奥运会.(2013年·广东卷)在等差数列{a n}中,已知a3+a8=10,则3a5+a7= .【解析】设公差为d,则a3+a8=10⇒2a1+9d=10,而3a5+a7=4a1+18d=2(2a1+9d)=20.【答案】201.在等差数列{a n}中,a1+a9=10,则a5的值为().A.5B.6C.8D.10【解析】由等差中项的定义得a1+a9=2a5,所以a5=5.【答案】A2.在等差数列{a n}中,a2=2,a3=4,则a10等于().A.12B.14C.16D.18【解析】设等差数列{a n}的公差为d,由a2=2,a3=4,得解得∴a10=a1+(10-1)×d=9d=18.【答案】D3.若2、a、b、c、9成等差数列,则c-a= .【解析】设等差数列2,a,b,c,9的公差为d,则9-2=4d,∴d=,c-a=2d=2×=.【答案】4.已知数列{a n}满足a1=,且当n>1,n∈N*时,有=.(1)求证:数列{}为等差数列;(2)试问a1a2是否是数列{a n}中的项?如果是,是第几项;如果不是,请说明理由.【解析】(1)当n≥2时,由=得,a n-1-a n-4a n-1a n=0,两边同除以a n a n-1得,-=4,即-=4对任意n>1且n∈N*成立,∴{}是以=5为首项,d=4为公差的等差数列.(2)由(1)得,=+(n-1)d=4n+1,∴a n=.∴a1a2=×=.设a1a2是数列{a n}的第t项,则a t==,解得t=11∈N*,∴a1a2是数列{a n}的第11项.5.在x和y(x≠y)两数之间插入n个数,使它们与x,y组成等差数列,则该数列的公差为().A. B.C. D.【解析】由题意知x和y分别为该数列的第1项和第n+2项,则该数列的公差d==.【答案】B6.已知{a n}为等差数列,若a3+a4+a8=9,则a5等于().A.-3B.2C.3D.-2【解析】由a3+a4+a8=3a5知a5=3,∴选C.【答案】C7.已知{}是等差数列,且a4=6,a6=4,则a10= .【解析】-=-=2d,即d=.所以=+4d=+=,所以a10=.【答案】8.已知a,b,c成等差数列,那么a2(b+c),b2(c+a),c2(a+b)是否成等差数列?【解析】成等差数列,证明如下:∵a,b,c成等差数列,∴a+c=2b,a2(b+c)+c2(a+b)-2b2(c+a)=a2c+c2a+ab(a-2b)+bc(c-2b)=a2c+c2a-2abc=ac(a+c-2b)=0,∴a2(b+c)+c2(a+b)=2b2(c+a),∴a2(b+c),b2(c+a),c2(a+b)成等差数列.9.数列{a n}中,各项均为正数,且满足a n+1=a n+2+1,a1=2,则数列{a n}的通项公式为.【解析】由a n+1=a n+2+1得a n+1=(+1)2,∵{a n}各项均为正数,∴=+1,∴-=1,∴{}为等差数列,∴=+(n-1)×1,∴a n=(n+-1)2.【答案】a n=(n+-1)210.已知数列{a n}是等差数列(a k与公差d均不为0).(1)求证:k取任何正整数,方程a k x2+2a k+1x+a k+2=0都有一个相同的实根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(新课标)2015-2016学年高中数学第二章数列(二)教学设计新人教A版必修5从容说课在上节课的内容安排的基础上,本节课安排等差数列与等比数列的综合训练,目标是使学生更熟练地运用等差、等比数列的概念、通项公式、前n项和公式以及有关性质,分析和解决等差、等比数列的综合问题,提高运算速度和运算能力教学重点熟练运用知识,探索解题思路,优化解题步骤教学难点解题思路和解题方法的优化教具准备多媒体课件,投影胶片,投影仪等三维目标一、知识与技能1.熟练地运用等差、等比数列的概念、通项公式、前n项和公式以及有关性质,分析和解决等差、等比数列的综合问题2.提高运算速度和运算能力二、过程与方法1.精选例题,通过对例题的分析与探究,优化解题步骤2.在优化解题步骤的过程中提高运算速度与运算能力三、情感态度与价值观1.在理解题意、探索思路的过程中学会思考,培养敢于思考、善于思考的思维品质2.在解决问题的过程中,学会快速地运算、严密地推理、精确地表达,增强速度意识、效率意识教学过程导入新课师这节课我们要运用等差、等比数列的概念、性质及有关公式,解决一些等差、等比数列的综合问题首先我们再来明确一下有哪些问题生(1)对数列概念理解的题目;(2)等差数列和等比数列中五个基本量a1,a n,d(q),n,S n“知三求二”的问题;(3)数列知识在生产实际和社会生活中的应用师 是的,这是我们前一节课中已经归纳出来的应用本章知识要解决的问题.我们前一节课上已经探讨了几个典型例题,本节课我们进一步探讨推进新课师 出示投影胶片1:例题1:【例1】 已知公差不为零的等差数列{a n }和等比数列{b n }中,a 1=b 1=1,a 2=b 2,a 8=b 3,试问:是否存在常数a ,b ,使得对于一切自然数n ,都有a n =log a b n +b 成立?