Nd 3+:Na3La9O(BO3)8晶体生长和光谱性能
ndyag吸收光谱

ndyag吸收光谱
NDYAG(氮化钇铝石榴石)是一种常用的激光晶体。
它具有较宽的吸收光谱范围,可以吸收可见光和近红外光。
NDYAG晶体的吸收光谱范围大约从200纳米到3000纳米,其中特别是在1.06微米和0.94微米处,它的吸收峰值非常显著。
这两个波长是NDYAG激光器常用的激发波长。
吸收光谱的形状和峰值位置受到NDYAG晶体中掺杂的氧化铝和氧化钆等掺杂物的影响。
这些掺杂物可以改变NDYAG
的晶格结构和能级分布,从而对吸收光谱产生影响。
总之,NDYAG晶体的吸收光谱广泛覆盖了可见光和近红外光的范围,并且具有较明显的吸收峰值,在激光器中的应用十分广泛。
ndyag晶体吸收谱线波长

ndyag晶体吸收谱线波长摘要:1.NdYAG 晶体的概述2.NdYAG 晶体的吸收谱线波长3.NdYAG 晶体的应用正文:一、NdYAG 晶体的概述dYAG(钕钇铝石榴石)晶体是一种人工合成的晶体材料,具有较高的激光发射效率和良好的热稳定性。
其主要成分为钇(Y)、铝(Al)、钕(Nd)和氧(O),化学式为Nd1-xYx(AlO4)3,其中x 为钕离子替代钇离子的比例。
NdYAG 晶体广泛应用于激光器、光纤通信、激光显示等领域。
二、NdYAG 晶体的吸收谱线波长dYAG 晶体的吸收谱线波长与其激光发射波长密切相关。
在激光器中,通过外部激励源(如电脉冲)对NdYAG 晶体进行激发,使其产生激光输出。
NdYAG 晶体的吸收谱线波长通常在808-815 纳米范围内,而激光发射波长则在1064 纳米附近。
这种波长的激光在光纤通信和激光加工等领域具有优越性能。
三、NdYAG 晶体的应用1.激光器:NdYAG 晶体是激光器的核心元件,其输出的1064 纳米激光在激光器中具有较高的能量和稳定性。
这种激光器广泛应用于激光加工、激光打标、激光雕刻等领域。
2.光纤通信:NdYAG 晶体在光纤通信领域也有广泛应用。
其吸收谱线波长在808-815 纳米范围内,与光纤的典型工作波长1550 纳米相匹配。
因此,NdYAG 晶体可用于光纤激光器、光放大器等光通信设备。
3.激光显示:NdYAG 晶体在激光显示领域也具有重要应用。
其输出的1064 纳米激光可用于激光投影仪、激光电视等显示设备,提供高亮度、高清晰度的显示效果。
总之,NdYAG 晶体作为一种重要的激光材料,其吸收谱线波长对其激光发射性能具有重要影响。
lamno3熔点

lamno3熔点
拉曼氧化镧(LaMnO3)是一种具有重要应用潜力的材料,其熔点是在文章中需要探讨的主题。
LaMnO3是一种钙钛矿结构的氧化物,由镧(La),锰(Mn)和氧(O)三种元素组成。
它具有许多优异的物理和化学性质,被广泛应用于催化剂、能源存储、传感器等领域。
拉曼氧化镧的熔点是指在一定的条件下,LaMnO3从固态转变为液态的温度。
熔点是一种重要的物理性质,可以用来评估材料的热稳定性和熔融性。
对于LaMnO3来说,其熔点是在约1300摄氏度左右。
LaMnO3的高熔点使其在高温环境下具有良好的稳定性。
这使得它在催化剂领域具有广泛的应用前景。
例如,LaMnO3可以用作汽车尾气处理催化剂,通过将有害气体转化为无害物质,减少对环境的污染。
此外,它还可以用于制备固体氧化物燃料电池等能源存储设备,提供高效的能量转化和储存解决方案。
除了在催化剂和能源存储领域,拉曼氧化镧的熔点也对其在传感器领域的应用起到重要作用。
传感器常常需要在高温条件下工作,因此需要材料具有较高的熔点和热稳定性。
LaMnO3的熔点高,使其能够在高温环境下稳定工作,提供可靠的传感性能。
拉曼氧化镧(LaMnO3)的熔点是该材料的重要物理性质之一。
其高熔点使其在催化剂、能源存储和传感器等领域具有广泛的应用前景。
通过深入研究和理解拉曼氧化镧的熔点,可以为材料设计和应用提供有价值的参考。
NdYAG激光

Nd:YAG激光Nd:YAG激光介绍:激光或英文称为LASER (雷射)其全名为L ight A mplification by S timulated E mission of R adiation.Nd.YAG为其英文简化名称,来自(N eodymium-d oped Y ttrium A luminium G ar net; Nd:Y3Al5O12)或中文称之为钇铝石榴石晶体,钇铝石榴石晶体为其激活物质,体晶体内之Nd原子含量为0.6~1.1%,属固体激光,可激发脉冲激光或连续式激光,发射之激光为红外线波长 1.064μm。
椭圆反射镜Nd.YAG激活物质晶体使用之泵浦灯管主要为氪气(krypton)或氙气(Xenon)灯管,泵浦灯的发射光谱是一个宽带连续浦,但仅少数固定的光谱峰被Nd离子吸收,所以泵浦灯仅利用了很少部份的光谱能量,大部份没被吸收的光谱能量转换成热能,所以能量的使用率偏低。
Nd:YAG吸收的光谱区域由0.730μm ~ 0.760μm与0.790μm ~ 0.820μm,光谱能被吸收后,会导致原子由低能级向高能级跃迁,部分跃迁到高能级的原子又会跃迁到低能级并释放出相同频率单色光谱,但所释放的光谱并无固定方向与相位,所以尚无法形成激光。
[编辑本段]激光生成原理。
当将激活物质放在两个互相平行的反射镜,(其中一片100%反射另一片50%透射镜)就可构成的光学谐振腔,在这光学谐振腔内,非轴向传播的单色光谱被排出谐振腔外:轴向传播的单色光谱在腔内往返传播。
当单色光谱在激光物质中往返传播时,称为谐振腔内“自激振荡”。
当泵浦灯提供足够的高能级的原子在激光物质内,具有高能级的原子在两能级间存在着自发发射跃迁、受激发射跃迁和受激吸收跃迁等三种过程。
受激发射跃迁所产生的受激发射光,与入射光具有相同的频率、相位。
当光重复在谐振腔内通过“粒子数反转状态”的激活物质后,相同频率单色光谱的光强被增大生成了激光,激光高渗透率就能透过谐振腔内50%的透射镜里发射出来,成为连续式激光。
Yb∶Ca3(NbGa)5O12晶体的坩埚下降法生长及光学性能研究

第53卷第4期2024年4月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.53㊀No.4April,2024YbʒCa 3(NbGa )5O 12晶体的坩埚下降法生长及光学性能研究赵㊀涛,艾㊀蕾,梁团结,钱慧宇,孙志刚,潘建国(宁波大学材料科学与化学工程学院,浙江省光电探测材料及器件重点实验室,宁波㊀315211)摘要:使用坩埚下降法成功生长出了镱离子掺杂钙铌镓石榴石晶体(YbʒCa 3(NbGa)5O 12)㊂通过XRD 测试分析了晶体的结构,该晶体为立方晶系,晶胞参数a =b =c =12.471Å㊂对该晶体进行了拉曼光谱㊁透过光谱㊁吸收和发射光谱㊁荧光寿命等测试,计算了该晶体的吸收截面㊁发射截面㊁增益截面等㊂研究了在空气中退火对该晶体吸收光谱㊁发射光谱㊁荧光寿命的影响,退火前在935nm 处吸收截面为1.82ˑ10-20cm 2,退火后降低为1.40ˑ10-20cm 2,退火前在1031nm 处的发射截面为0.56ˑ10-20cm 2,退火后降低为0.40ˑ10-20cm 2,退火前荧光衰减时间为1.42ms,退火后为1.32ms㊂结果表明,YbʒCa 3(NbGa)5O 12单晶在空气中退火会对晶体的激光性能造成不利影响㊂关键词:YbʒCa 3(NbGa)5O 12晶体;坩埚下降法;吸收光谱;发射光谱;荧光衰减;退火中图分类号:O782㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2024)04-0620-07Growth and Optical Properties of YbʒCa 3(NbGa )5O 