考前冲刺:排列组合的三大方法精要
解决排列组合问题的常用方法

故所求自然数共120+48+6+1=175个.
∴正因数之和为31×40×6=7440
【变式】1、72的正约数(包括1和72)共有__________个
解析:72=23×32
∴2m·3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正约数
m的取法有4种,n的取法有3种,由分步计数原理共3×4个。答案:12
用此法可以逐步计算:6个、7个、8个、……元素的错位排列问题
题型讲解
【例1】某城市在中心广场建造一个花圃,花圃分为6个部分(如下图),现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____________种(以数字作答)
解:记颜色为A、B、C、D四色,先安排1、2、3有A 种不同的栽法,不妨设1、2、3已分别栽种A、B、C,则4、5、6栽种方法共5种,由以下树状图清晰可见根据分步计数原理,不同栽种方法有N=A ×5=120
【变式】求不同的排法种数:
(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;
(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.
解:(1)是“相邻”问题,用捆绑法解决:
(2)是“不相邻”问题,可以用插空法直接求解.6男先排实位,再在7个空位中排2女,即用插孔法解决: 。另法:用捆绑与剔除相结合:
【例2】用0,1,2,3,4,5这六个数字,
(1)可以组成多少个数字不重复的三位数?
(2)可以组成多少个数字允许重复的三位数?
(3)可以组成多少个数字不允许重复的三位数的奇数?
(4)可以组成多少个数字不重复的小于1000的自然数?
排列组合解题技巧归纳总结

排列组合解题技巧归纳总结排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学内容1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高考数学排列组合解题技巧总结

高考数学排列组合解题技巧总结一、定义排列:一般地,从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中任取m个元素的一个排列.组合:一般地,从n个不同元素中任取m(m≤n)个元素,并成一组,叫做从n个不同元素中任取m个元素的一个排列.二、学习指导1、排列组合的本质区别在于对所取出的元素是作有序排列还是无序排列。
组合问题可理解为把元素取出后放到某一集合中去,集合中的元素是无序的.2、较复杂的排列组合问题一般是先分组,再排列。
必须完成所有的分组再排列,不能边分组边排列.3、排列组合问题的常见错误是重复和遗漏。
弄清问题的实质,适当的分类,合理的分步是解决这个错误的关键,采用不同的思路检验结果是否一致是解决这个错误的技巧.4、“正难则反”是处理问题常用的策略.三、常用方法1、合理选择主元例1. 公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2. 公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同的元素中任选3个元素放在3个位置上,共有$A_5^3$种不同坐法。
例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。
2、“至少”型组合问题用隔板法对于“至少”型组合问题,先转化为“至少一个”型组合问题,再用n个隔板插在元素的空隙(不包括首尾)中,将元素分成n+1份。
例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法?解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙,则分法有:$C_5^3$(种)3、注意合理分类元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)的特殊性进行合理分类,求出各类排列组合数。
排列组合解题的高效技巧与策略

排列组合解题的高效技巧与策略排列组合是数学中的一个重要概念,它在解决问题时可以帮助我们快速、高效地找出正确的答案。
本文将介绍一些排列组合解题的高效技巧与策略,帮助读者更好地应对相关问题。
1. 理解排列和组合的概念在开始讨论解题技巧之前,我们首先需要理解排列和组合的概念。
排列是指从一组元素中选取一部分元素按照一定的顺序进行排列,而组合是指从一组元素中选取一部分元素,不考虑顺序的情况下进行组合。
2. 利用公式计算排列组合数排列和组合问题的解答往往涉及到计算排列数和组合数。
针对不同的问题,我们可以利用相应的公式来计算。
例如,计算从n个元素中选取r个元素的排列数可以使用下面的公式:P(n,r) = n! / (n-r)!其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。
3. 利用乘法原理和加法原理乘法原理和加法原理是解决排列组合问题的基本原理。
乘法原理指出,如果一个任务可以分为k个相互独立的子任务,每个子任务有n1、n2、...、nk种选择,则总的选择方式数为n1 * n2 * ... * nk。
而加法原理指出,如果一个任务可以通过两个步骤完成,第一步有n种选择,第二步有m种选择,则总的选择方式数为n + m。
4. 利用递推关系简化计算在解决排列组合问题时,有时可以利用递推关系简化计算过程,减少计算量。
例如,C(n, r) = C(n-1, r-1) + C(n-1, r)就是一个常见的递推关系。
通过利用递推关系,我们可以将原始问题转化为更小规模的子问题,从而简化计算过程。
5. 利用二项式定理求解复杂问题二项式定理是数学中的一个重要定理,它展示了如何将一个二次多项式展开成一个多项式的和。
利用二项式定理,我们可以求解复杂的排列组合问题。
例如,在计算(x + y)^n的展开式中,我们可以得到展开式中各个项的系数,进而能够解决一些特殊问题。
6. 善于应用化简的方法在解决排列组合问题时,有时候问题的描述较为复杂,难以直接进行计算。
高考数学排列组合常见方法