若存在,求出a ,b 的值;若不存在,请说明理由. [合作探究]师 这道题涉及到两个数列{a n }和{b n }之间的关系,而已知中的三个等式架起了两个数列间的桥梁,要想研究a n ,b n 的性质,应该先抓住数列中的什么量?生 由于{a n }是等差数列,{b n }是等比数列,所以应该先抓住基本量a 1、d 和由已知a 1=b 1=1,a 2=b 2,a 8=b 3,可以列出方程组⎩⎨⎧=+=+2711qd q d解出d 和q ,则a n ,b n 就确定了师 如果a n 和b n 确定了,那么a n =log a b n +b 就可以转化成含有a ,b ,n 的方程,如何判断a ,b 是否存在呢?生 如果通过含有n ,a ,b 的方程解出a 和b ,那么就可以说明a ,b 存在;如果解不出a 和b ,那么解不出的原因也就是a 和b 不存在的理由师 分析得很好.让我们一起来实施刚才分析的思路,看看结论到底是什么?解:设等差数列{a n }的公差为d (d ≠0),等比数列{b n }的公比为q ,则⎩⎨⎧=+=+.71,12q d q d 解得d =5,q=6.所以a n =5n -而b n =6 n -1,若存在常数a ,b ,使得对一切自然数n ,都有a n =log a b n +b 成立, 即5n -4=log a 6 n -1+b 即5n -4=(n -1)log a 6+b即(log a 6-5)n +(b -log a 6+4)=0.对任意n ∈N *都成立只需⎩⎨⎧=+-=-046log 056log a a b 成立解得a =661,b =1.所以存在常数a ,b ,使得对于一切自然数n ,都有a n =log a b n +b 成立师 本题的关键是抓住基本量:首项a 1和公差d 、公比q ,因为这样就可以求出a n 和b n 的表达式.a n 和b n 确定了,其他的问题就可以迎刃而解可见:抓住基本量,是解决等差数列和等比数列综合问题的关键师 出示投影胶片2:例题2:【例2】 某工厂三年的生产计划规定:从第二年起,每一年比上一年增长的产值相同,三年的总产值为300万元,如果第一年、第二年、第三年分别比原计划产值多10万元、10万元、11万元,那么每一年比上一年的产值增长的百分率相同,求原计划中每一年的产值. [合作探究]师 对应用问题,同学们要认真分析,把实际问题转化成数学问题,用学过的数学知识求解请学生读题,并逐句分析已知条件生甲 由每一年比上一年增长的产值相同可以看出,原计划三年的产值成等差数列,由三年的总产值为300万元,可知此等差数列中S 3=300,即如果设原计划三年的产值分别为x-d ,x ,x +d ,则x-d +x +x +d生乙 由产值增长的百分率相同可以知道,实际三年的产值成等比数列,可以设为x-d +10, x +10,x +d +11,则(x +10)2=(x-d +10)(x +d +师 甲、乙两位同学所列方程联立起来,即可解出x ,d . 板 书:解:设原计划三年的产值为x-d ,x ,x +d ,则实际三年产值为x-d +10,x +10,x +d +⎩⎨⎧+=+++-=+++-.)10()11)(10(,3002x d x d x d x x d x 解得x=100,d =10,x-d =90,x+d答:原计划三年的产值分别为90万元、100万元、110万元.师 等差数列和等比数列的知识,在实际生产和生活中有着广泛的应用,在解决这类应用问题时,关键是把实际问题转化成数列问题,分清是等差数列问题,还是等比数列问题,分清a n 和S n ,抓住基本量a 1,d (q),再调用有关的概念和公式求解师 出示投影胶片3:例题3:【例3】 已知数列{a n }是公差不为零的等差数列,数列{a k n }是公比为q 的等比数列,且k 1=1,k 2=5,k 3=17,求k 1+k 2+k 3+…+k n 的值.[合作探究]师 题目中数列{a k n }与{a n }有什么关系? 生 数列{a k n }的项是从数列{a n }中抽出的部分项师 由已知条件k 1=1,k 2=5,k 3=17可以知道等差数列{a n }中的哪些项成等比数列? 生 a 1,a 5,a 17成等比数列.师 要求的k 1+k 2+k 3+…+k n 的值,实质上求的是什么? 生 实质上就是求数列{k n }的前n 项和师 要求{k n }的前n 项和,就要确定数列{k n }的通项公式.应该从哪儿入手? 生 应该从求等比数列{a k n }的公比入手.