12Crystals by Bridgman MethodZHAO Tao ,AI Lei ,LIANG Tuanjie ,QIAN Huiyu ,SUN Zhigang ,PAN Jianguo(Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province,School of Materials Science and Chemical Engineering,Ningbo University,Ningbo 315211,China)Abstract :Ytterbium ion doped calcium niobium gallium garnet crystal (Yb ʒCa 3(NbGa)5O 12)was successfully grown by Bridgman method.The structure of the crystal was analyzed by XRD.The crystal is cubic crystal system,and the unit cell parameter a =b =c =12.471Å.The crystal was tested by Raman spectroscopy,transmission spectroscopy,absorption and emission spectroscopy,and fluorescence lifetime.The absorption cross section,emission cross section,and gain cross section of the crystal were calculated.The effects of annealing in air on the absorption spectrum,emission spectrum and fluorescence lifetime of the crystal were studied.The absorption cross section at 935nm before annealing is 1.82ˑ10-20cm 2,and it decreases to 1.40ˑ10-20cm 2after annealing.The emission cross section at 1031nm before annealing is 0.56ˑ10-20cm 2,and it decreases to 0.40ˑ10-20cm 2after annealing.The fluorescence decay time before annealing is 1.42ms,and it is 1.32ms after annealing.The results demonstrate that the annealing of YbʒCa 3(NbGa)5O 12single crystal in air will adversely affect the laser performance of the crystal.Key words :YbʒCa 3(NbGa)5O 12crystal;Bridgman method;absorption spectrum;emission spectrum;fluorescence decay;annealing㊀㊀㊀收稿日期:2023-12-08㊀㊀基金项目:国家自然科学基金(51832009,512302300)㊀㊀作者简介:赵㊀涛(1997 ),男,山西省人,硕士研究生㊂E-mail:1254983331@ ㊀㊀通信作者:孙志刚,博士,助理研究员㊂E-mail:sunzhigang@0㊀引㊀㊀言钙铌镓石榴石(CNGG)晶体是一类无序激光晶体,结构介于激光玻璃的无序结构和激光晶体的有序结构之间㊂无序结构的激光玻璃,是一类典型的非均匀加宽的激光增益介质,但玻璃具有长程无序结构,限制㊀第4期赵㊀涛等:YbʒCa3(NbGa)5O12晶体的坩埚下降法生长及光学性能研究621㊀了声子的平均自由程,导致其热学性能相对较差,限制了高效㊁高功率密度激光的获得[1]㊂而传统的激光晶体如钇铝石榴石(YAG)晶体,具有很好的热学性质,但长程有序的特点使其具有相对单一的激活离子取代位置,导致其配位单一,激活离子的光谱较窄[2]㊂无序的钙铌镓石榴石晶体兼具两者的优点,具有光谱的非均匀加宽特性和较高的热导率,使得其在激光领域中具有潜在的应用价值㊂NdʒCNGG晶体的具有较宽的吸收与发射光谱,Pan等[3]采用直拉法生长了无序的NdʒCNGG晶体,InGaAs LD泵浦的峰值吸收截面约为4.1ˑ10-20cm2,在808nm LD激发的发射荧光谱中,4F3/2ң4I11/2的半峰全宽(full width at half maximum, FWHM)为15nm,4F3/2ң4I13/2半峰全宽为27nm,在超快激光脉冲产生方面展示出巨大的潜力㊂目前,研究人员对NdʒCNGG晶体的连续波㊁调Q及锁模超短脉冲激光特性已做了大量㊁系统的研究[4-6]㊂20世纪90年代初,随着体积小㊁效率高㊁寿命长的LD泵浦源的出现,Yb3+作为激光基质激活离子的研究迅猛发展㊂Yb3+具有最简单的能级结构,与Nd3+相比,具有本征量子缺陷低,辐射量子效率高,能级寿命长,吸收和发射光谱宽等特点㊂特别是Yb3+的吸收峰位于900~1000nm,能与目前商用的InGaAs半导体激光二极管泵浦源有效耦合,并且不需要严格控制温度㊂YbʒCa3(NbGa)5O12晶体(YbʒCNGG)已有相关报道,可获得连续激光输出,并通过锁模和调Q获得脉冲激光输出[7-9],证明了YbʒCNGG在激光领域的潜在价值㊂目前报道的YbʒCNGG晶体都是使用提拉法生长,该晶体的坩埚下降法生长还没有报道㊂坩埚下降法生长晶体是在密闭环境中进行,能有效防止原料Ga2O3的挥发;此外,与提拉炉相比较,坩埚下降炉价格低廉,设备维护简单,使用坩埚下降法生长晶体能够极大地降低生产成本,因此YbʒCNGG晶体可能更适合使用坩埚下降法生长㊂本文成功使用坩埚下降法生长出较大尺寸的YbʒCNGG晶体,并开展了其光学性能研究㊂1㊀实㊀㊀验1.1㊀原料制备和晶体生长YbʒCNGG晶体在1450ħ左右一致熔融,但在高温下Ga2O3原料会挥发,因此本实验采用坩埚下降法,在密闭环境中生长该晶体㊂使用的原料为Yb2O3(纯99.99%),CaCO3(纯99.99%),Nb2O5(纯99.99%), Ga2O3(纯99.999%),采用Ca3Nb1.6875Ga3.1875O12成分配比,按照以下的化学反应式进行多晶料的合成㊂2.892CaCO3+0.813375Nb2O5+1.626375Ga2O3+0.054Yb2O3=0.964Ca3Nb1.6875Ga3.1875O12㊃0.036Yb3Ga5O12+2.892CO2(1)按上述配比称量原料,进行充分研磨,放入混料机中混合24h,再进行液压机压块,随后放入马弗炉进行第一次烧结,烧结温度1000ħ,保温10h;取出后再次研磨㊁压块,进行第二次烧结,烧结温度1250ħ,保温时间30h,得到YbʒCNGG的多晶料㊂将多晶料放进装有YAG[111]籽晶的铂金坩埚,放入坩埚下降炉中进行晶体生长㊂接种温度为1450ħ,下降速度8mm/d㊂晶体生长结束后,以20ħ/h左右的速率使炉温降至室温,以消除晶体生长过程中所产生的热应力㊂众所周知,激光晶体在高温环境中工作一段时间后,性能会有所降低㊂在高温㊁富氧或贫氧环境中工作一段时间后某些单晶会改变颜色,导致其光学吸收带发生变化,这种现象已经在硅酸铋[10]㊁铌酸盐[11-12]㊁磷酸盐[13]和碱金属钼酸盐[14-16]等氧化物中发现㊂因此,本文在空气中对YbʒCNGG晶体进行了热退火,以此来探究高温环境工作后晶体的光学性能变化㊂将加工好的一块晶片切成两块,其中一块放进马弗炉中,在空气氛围下进行退火,退火温度为1000ħ,保温时间10h㊂1.2㊀性能测试使用德国Bruker