排列组合中的常用方法1.排列数:)!(!)1()2)(1(m n n m n n n n P mn -=+-⋅⋅⋅--=,(其中m ≤n ,m 、n ∈N ).注意:为了使m=n 时,!)!(!n n n n P P nn m n =-==公式成立,我们规定10=!(同时11=!).2.组合数:)!(!!123)2)(1()1()2)(1(m n m n m m m m n n n n P P C m m m n m n-⋅=⨯⨯⋅⋅⋅--+-⋅⋅⋅--==),,(n m N m n ≤∈*且 m n n m n C C -= ),,(n m N m n ≤∈*且.注意:为了使m=n 时,0n n n C C =公式成立,我们规定10=n C , 所以111010====+++k k kk k k C C C C ;3.排列组合问题联系生活实际,生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题还是组合问题或是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
4.排列组合中的常用方法如下:(1)特殊元素和特殊位置问题——优限法 (2)多元问题——合理分类与分步法 (3)相邻问题——捆绑法 (4)不相邻问题——插空法 (5)定序问题——倍缩法 (6)重排问题——求幂法 (7)平均分组问题——除序法 (8)分组问题——隔板法(9)分配问题——先分组后排列法 (10)球盒问题(11)区域涂色问题——分步与分类综合法 (12)“至少”“至多”问题或者部分符合条件问题——排除法或分类法(“正难则反”策略) (13)元素个数较少的排列组合问题——枚举法 (14)复杂的排列组合问题——分解与合成法1.特殊元素和特殊位置问题——优限法元素分析法和位置分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,则先安排特殊元素,再处理其它元素;若以位置分析为主,则先满足特殊位置的要求,再处理其它位置。
排列组合解题技巧

排列组合是数学中重要的概念,用于计算对象的不同排列或组合的数量。
以下是一些排列组合解题的常见技巧:
理解排列和组合的定义:排列是指从一组对象中选择若干个对象进行有序排列的方式,组合是指从一组对象中选择若干个对象进行无序组合的方式。
确定问题的性质:确定问题是涉及排列还是组合,这将有助于选择适当的计算方法。
使用排列和组合的公式:排列的计算公式是P(n, r) = n! / (n - r)!,组合的计算公式是C(n, r) = n! / (r! * (n - r)!),其中n表示总数,r表示选择的个数,"!"表示阶乘。
确定问题中的变量:确定问题中的各个变量,如总数n、选择的个数r等。
应用公式进行计算:根据问题中给出的条件,将变量代入排列或组合的公式,并进行计算。
注意特殊情况:在解题过程中,要注意处理特殊情况,如当选择的个数为0或等于总数时的情况。
使用辅助方法:有时候,可以使用辅助的方法简化问题的计算,如使用乘法原理、加法原理、容斥原理等。
理解问题的背景:在解题过程中,要理解问题的背景和要求,有时候可能需要考虑重复排列、有限个数的选择等特殊情况。
以上是一些常见的排列组合解题技巧,希望对你有帮助。
如何备考数学选择题中的排列组合题