其公式为15a a师 a 5,a 1要由等差数列{a n }的通项公式来确定,问题就转化成求等差数列中的公差d 和a 1了生 如果设等差数列{a n }的公差为d ,那么a 5=a 1+4d ,a 17=a 1+16d ,由于a 1,a 5,a 17成等比数列,则有(a 1+4d )2=a 1(a 1+16d ),从而a n 应该可以求出了师 请同学们把刚才的分析整理出来(投影胶片4)解:设数列{a n }的公差为d ,d ≠0, 则a 5=a 1+4d ,a 17=a 1+16d因为a 1,a 5,a 17成等比数列,则 (a 1+4d )2=a 1 (a 1+16d ),即2d =a 1d又d ≠0,则a 1=2d所以a n =a 1+(n -1)d =2d +(n -1)d =(n +1)d因为数列{a k n }的公比为q ,则3)11()15(15=++==dd a a q所以a k n =a k1·3 n -1=a 1·3n -1=2d ·3n -1.又a k n =(k n +1)d则2d ·3 n -1=(k n +1)d由d ≠0,知k n =2·3n -1-1(n ∈N*因此,k 1+k 2+k 3+…+k n=2·3 0-1+2·31-1+2·32-1+…+2·3n -1-=2(30+31+32+…+3n -1)-n =2·133-n -n =3n-n -1.师 此题的已知条件中,抽象符号比较多,但是,只要仔细审题,弄清楚符号的含意,看透题目的本质,抓住基本量,不管多复杂的问题,都是能够解决的师 出示投影胶片5:例题4.【例4】 已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=(1)求数列{bn }的通项b n ; (2)设数列{a n }的通项a n =log a (1+nb 1)(其中a >0且a ≠1),记S n 是数列{a n }的前n 项和,试比较S n 与3log 1+n a b 的大小,并证明你的结论. [合作探究]师 数列{b n }的通项容易求得,但是它是攀上这个题目的顶端的第一个台阶,必须走好这一步请同学们快速准确地求出b n生 快速求解(1)解:设数列{b n }的公差是d ,由题意得b 1=10b 1+21×10×(10-1)d =解得b 1=1,d =∴b n =3n -师 在下一个问题中,数列{a n }与数列{b n }具有什么关系呢?数列{a n }具有什么特征? 生 数列{a n }是由数列{b n }生成的一个新的数列? 由a n =log a (1+nb 1)=log a (1+231-n ),可知数列{a n }不是特殊数列师 题中比较S n 与3log 1+n a b 的大小,你现在能作出预料吗? 生 不能,S n 是什么样子还不清楚.需要得出S n ,才能进一步思考师 那就请同学们先把S n 求出来生 写出Sn =log a (1+1)+log a (1+41)+…+log a (1+231-n=loga [(1+1)(1+41)…(1+231-n发现式中的那个积不太好处理师 能不能现在就和3log 1+n a b 联系起来思考一下?要比较两式大小实质是什么?生 因为3log 1+n a b =log a 313+n ,所以实质上就是在同底数的前提下,比较真数的大小师 分析的很好.那么真数的大小如何比较出来?生 陷入沉思,深入思考后,提出自己的想法师 这个大小的比较有一定的难度,下面我们从不同的途径来解决这个问题(投影胶片6)(2)解:由b n =3n -2,知Sn =log a (1+1)+log a (1+41)+…+log a (1+231-n =loga [(1+1)(1+41)…(1+231-n3log 1+n a b =log a 313+n 因此要比较S n 与3log 1+n a b 的大小,可先比较(1+1)(1+41)…(1+231-n )与313+n 的大小取n =1,有(1+1)>3113+⨯取n =2,有(1+1)(1+41)>3123+⨯由此推测(1+1)(1+41)…(1+231-n )>313+n若(*)式成立,则由对数函数性质可断定:当a >1时,S n >3log 1+n a b当0<a <1时,S n <3log 1+n a b(对于(*)式的证明,提供以下两种证明方法供参考下面对(*)式加以证明: 证法一:记An=(1+1)(1+41) (1)231-n )(1+131+n )=21×45×78×…×2313--n nD n =313+n再设nn C n n B n n 313...9106734,133...895623+⨯⨯⨯⨯=-⨯⨯⨯⨯=∵当k∈N 时,121+++k k k k >恒成立,于是A n >B n >C n .∴A n 3>A n ×B n ×C n =3n +1=D n 3.∴A n >D n即(1+1)(1+41)…(1+231-n )>313+n 成立由此证得:当a >1时,S n >3log 1+n a b当0<a <1时,S n <3log 1+n a b证法二:∵2313...710471413-+⨯⨯⨯⨯=+n n n因此只需证1+231-k >332313-+k k 对任意自然数k 成立即证2313--k k >332313-+k k ,也即(3k-1)3>(3k +1)(3k-2)2,即9k >该式恒成立,故1+231-k >332313-+k k取k =1,2,3,…n 并相乘即得A n >D n .