XRD D8Advance型X射线粉末衍射仪对YbʒCNGG晶体的粉末样品进行XRD测试,辐射源为Cu靶X射线管,工作电压和电流分别为40kV和40mA,扫描范围10ʎ~70ʎ,步幅为0.02ʎ㊂使用DXR3Raman Microscope光谱仪记录了晶体在295K下的拉曼光谱,激发源为532nm波长的激光㊂使用美国Lambda950型紫外可见近红外分光光度计测量了晶体的吸收和透过光谱㊂使用法国FL3-111型荧光光谱仪测试了晶体的发射光谱,激发源为980nm激光㊂采用英国FLS980荧光光谱仪测试了晶体的荧光衰减曲线,激发波长980nm,监测波长1031nm㊂622㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷2㊀结果与讨论2.1㊀晶体生长图1(a)为采用坩埚下降法生长得到的YbʒCNGG晶体,晶体直径为25mm,接种后生长部分长度约为80mm,其中偏析层部分约为25mm㊂晶体呈现咖啡色,透明,内部有少量裂纹,晶体开裂与晶体自身性质以及生长工艺有关㊂图1(b)为加工后的YbʒCNGG晶片,晶片直径25mm,厚度为1mm,属于(111)晶面,晶片中横向裂纹是加工所致㊂图1㊀坩埚下降法生长的YbʒCNGG晶体Fig.1㊀YbʒCNGG crystals grown by Bridgman method2.2㊀XRD分析图2为YbʒCNGG晶体单晶部分和顶部偏析层部分的粉末XRD图谱,将单晶部分的XRD数据导入Jade 中,通过拟合得出该晶体是Ia3d空间群,属于立方晶系,晶胞参数a=b=c=12.471Å,α=β=γ=90ʎ,比已报道的CNGG晶体晶胞参数(12.51Å)略小[17],原因是掺杂的Yb3+半径小于被取代的Ca2+半径,导致晶体晶格收缩㊂通过Jade分析,顶部偏析层的杂质成分大部分是立方焦火成岩(Ca2Nb2O7),这与文献[18]中得出结论一致,原因是掺入Yb3+后,生成了镱镓石榴石(Yb3Ga5O12),导致Ca2+与Nb5+的过量,从而生成了不属于石榴石相的Ca2Nb2O7㊂2.3㊀拉曼光谱图3是室温下YbʒCNGG退火前后晶体样品的拉曼图谱对比,孤立金属氧四面体基团[MO4](M代表Ga 和Nb)在700~900cm-1存在对称伸缩振动,这些[MO4]基团是石榴石晶格的结构单元,M阳离子进入到石榴石结构的d位[19]㊂在700~900cm-1看到两个密集的振动峰C1和C3,分别是[GaO4]和[NbO4]基团群的对称伸缩振动造成的,C1和C2峰下降明显,C3和C4变化较小的可能原因是晶体中部分Ga3+挥发,改变了晶体的结构和振动特性,影响了振动模式的活性㊂Ga3+挥发会对晶体中[GaO4]基团的对称伸缩振动产生影响㊂通常情况下,Ga O键连接可能会中断或减弱,这种情况可能导致对称伸缩振动变弱,在拉曼光谱中可能会表现为C1和C2峰强度下降㊂C2和C4分别是C1和C3的伴峰,此处出现峰,则代表[GaO4]和[NbO4]附近出现阳离子空位,峰强度越高,则代表阳离子空位浓度越高㊂从图中可以看出,退火后C2和C4处都出现了微弱的伴峰,表明在退火后的晶体中,阳离子空位浓度增加了,主要原因是高温退火后晶体表面的Ga3+浓度降低,但是幅度较小[20]㊂2.4㊀透过和吸收光谱退火前后晶体样品的透过图谱如图4(a)所示,600~2500nm的整体透过率接近80%,说明晶体质量较高,退火后晶体颜色变化不明显㊂图4(b)是YbʒCNGG晶体的吸收截面图,吸收峰对应Yb3+的2F7/2(基态)ң2F5/2(激发态)跃迁㊂基态2F7/2和激发态2F5/2分别被晶体场劈裂为4个和3个Stark能级,从基态多重态的几个Stark能级到激发态多重态2F7/2(0㊁1㊁2㊁3)ң2F5/2(0ᶄ㊁1ᶄ㊁2ᶄ)的电子跃迁大多数是声子辅助的,从而产生了相当宽的谱带㊂晶体退火前在935nm处吸收截面为1.82ˑ10-20cm2,退火后为1.40ˑ10-20cm2;退火前在971nm处吸收截面为1.22ˑ10-20cm2,退火后为1.03ˑ10-20cm2,退火后吸收截面明显降低㊂此外,㊀第4期赵㊀涛等:YbʒCa 3(NbGa)5O 12晶体的坩埚下降法生长及光学性能研究623㊀从图4(c)和4(d)可以计算得出,晶体退火前在935nm 处FWHM 为47.46nm,退火后为44.60nm;退火前在971nm 处FWHM 为23.47nm,退火后为23.86nm㊂退火后在935nm 处的FWHM 比退火前小了2.86nm㊂图2㊀YbʒCNGG 晶体中部单晶部分及顶部偏析层部分的粉末XRD 图谱Fig.2㊀Powder XRD patterns of the middle single crystal part and the top segregation layer of YbʒCNGGcrystal 图3㊀室温下退火前后YbʒCNGG 晶体样品的拉曼图谱Fig.3㊀Raman spectra of YbʒCNGG crystal samples before and post annealing at roomtemperature图4㊀室温下退火前后YbʒCNGG 晶体样品的性能测试㊂(a)透过光谱;(b)吸收光谱;(c)退火前晶体样品吸收光谱的高斯拟合图;(d)退火后晶体样品吸收光谱的高斯拟合图Fig.4㊀Performance testing of YbʒCNGG crystal samples before and post annealing at room temperature.(a)Transmission spectra;(b)absorption spectra;(c)Gaussian fitting of absorption spectra of crystal sample before annealing;(d)Gaussian fitting of the absorption spectrum of crystal sample post annealing 2.5㊀发射光谱关于YbʒCNGG 晶体的发射截面σem (λ)计算,本文使用互易法(reciprocity method),用下列公式进行计算㊂624㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷σem (λ)=σαbsZ l Z u exp E zl -hc λkT ()(2)式中:σabs 为吸收截面,h 为普朗克常数,k 为玻耳兹曼常数,c 为光速,λ为波长,T 为实验温度,Z l /Z u 为下㊁上能级的配分函数比,E zl 为零声子线㊂如图5(a)所示,计算得出退火前975nm 处的发射截面为1.28ˑ10-20cm 2,退火后为1.11ˑ10-20cm 2,退火前1031nm 处的发射截面为0.56ˑ10-20cm 2,退火后为0.40ˑ10-20cm 2㊂退火后975㊁1031nm 处的发射截面均低于退火前㊂图5(b)是在980nm 激光激发下得到的发射光谱,发射峰位于1031nm 处,在相同测试条件下,退火后该晶体的发射强度明显低于退火前,这与计算得出的结果相一致,表明YbʒCNGG 