如何备考数学选择题中的排列组合题在备考数学选择题中,排列组合题是一个常见的考点。
掌握排列组合的基本概念和解题方法,对于解决这类题目至关重要。
下面将从概念介绍和解题思路两个方面,为大家详细解析如何备考数学选择题中的排列组合题。
一、概念介绍:排列和组合是数学中常用的计数方法。
排列是指从一组元素中按照一定的顺序选取若干元素进行排列,而组合是指从一组元素中无序选取若干元素。
排列和组合的计算公式如下:1. 排列:当从 n 个元素中选取 r 个元素进行排列时,排列数的计算公式为P(n,r) = n! / (n-r)!2. 组合:当从 n 个元素中选取 r 个元素进行组合时,组合数的计算公式为C(n,r) = n! / (r!(n-r)!)二、解题思路:在备考数学选择题中的排列组合题,我们可以采取以下步骤进行解题:1. 理清题意:仔细阅读题目,理解所给条件和要求。
确定题目是排列问题还是组合问题,根据题目所给条件判断所需计算的数值。
2. 应用公式:根据题目要求和已有条件,利用排列组合的计算公式计算出相应的排列数或组合数。
3. 注意特殊情况:有些排列组合题目可能存在特殊情况,如元素的重复选择、元素的顺序要求等。
在解题过程中应注意这些特殊情况,并进行适当的修正。
4. 结合其他知识点:排列组合题目常常需要结合其他数学知识点进行解答,例如概率、排列数的性质等。
在备考过程中,要将排列组合与其他数学知识点进行整合,形成完整的解题思路。
三、解题示例:下面通过一个具体的排列组合题目示例,来演示解题思路和步骤:【例题】某小组有10人,要从中选出4人组成一个小组,其中必须包括组长和副组长。
问有多少种不同的选组方式?解题思路:根据题目条件,我们可以确定这是一个组合问题,因为选取的人数是确定的,且顺序无关。
步骤如下:1. 确定选取的人数:从10人中选取4人。
2. 确定条件:必须包括组长和副组长。
3. 应用组合公式计算:C(8,2) = 8! / (2!(8-2)!) = 28,得出不同的选组方式为28种。
高三数学排列组合知识点