师(*)式的证明还有一些其他的证明思路,比如说,数学归纳法、反证法等.有待于今后的学习中学会了这些方法后再应用课堂小结等差数列和等比数列的综合问题,涉及的知识面很宽,题目的变化也很多,但是万变不离其宗,只要抓住基本量a 1,d (q),充分运用方程、函数、转化等数学思想方法,合理调用相关知识,这样,任何问题都不能把我们难倒布置作业1.合作探究复习参考题B 组题2.开展探究活动,思考并解答补充作业板书设计习题详解(课本第75页复习参考题组1.(1)B ;(2)D2.(1)不成等差数列.可以从图象上解释.a ,b ,c 成等差数列,则通项公式为y=p n +q 的形式,且a ,b ,c 位于同一直线上,而a 1,b 1 ,c 1的通项公式却是qpn y +=1的形式,a 1,b 1 , c 1不可能在同一直线上,因此肯定不是等差数列(2)成等比数列.因为a ,b ,c 成等比,有b 2=a c ,又由于a ,b ,c 非零,两边同时取倒数,则有c a b1112⨯=, 所以a 1, b 1,c1也成等比数列3.体积分数:0.033×(1+25%)6≈0.126,质量分数:0.05×(1+25%)64.设工作时间为n ,三种付费方式的前n 项和分别为A n ,B n ,C n ,第一种付费方式为常数列;第二种付费方式为首项是4,公差也是4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列,则A n =38n ;B n =4n +2)1(-n n ×4=2n 2+2n ; Cn =21)21(4.0--n =0.4(2n -下面考察A n ,B n ,C n ,看出n <10时,38n >0.4(2n-1).因此,当工作时间小于10天时,选用第一种付费方式.n ≥10时,A n ≤C n ,B n ≤C n ,因此,选用第三种付费方式5.第一个星期选择A 种菜的人数为a ,即a 1=a ,选择B 种菜的人数为b 1=500-a ,所以有以下关系式:a 2=a 1×80%+b 1×30%,a 3=a 2×80%+b 2……a n =a n -1×80%+b n -1×30%,a n +b n所以a n =150+21a n -1,b n =500-a n =350-21 a n -1 如果a 1=300,则a 2=300,a 3=300,…,a 106.略7..设这家牛奶厂每年应扣除万元消费基金,2002年底剩余资金是1 000(1+50%)-x , 2003年底剩余资金是[1 000(1+50%)-x ](1+50%)-1 000(1+50%)2-(1+50%)x-5年后达到资金1 000(1+50%)5-(1+50%)4x-(1+50%)3x-(1+50%)2x-(1+50%)x=2 000, 解得 x=459万元备课资料备用习题1.公差不为零的等差数列的第2、第3、第6项依次成等比数列,则公比是(2.若等差数列{a n }的首项为a 1=1,数列{b n }为等比数列,把这两个数列对应项相加所得的新数列{an +b n }的前三项为3,12,23,则{a n }的公差与{b n }的公比之和为(A.-3.在等差数列{a n }中,a 1,a 4,a 25依次成等比数列,且a 1+a 4+a 25=114,求成等比数列的这三个数4.设数列{a n }是首项为1的等差数列,数列{b n }是首项为1的等比数列,又c n =a n -b n (n ∈N *),已知c 2=61,c 3=92,c 4=547,试求数列{c n }通项公式与前n 项和公式5.某工厂四年来的产量,第一年到第三年每年增长的数量相同,这三年总产量为1 500吨,第二年到第四年每年增长的百分数相同,这三年总产量为1 820吨,求这四年每年的产量各是多少吨? 参考答案: 1.C3.由⎩⎨⎧=++=+,114273),24()3(1121d a d a d a解得a 1=38,d =0,或a 1=2,d =4,所以三个数为38,38,38,或2,14,4.设等差数列{a n }的公差为d ,等比数列{b n }的公比为q.则⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=-+=-+.54731,9221,61132q d q d q d 解得⎪⎪⎩⎪⎪⎨⎧==.21,34dq5.设前三年产量依次为a -d ,a ,a +d ,则a -d +a +a +d =1 500,解得a =500.后三年产量依次为a ,a +d ,a d a 2)(+,由已知a +a +d +ad a 2)(+ =1 820.解得d =100.所以,四年产量依次为400,500,600,720吨.。

相关文档
最新文档