晶体在空气中退火后,对其激光性能有不利影响㊂原因是空气中的高温退火可能会对材料的物理和化学性质产生影响,包括晶格结构的变化和缺陷的生成㊂退火过程中晶格结构的变化和缺陷的形成可能对透过谱和发射谱性能产生影响㊂晶格结构变化:高温退火可能引起晶格结构的重新排列㊂在退火过程中,原子或分子在晶体中重新定位以达到更低的能量状态㊂这可能导致晶格略微变化,晶格参数可能发生微小的变化,如晶胞参数㊁晶体取向等㊂这种微小的结构变化可能会影响透过谱和发射谱的特性㊂缺陷的生成:高温退火也可能导致缺陷的生成㊂例如,点缺陷(Ga 3+的挥发)㊁位错或晶界等缺陷的产生㊂这些缺陷可能导致电子状态的变化㊁局部晶格畸变或者在晶体中引入能级㊂这些缺陷可能会影响材料的光学性质,包括透过谱和发射谱㊂图5㊀室温下退火前后YbʒCNGG 晶体样品的发射截面曲线(a)和980nm 激光激发下得到的发射光谱(b)Fig.5㊀Emission cross-section curves (a)and emission spectra at 980nm excitation (b)of YbʒCNGG crystal samples before and post annealing at room temperature2.6㊀增益截面根据上述吸收和发射截面光谱,增益截面σg (λ)可由下式计算:σg (λ)=βσem (λ)-(1-β)σabs (λ)(3)式中:β为激发态离子反转分数㊂图6所示为退火前后的YbʒCNGG 晶体样品在不同β值(0,0.25,0.50,0.75,1.00)下的增益截面曲线㊂如图6(a)所示,在1010~1040nm 处,当布居反转分数达到25%时,增益截面变为正值㊂如此低的反转比例意味着1031nm 波长的YbʒCNGG 激光器将具有较低的泵浦阈值,这表明YbʒCNGG 晶体是1031nm 激光器的理想候选材料㊂在高抽运情况下,增益截面谱也较宽,表现出良好的可协调性㊂而退火后该晶体增益截面曲线如图6(b)所示,并且在布居反转比例达到50%时,在1031nm 附近的增益带宽明显低于退火前,因此理论上通过被动锁模达到最小脉冲也将会受到影响[21],也就是说,在高温下工作会对该晶体超快激光的产生造成不利影响㊂2.7㊀荧光衰减室温下对退火前后的YbʒCNGG 晶体样品进行荧光衰减测试㊂如图7所示,激发波长980nm,监测波长1031nm,采用单指数函数拟合,如公式(4)所示㊂y =A 1e -x t +y 0(4)㊀第4期赵㊀涛等:YbʒCa3(NbGa)5O12晶体的坩埚下降法生长及光学性能研究625㊀式中:A1为前因子,y0为初始强度,t为时间,x㊁y为测试的横纵坐标,对应波长㊁强度㊂通过拟合得到退火前的荧光衰减时间为1.42ms,退火后的荧光衰减时间为1.32ms,观察到退火后Yb3+的寿命减少,表明这种退火在晶体中引入了进一步的缺陷,很可能是由表面Ga3+的挥发造成的,与文献中采用提拉法生长的YbʒCNGG晶体τ=816μs相比较,结果相差很大,可能是该晶体有很强的重吸收,造成直接测量荧光寿命不准确,但是与文献中退火后Yb3+的寿命会减少的结论是一致的[20]㊂图6㊀室温下退火前后YbʒCNGG晶体样品增益截面曲线Fig.6㊀YbʒCNGG crystal samples gain cross-section curves before and post annealing at room temperature图7㊀室温下退火前后YbʒCNGG晶体样品荧光衰减曲线Fig.7㊀YbʒCNGG crystal samples fluorescence decay curves before and post annealing at room temperature3㊀结㊀㊀论采用坩埚下降法,生长出尺寸为ϕ25mmˑ80mm的YbʒCNGG透明单晶,通过XRD粉末衍射,得出了偏析层的主要杂质成分为Ca2Nb2O7㊂通过透过和吸收光谱得出该晶体退火前在935和971nm处有很宽的吸收带宽,分别为47.46和23.47nm,退火后935nm处吸收带宽变窄㊂尽管常规情况下退火有助于提高晶体的均匀性和激光性能,但在本文中通过对YbʒCNGG晶体退火前后晶体发射截面和增益截面的计算,以及发射光谱和荧光衰减的测量,发现采用高温退火可能会引入缺陷并导致激光性能下降㊂这可能暗示着退火温度需要重新评估或者退火周期需要调整以更好地维持晶体性能,后续本团队会继续研究不同退火条件对YbʒCNGG晶体激光性能的影响㊂参考文献[1]㊀于浩海,潘忠奔,张怀金,等.无序激光晶体及其超快激光研究进展[J].人工晶体学报,2021,50(4):648-668+583.YU H H,PAN Z B,ZHANG H J,et al.Development of disordered laser crystals and their ultrafast lasers[J].Journal of Synthetic Crystals, 2021,50(4):648-668+583(in Chinese).[2]㊀KANCHANAVALEERAT E,COCHET-MUCHY D,KOKTA M,et al.Crystal growth of high doped NdʒYAG[J].Optical Materials,2004,26626㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷(4):337-341.[3]㊀PAN H,PAN Z B,CHU H W,et al.GaAs Q-switched NdʒCNGG lasers:operating at4F3/2ң2I11/2and4F3/2ң2I13/2transitions[J].OpticsExpress,2019,27(11):15426-15432.[4]㊀SHI Z B,FANG X,ZHANG H J,et al.Continuous-wave laser operation at1.33μm of NdʒCNGG and NdʒCLNGG crystals[J].Laser PhysicsLetters,2008,5(3):177-180.[5]㊀LI Q N,FENG B H,ZHANG D X,et al.Q-switched935nm NdʒCNGG laser[J].Applied Optics,2009,48(10):1898-1903.[6]㊀XIE G Q,TANG D Y,LUO H,et al.Dual-wavelength synchronously mode-locked NdʒCNGG laser[J].Optics Letters,2008,33(16):1872.[7]㊀SCHMIDT A,GRIEBNER U,ZHANG H J,et al.Passive mode-locking of the YbʒCNGG laser[J].Optics Communications,2010,283(4):567-569.[8]㊀LIU J H,WAN Y,ZHOU Z C,et parative study on the laser performance of two Yb-doped disordered garnet crystals:YbʒCNGG andYbʒCLNGG[J].Applied Physics B,2012,109(2):183-188.[9]㊀SI W,MA Y J,WANG L S,et al.Acousto-optically Q-switched operation of YbʒCNGG disordered crystal laser[J].Chinese Physics Letters,2017,34(12):124201.[10]㊀COYA C,FIERRO J L G,ZALDO C.Thermal reduction of sillenite and eulite single crystals[J].Journal of Physics and Chemistry of Solids,1997,58(9):1461-1467.[11]㊀ZALDO C,MARTIN M J,COYA C,et al.Optical properties of MgNb2O6single crystals:a comparison with LiNbO3[J].Journal of Physics:Condensed Matter,1995,7(11):2249-2257.[12]㊀GARCÍA-CABAES A,SANZ-GARCÍA J A,CABRERA J M,et al.Influence of stoichiometry on defect-related phenomena in LiNbO3[J].Physical Review B,Condensed Matter,1988,37(11):6085-6091.[13]㊀MARTÍN M J,BRAVO D,SOLÉR,et al.Thermal reduction of KTiOPO4single crystals[J].Journal of Applied Physics,1994,76(11):7510-7518.[14]㊀SCHMIDT A,RIVIER S,PETROV V,et al.Continuous-wave tunable and femtosecond mode-locked laser operation of YbʒNaY(MoO4)2[J].JOSA B,2008,25(8):1341-1349.[15]㊀MÉNDEZ-BLAS A,RICO M,VOLKOV V,et al.Optical spectroscopy of Pr3+in M+Bi(XO4)2,M+=Li or Na and X=W or Mo,locallydisordered single crystals[J].Journal of Physics:Condensed Matter,2004,16(12):2139-2160.[16]㊀VOLKOV V,RICO M,MÉNDEZ-BLAS A,et al.Preparation and properties of disordered NaBi(X O4)2,X=W or Mo,crystals doped with rareearths[J].Journal of Physics and Chemistry of Solids,2002,63(1):95-105.[17]㊀SHIMAMURA K,TIMOSHECHKIN M,SASAKI T,et al.Growth and characterization of calcium niobium gallium garnet(CNGG)singlecrystals for laser applications[J].Journal of Crystal Growth,1993,128(1/2/3/4):1021-1024.[18]㊀CASTELLANO-HERNÁNDEZ E,SERRANO M D,JIMÉNEZ RIOBÓO R J,et al.Na modification of lanthanide doped Ca3Nb1.5Ga3.5O12-typelaser garnets:Czochralski crystal growth and characterization[J].Crystal Growth&Design,2016,16(3):1480-1491.[19]㊀VORONKO Y K,SOBOL A A,KARASIK A Y,et al.Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rareearth ions-effective laser media[J].Optical Materials,2002,20(3):197-209.[20]㊀ÁLVAREZ-PÉREZ J O,CANO-TORRES J M,RUIZ A,et al.A roadmap for laser optimization of YbʒCa3(NbGa)5O12-CNGG-type singlecrystal garnets[J].Journal of Materials Chemistry C,2021,9(13):4628-4642.[21]㊀SU L B,XU J,XUE Y H,et al.Low-threshold diode-pumped Yb3+,Na+ʒCaF2self-Q-switched laser[J].Optics Express,2005,13(15):5635-5640.。
Ni掺杂β-Ga2O3单晶的光、电特性研究

第52卷第8期2023年8月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.52㊀No.8August,2023Ni 掺杂β-Ga 2O 3单晶的光、电特性研究陈绍华1,穆文祥1,张㊀晋1,董旭阳1,李㊀阳1,贾志泰1,2,陶绪堂1(1.山东大学,新一代半导体材料研究院,晶体材料国家重点实验室,济南㊀250100;2.山东工业技术研究院,济南㊀250100)摘要:本文使用导模(EFG)法生长了Ni 掺杂β-Ga 2O 3单晶,并通过粉末X 射线衍射(PXRD)和劳厄衍射(Laue diffraction)分别验证了其晶体结构和晶体质量㊂进一步通过紫外-可见-近红外透过光谱及红外透过光谱研究了Ni 2+掺杂对β-Ga 2O 3光学特性的影响,发现其(100)面的紫外截止边为252.9nm,对应的光学带隙为4.74eV㊂此外,阴极荧光(CL)光谱测试结果显示,Ni 2+掺杂β-Ga 2O 3单晶在600~800nm 具有宽带近红外发光特性,有望拓宽β-Ga 2O 3单晶材料在宽带近红外方面的应用㊂关键词:氧化镓;宽禁带半导体;光电性能;宽带近红外发光;导模法;Ni 掺杂中图分类号:O734;TQ133.5+1㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2023)08-1373-05Optical and Electrical Properties of Ni-Doped β-Ga 2O 3Single CrystalCHEN Shaohua 1,MU Wenxiang 1,ZHANG Jin 1,DONG Xuyang 1,LI Yang 1,JIA Zhitai 1,2,TAO Xutang 1(1.State Key Laboratory of Crystal Materials,Institute of Novel Semiconductors,Shandong University,Jinan 250100,China;2.Shandong Research Institute of Industrial Technology,Jinan 250100,China)Abstract :Ni-doped β-Ga 2O 3single crystals were grown by edge-defined film-fed growth (EFG)method,and the crystal structure and quality were verified by powder X-ray diffraction (PXRD)and Laue diffraction.The effect of Ni 2+doping on optical properties of β-Ga 2O 3was investigated by UV-Vis-NIR transmission spectra and infrared transmission spectra.It is found that the ultraviolet cut-off edge of (100)plane is 252.9nm and corresponding optical bandgap is 4.74eV.Furthermore,the broadband near-infrared luminescent property of Ni-doped β-Ga 2O 3was discovered by cathodoluminescence (CL)spectroscopy in the range from 600nm to 800nm,which is expected to broaden the application of β-Ga 2O 3crystal in broadband near-infrared.Key words :Ga 2O 3;wide-bandgap semiconductor;optical and electrical property;broadband near-infrared luminescent;EFG method;Ni doping ㊀㊀收稿日期:2023-03-01㊀㊀基金项目:国家自然科学基金(52002219,51932004,61975098);广东省重点领域研发计划(2020B010174002);深圳市基础研究计划(JCYJ20210324132014038);111工程2.0(BP2018013)㊀㊀作者简介:陈绍华(1998 ),男,山东省人,硕士研究生㊂E-mail:1072114408@ ㊀㊀通信作者:穆文祥,博士,副教授㊂E-mail:mwx@ 贾志泰,博士,教授㊂E-mail:z.jia@ 0㊀引㊀㊀言作为超宽禁带半导体材料之一,β-Ga 2O 3具有高达4.8eV 的禁带宽度,且具有优秀的击穿场强和电子传导特性,其巴利加优值可达GaN 的4倍㊁SiC 的6倍,受到了广泛的关注㊂优秀的材料特性使其在深紫外光电器件[1]和大功率㊁高耐压㊁低损耗器件[2]等方面具有广阔的应用前景㊂目前,氧化镓的衬底尺寸不断增大,晶体质量不断提高,基于氧化镓制备的功率器件及光电器件的种类越来越丰富,器件性能越来越好㊂β-Ga 2O 3是氧化镓的几种晶相结构中唯一的热力学稳定相,属于单斜晶系中的C 2/m 空间群,其晶格常数a =1.2214nm,b =0.30371nm,c =0.57981nm,a ㊁c 之间的夹角约为103.83ʎ,每个晶胞包含4个Ga 2O 3,氧离子围成四面体和八面体,镓离子位于其中㊂目前,较为主流的生长方式有焰熔法(Verneuil method)㊁光1374㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷学浮区(optical floating zone,OFZ)法㊁导模(edge-defined film-fed growth,EFG)法㊁垂直布里奇曼(verticalBridgman,VB)法㊁提拉(Czochralski,CZ)法,每个方法都具有自己独特的生长优势㊂导模法可以生长大尺寸㊁高质量的掺杂晶体,目前最大尺寸已经达到6英寸(1英寸=2.54cm)㊂Cr㊁Mn㊁Fe㊁Ni等过渡族金属离子具有丰富的光学性质,被科研工作者大量研究㊂Galazka等[3]发现Cr3+的掺入使β-Ga2O3在290㊁428㊁600nm处出现了3个吸收带,而且其吸收强度随Cr3+掺量的增多而增大;Mu 等[4]发现Ti4+掺杂的β-Ga2O3单晶具有很长的室温荧光寿命;Li等[5]通过对β-Ga2O3单晶掺杂V5+并退火,发现其在2.5eV附近出现超宽的绿光发射波段㊂Ni2+位于卤化物及氧化物的八面体晶格中时,会表现出多激发态参与跃迁过程,并且伴随着上转换发光过程㊂目前已有大量的材料因为Ni2+的掺杂出现了明显的发光带,如Ni2+ʒSLN㊁Ni2+ʒMgGa2O4㊁Ni2+ʒZnSiO3等[6-8]㊂但关于β-Ga2O3的Ni2+掺杂研究工作较少,且主要集中在第一性原理和电学研究[9-10]㊂Ni2+掺杂β-Ga2O3单晶可能具备丰富的光电磁特性,值得深入研究㊂本文使用EFG法生长了Ni掺杂β-Ga2O3单晶,并通过粉末X射线衍射图谱和劳厄衍射图样证明了其良好的晶体结构和结晶质量㊂重点研究了Ni2+的掺入对β-Ga2O3单晶的光学㊁电学特性的影响,通过阴极荧光(CL)光谱首次发现了其宽带近红外发光特性㊂1㊀实㊀㊀验1.1㊀单晶生长本实验使用自主设计的导模炉,加热方式为感应加热,由贵金属铱金构成的坩埚作为感应加热的加热体,并将保温材料放置于加热体及线圈中间㊂坩埚尺寸为ϕ60mmˑ60mm,模具截面尺寸为25mmˑ4mm㊂晶体主面为(100)面,生长方向为<010>㊂本实验的气氛为1%O2㊁70%CO2和29%N2(体积分数),压强为1atm㊂晶体生长使用的原料为5N(99.999%)级Ga2O3及4N(99.99%)级的NiO,通过混料机混合60h,待混料均匀后通过模具压制成型㊂将Ga2O3原料放入铱金坩埚中,以300ħ/h的升温速度使原料升温熔化,其熔体由于毛细作用而上升并在模具表面铺开㊂将功率调整合适后稳定2~3h,将<010>方向的高质量β-Ga2O3籽晶缓慢下降至接触模具表面㊂稳定10~15min后,开始提拉,晶体生长进入收颈阶段㊂收颈5~7mm后,调整拉速和功率,进入放肩阶段㊂待晶体铺满整个模具表面时,此时放肩完成,进入等径生长阶段㊂待等径生长到预期的长度后,调高拉速,提脱晶体,并以100ħ/h的速度缓慢降温,直至整个晶体生长过程结束㊂1.2㊀样品测试使用XᶄPert3Powder&XRK-90原位X射线衍射仪对晶体结构进行粉末X射线衍射(PXRD)测试㊂紫外-可见-近红外(ultraviolet-visible-near-infrared,UV-Vis-NIR)透过光谱使用PermkinElmer公司生产的Lambda950型紫外-可见-近红外分光光度计进行测试㊂测试的波长范围为200~1000nm㊂红外透过光谱使用英国PerkinElmer公司生产的Spectrum100FT-IR光谱仪进行测试㊂测试的波长范围为1250~25000nm㊂使用LC-06劳厄衍射仪进行劳厄衍射测试㊂使用FEI Talos C350光谱仪进行CL光谱测试㊂测试的波长范围为200~800nm㊂使用X SERIES2型电感耦合等离子体质谱仪及710型电感耦合等离子体发射光谱仪进行电感耦合等离子体(inductive coupled plasma,ICP)测试,获得了杂质浓度㊂2㊀结果与讨论2.1㊀物相分析与晶体质量测试通过EFG法生长所获得的Ni掺杂β-Ga2O3晶体样品如图1(a)所示,晶体整体呈黄褐色㊂由表1的ICP测试结果可知,Ni2+实际掺入浓度为0.00645%(质量分数),在β-Ga2O3晶体中的元素浓度为3.04ˑ1018cm-3,掺杂颜色较为均匀㊂对β-Ga2O3晶体进行了PXRD测试,并根据图谱进行晶型鉴定,将所有尖锐的衍射峰的位置与标准β-Ga2O3晶体JCPDS卡(编号41-1103)进行对比㊂测试结果表明,所生长晶体均为β相,无其他杂相存在㊂㊀第8期陈绍华等:Ni 掺杂β-Ga 2O 3单晶的光㊁电特性研究1375㊀对晶体进行了劳厄衍射测试,结果如图2所示㊂β-Ga 2O 3单晶(100)面的劳厄图样斑点具有较高的清晰度,且沿着测试中心呈现较好的对称性,图2(a)㊁(b)不同位置的劳厄衍射结果具有很高的相似度,证明所生长的晶体具备较高的晶体质量㊂而且劳厄衍射斑点无重影现象出现,证明晶体的单晶性较好,内部无多晶存在㊂表1㊀Ni 掺杂β-Ga 2O 3单晶的ICP 测试结果Table 1㊀ICP test result of Ni-doped β-Ga 2O 3single crystalElement In Cu Fe Al Pb Sn Zn Ni Cd Mg Ti Mass fraction /(10-4%)0.50.12.76.40.10.10.764.50.10.10.1Element Sb Ca Si Zr Co Cr K Mn B Bi Mass fraction /(10-4%)0.1 3.711.1 4.80.10.10.50.10.50.1图1㊀Ni 掺杂β-Ga 2O 3单晶生长状态㊂(a)晶体图片;(b)PXRD 图谱Fig.1㊀Growth state of Ni-doped β-Ga 2O 3single crystal.(a)Picture of crystal;(b)PXRD pattern 图2㊀Ni 掺杂β-Ga 2O 3单晶(100)面不同位置的劳厄衍射图样Fig.2㊀Laue diffraction patterns of Ni-doped β-Ga 2O 3single crystal (100)plane at different locations 2.2㊀光电性能室温下0.5mm 厚度的Ni 掺杂β-Ga 2O 3单晶的紫外-可见-近红外透过光谱如图3(a)所示,其紫外截止边为252.9nm㊂如图3(b)所示,由公式(αhν)1/m =A (hν-E g )可以求得Ni 掺杂晶体的光学带隙为4.74eV,其中:α是由光谱学测得的吸收系数,m 的值是1/2,h 是普朗克常数,ν是入射光子的频率,hν是光子能量,A 是常数,E g 是光学带隙㊂本征Ga 2O 3光学带隙约为4.76eV [11],Ni 掺杂后带隙变化较小,超宽禁带特性没有发生改变,且紫外截止边仍处于200~280nm 的日盲波段㊂如图4所示,Ni 掺杂β-Ga 2O 3单晶在红外及近红外波段都保持较高的透过率㊂当Ga 2O 3因为掺杂等原因具有较高的载流子浓度时,其近红外波段会产生强烈的光吸收,表现为该波段透过率明显下降[12]㊂非故意掺杂及半绝缘β-Ga 2O 3单晶红外及近红外波段透过率均在80%左右,而在载流子浓度为1ˑ1019cm -3时,近红外波段的透过率最高点仅约60%[13]㊂通过该现象可以推测Ni 2+的引入并没有赋予β-Ga 2O 3导电特性,晶体为半绝缘,而且载流子浓度的提高使得红外截止边有明显的下降㊂在非故意掺杂晶体中,红外截止边约1376㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷为11μm,而在载流子浓度为2.25ˑ1018cm -3时,红外截止边会降低至4μm 左右[11]㊂Ni 掺杂β-Ga 2O 3单晶的红外截止边大于11μm,推测Ni 2+为深能级受主,捕获了部分自由电子[10]㊂图3㊀Ni 掺杂β-Ga 2O 3单晶的紫外-可见光谱结果㊂(a)透过光谱;(b)(αhν)2和hν的Tauc 图Fig.3㊀Results of Ni-doped β-Ga 2O 3single crystal UV-Vis spectrum.(a)Transmission spectrum;(b)Tauc plot of (αhν)2versusuhν图4㊀Ni 掺杂β-Ga 2O 3单晶的红外透过光谱Fig.4㊀Infrared transmission spectrum of Ni-doped β-Ga 2O 3single crystal 对Ni 掺杂β-Ga 2O 3晶体进行CL 光谱测试,结果如图5所示㊂从图5(a)中可以看出,晶体在240~600nm 的最大峰强位于367.9nm 处,该峰在未掺杂β-Ga 2O 3单晶中同样可以测得[14]㊂从图5(b)中可以看出,在560~800nm 出现了明显的峰,最大峰强出现在695.1nm 处㊂此峰的出现可能是因为Ni 2+具有3d 8的电子构型,作为发光材料的激活剂,进入了β-Ga 2O 3的八面体晶格位点中,取代Ga 3+㊂而Ni 2+一般具有700~800nm 的近红外波段发光是由1T 2g (1S)ң3T 2g (3F)跃迁引起[15]㊂Ni 2+掺杂使得β-Ga 2O 3晶体出现了695.1nm 处的发射峰,使其具有了一定宽带近红外发光特性,为β-Ga 2O 3晶体提供了用于宽带近红外发光器件领域的可能性㊂而且当晶格场不同时,3T 2g ㊁3T 1g ㊁1E g 等能级都会产生一定的蓝移,会明显影响到宽带发射的发射峰峰位,因此Ni 2+还具有红绿光波段范围内波长可调的优点[15]㊂图5㊀Ni 掺杂β-Ga 2O 3单晶的CL 光谱测试结果㊂(a)紫外-可见波段;(b)可见-近红外波段Fig.5㊀CL spectroscopy results of Ni-doped β-Ga 2O 3single crystal.(a)UV-Vis band;(b)Vis-NIR band㊀第8期陈绍华等:Ni掺杂β-Ga2O3单晶的光㊁电特性研究1377㊀3㊀结㊀㊀论本文使用导模法生长了高质量Ni掺杂β-Ga2O3单晶㊂XRD图谱及劳厄衍射图样显示,晶体的结晶质量较高,晶体结构未因为掺杂发生改变㊂晶体的近红外波段未见明显的光吸收,具有半绝缘的电学性能,其光学带隙约为4.74eV,紫外截止边仍在日盲波段内,作为半绝缘衬底可用于制备高温㊁高压㊁大功率器件㊂本研究通过CL光谱发现了Ni掺杂β-Ga2O3单晶在600~800nm波段的宽带近红外发光特性,表明其在宽带近红外领域具有较高的应用前景,为β-Ga2O3器件的丰富化和快速发展提供了参考㊂参考文献[1]㊀NAKAGOMI S,MOMO T,TAKAHASHI S,et al.Deep ultraviolet photodiodes based onβ-Ga2O3/SiC heterojunction[J].Applied PhysicsLetters,2013,103(7):072105.[2]㊀KIM J,OH S,MASTRO M A,et al.Exfoliatedβ-Ga2O3nano-belt field-effect transistors for air-stable high power and high temperatureelectronics[J].Physical Chemistry Chemical Physics:PCCP,2016,18(23):15760-15764.[3]㊀GALAZKA Z,GANSCHOW S,FIEDLER A,et al.Doping of Czochralski-grown bulkβ-Ga2O3single crystals with Cr,Ce and Al[J].Journalof Crystal Growth,2018,486:82-90.[4]㊀MU W X,JIA Z T,CITTADINO G,et al.Ti-dopedβ-Ga2O3:a promising material for ultrafast and tunable lasers[J].Crystal Growth&Design,2018,18(5):3037-3043.[5]㊀LI P K,HAN X L,CHEN D Y,et al.Effect of air annealing on the structural,electrical,and optical properties of V-dopedβ-Ga2O3singlecrystals[J].Journal of Alloys and Compounds,2022,908:164590.[6]㊀SUZUKI T,SENTHIL MURUGAN G,OHISHI Y.Spectroscopic properties of a novel near-infrared tunable laser material NiʒMgGa2O4[J].Journal of Luminescence,2005,113(3/4):265-270.[7]㊀张嗣春,夏海平,王金浩,等.Ni2+掺杂近化学计量比铌酸锂晶体的生长及光谱特性[J].光学学报,2008,28(1):138-142.ZHANG S C,XIA H P,WANG J H,et al.Growth and optical properties of near-stoichiometric Ni2+-doped lithium niobate crystal[J].Acta Optica Sinica,2008,28(1):138-142(in Chinese).[8]㊀张印东.Ni2+掺杂微晶玻璃近红外宽带发光调控研究[D].哈尔滨:哈尔滨工程大学,2020.ZHANG Y D.Study on near-infrared broadband luminescence regulation of Ni2+doped glass-ceramics[D].Harbin:Harbin Engineering University,2020(in Chinese).[9]㊀XIAO W Z,WANG L L,XU L,et al.Electronic structure and magnetic interactions in Ni-dopedβ-Ga2O3from first-principles calculations[J].Scripta Materialia,2009,61(5):477-480.[10]㊀GALAZKA Z,IRMSCHER K,SCHEWSKI R,et al.Czochralski-grown bulkβ-Ga2O3single crystals doped with mono-,di-,tri-,and tetravalentions[J].Journal of Crystal Growth,2020,529:125297.[11]㊀付㊀博.导模法柱状β-Ga2O3单晶生长㊁缺陷及性能研究[D].济南:山东大学,2022.FU B.Study on growth,defects and properties of columnarβ-Ga2O3single crystal by guided mode method[D].Jinan:Shandong University, 2022(in Chinese).[12]㊀FU B,JIAN G Z,MU W X,et al.Crystal growth and design of Sn-dopedβ-Ga2O3:morphology,defect and property studies of cylindrical crystalby EFG[J].Journal of Alloys and Compounds,2022,896:162830.[13]㊀GALAZKA Z,IRMSCHER K,UECKER R,et al.On the bulkβ-Ga2O3single crystals grown by the Czochralski method[J].Journal of CrystalGrowth,2014,404:184-191.[14]㊀穆文祥.β-Ga2O3单晶的生长㊁加工及性能研究[D].济南:山东大学,2018.MU W X.Growth,processing and properties ofβ-Ga2O3single crystal.[D].Jinan:Shandong University,2018(in Chinese). [15]㊀赵㊀靖.3d过渡金属离子(Mn2+,Fe3+,Ni2+)发光的影响因素研究[D].合肥:合肥工业大学,2021.ZHAO J.Study on influence factors of3d transition metal ions(Mn2+,Fe3+,Ni2+)luminescence[D].Hefei:Hefei University of Technology, 2021(in Chinese).。
Nd 3+:Li3Ba2Re3(MoO4)8(Re=Y,Gd,La)晶体的生长、结构和光谱性能研究

* 收 稿 日期 :0 1 3 l 2 1 一O 一 O
基金项 目: 东省青年基金 项 目( R2 1E o ) 山 Z 0 o Q0 7 作者简介 : 宋明君( 9 1 ) 男, - 18 一 , 山t 济宁人 , , 潍坊 学院化学化工 学院讲师 , 士。研 究方向: 博 激光 晶体材料 , 电压电 铁
一
些掺 Nd离子 的激 光 晶体 进行 了对 比 。结果 显 示 , 抖 : i aR 3 Mo 4 8 Re Nd L3 2 e ( O )( —Y, , a 晶体 是一 B Gd L ) 关键词 : 部籽 晶法 ; 顶 吸收 截 面 ; 荧光 光谱 ; 光谱 性 能
种 有潜 力的 固体 激 光材料 。 中 图分 类号 : 2 067 文献标 识 码 : A 文章 编号 :6 1 4 8 (0 1O 一O 4 一O 17 - 282 1 )6 08 5
射截面, 其峰 值 分 别 为 : 1 6 l 。m Nd : i aY3 Mo 48 ,. l. × O c ( 抖 L3 2 ( O )) 8 7×1 。m。 Nd : B 2 3 B 0 c ( 抖 I3 aGd i
( O ),. ×11 c 。N 计 : i aL 3Mo 48 。最后 , Mo 4862 0 。m ( d L3 2 a( O )) B 本文将 这三种 晶体的相 关光谱参数 与其它
随着半导体激光器的迅速发展 , 探索新型适合 I D泵浦源的激光 晶体已经成为晶体生长和光谱性能 研究的一个热点 。近几年来, 具有无序结构 的双金属钨钼酸盐 A+ e +( 4 ( +R i + M0 ) A—L , aR =L , i ;e a N G , B; d Y, i M=Mo w) , 晶体引起 了人们的广泛关注[ ] 1 。此类晶体的结构无序性导致 了它们具有较宽的 吸收光谱和发射光谱 。宽的吸收光谱放松 了对 L D泵浦源的温度控制 , 而宽的发射光谱使得此类晶体有 可能实现可调谐激光输出和短脉冲激光输 出。此外 , 由于钨钼酸盐具有较低的声子能量, 而使得此类 晶体
钕近红外发光

钕近红外发光
钕(Nd3+)离子在近红外(NIR)发光方面表现出独特的优势。
其发光性能主要取决于其在介质材料中的局域态电子结构和激发态动力学。
在特定的材料中,如有机含钕复合材料体系,钕离子可以产生高强度的近红外光致发光,其强度甚至可以与有机半导体发射材料的强度相媲美。
此外,钕离子的近红外发射具有窄线宽的优点,这使其在光学应用中具有独特的优势。
通过复合有机敏化剂的有效敏化效应,可以在低激发功率下将其增强约3000倍。
当钕离子浓度较高时,该性能可以得到进一步的优化。
值得一提的是,钕离子的发光中心局域电子结构的研究在揭示其光学性能及其在生物医学领域的应用方面至关重要。
然而,由于晶格内部和表面缺陷等因素的影响,钕离子在纳米材料中通常存在多格位发光,导致其晶体场跃迁发射谱线复杂、难以区分。
因此,尽管钕离子在近红外发光方面具有诸多优点,但仍需要进一步的研究来克服其在纳米材料中的发光复杂性,以实现其在生物医学等领域的高效应用。