高三数学排列组合知识点在高三数学学习中,排列组合是一个重要的知识点。
它涉及到数学中的排列和组合两个概念,既有一定的理论知识,也有实际应用的问题。
下面将从排列和组合两个方面进行详细介绍。
一、排列排列是指从给定的对象中选取一部分或全部,按照一定的顺序进行排列的方法。
排列的符号通常用P表示,排列数的计算公式为:P(n, r) = n! / (n - r)!其中,n表示待排列的对象的总数,r表示选取的对象的个数。
排列有几个基本概念需要注意:1.全排列:当选取的对象的个数等于待排列的对象的总数时,称为全排列。
全排列的计算公式为P(n, n) = n!。
2.循环排列:当选取的对象中存在相同的元素时,称为循环排列。
循环排列的计算公式为P(n, r) / r。
3.重复排列:当选取的对象中允许出现重复的元素时,称为重复排列。
重复排列的计算公式为n^r。
二、组合组合是指从给定的对象中选取一部分或全部,不考虑顺序进行组合的方法。
组合的符号通常用C表示,组合数的计算公式为:C(n, r) = n! / [r! * (n - r)!]其中,n表示待组合的对象的总数,r表示选取的对象的个数。
组合也有几个基本概念需要注意:1.常见组合数(二项式系数):当选取的对象的个数等于待组合的对象的总数时,称为常见组合数。
常见组合数的计算公式为C(n, n) = 1。
2.Pascal三角形:使用组合数构成的一个三角形,其中每个数等于它上方两个数之和。
Pascal三角形的特点是,每一行的数之和都是2^n。
三、排列组合的应用排列组合在实际问题中有广泛的应用,尤其是与概率和统计相关的问题。
1.概率问题:排列组合在计算事件发生的概率时起到重要作用。
例如,从一副扑克牌中随机抽取5张牌,求得到一副顺子的概率等。
2.统计问题:排列组合可以用于统计样本空间的大小,从而计算事件发生的可能性。
例如,从10个人中选取3个人组成一支队伍的可能性等。
3.密码学:排列组合可以用于密码学中的排列和替换,保护信息的安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考前冲刺:排列组合的三大方法精要
来源:华图教育沈栋
在排列组合中,有三种特别常用的方法:捆绑法、插空法、插板法。
这三种方法有特定的应用环境,华图教育专家沈栋提醒考生应特别注意三种方法之间的差异及应用方法。
一、捆绑法
精要:所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。
提醒:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。
【例题】有10本不同的书:其中数学书4本,外语书3本,语文书3本。
若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有()种。
解析:这是一个排序问题,书本之间是不同的,其中要求数学书和外语书都各自在一起。
为快速解决这个问题,先将4本数学书看做一个元素,将3本外语书看做一个元素,然后和
剩下的3本语文书共5个元素进行统一排序,方法数为,然后排在一起的4本数学书之
55A 间顺序不同也对应最后整个排序不同,所以在4本书内部也需要排序,方法数为,同理,
44A 外语书排序方法数为。
而三者之间是分步过程,故而用乘法原理得。
33A 543543A A A 【例题】5个人站成一排,要求甲乙两人站在一起,有多少种方法?
解析:先将甲乙两人看成1个人,与剩下的3个人一起排列,方法数为,然后甲乙
44A 两个人也有顺序要求,方法数为,因此站队方法数为。
22A 4242A A 【练习】一台晚会上有6个演唱节目和4个舞蹈节目,4个舞蹈节目要排在一起,有多少不同的安排节目的顺序?
注释:运用捆绑法时,一定要注意捆绑起来的整体内部是否存在顺序的要求,有的题目有顺序的要求,有的则没有。
如下面的例题。
【例题】6个不同的球放到5个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?
解析:按照题意,显然是2个球放到其中一个盒子,另外4个球分别放到4个盒子中,因此方法是先从6个球中挑出2个球作为一个整体放到一个盒子中,然后这个整体和剩下的4个球分别排列放到5个盒子中,故方法数是。
2565C A 二、插空法
精要:所谓插空法,指在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置。
提醒:首要特点是不邻,其次是插空法一般应用在排序问题中。
【例题】若有A、B、C、D、E 五个人排队,要求A 和B 两个人必须不站在一起,则有多
少排队方法?
解析:题中要求AB 两人不站在一起,所以可以先将除A 和B 之外的3个人排成一排,
方法数为,然后再将A 和B 分别插入到其余3个人排队所形成的4个空中,也就是从4
33A 个空中挑出两个并排上两个人,其方法数为,因此总方法数。
24A 3234A A 【例题】8个人排成一队,要求甲乙必须相邻且与丙不相邻,有多少种方法?
解析:甲乙相邻,可以捆绑看作一个元素,但这个整体元素又和丙不相邻,所以先不排
这个甲乙丙,而是排剩下的5个人,方法数为,然后再将甲乙构成的整体元素及丙这两
55A 个元素插入到此前5人所形成的6个空里,方法数为,另外甲乙两个人内部还存在排序
26A 要求为。
故总方法数为。
22A 522562A A A 【练习】5个男生3个女生排成一排,要求女生不能相邻,有多少种方法?
注释:将要求不相邻元素插入排好元素时,要注释是否能够插入两端位置。
【例题】若有A、B、C、D、E 五个人排队,要求A 和B 两个人必须不站在一起,且A 和B 不能站在两端,则有多少排队方法?
解析:原理同前,也是先排好C、D、E 三个人,然后将A、B 查到C、D、E 所形成的两
个空中,因为A、B 不站两端,所以只有两个空可选,方法总数为。
3232A A 注释:对于捆绑法和插空法的区别,可简单记为“相邻问题捆绑法,不邻问题插空法”。
三、插板法
精要:所谓插板法,指在解决若干相同元素分组,要求每组至少一个元素时,采用将比所需分组数目少1的板插入元素之间形成分组的解题策略。
提醒:其首要特点是元素相同,其次是每组至少含有一个元素,一般用于组合问题中。
【例题】将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?
解析:解决这道问题只需要将8个球分成三组,然后依次将每一组分别放到一个盒子中即可。
因此问题只需要把8个球分成三组即可,于是可以讲8个球排成一排,然后用两个板查到8个球所形成的空里,即可顺利的把8个球分成三组。
其中第一个板前面的球放到第一个盒子中,第一个板和第二个板之间的球放到第二个盒子中,第二个板后面的球放到第三个盒子中去。
因为每个盒子至少放一个球,因此两个板不能放在同一个空里且板不能放在两端,
于是其放板的方法数是。
(板也是无区别的)
27C 【例题】有9颗相同的糖,每天至少吃1颗,要4天吃完,有多少种吃法?
解析:原理同上,只需要用3个板插入到9颗糖形成的8个内部空隙,将9颗糖分成4组且每组数目不少于1即可。
因而3个板互不相邻,其方法数为。
38C 【练习】现有10个完全相同的篮球全部分给7个班级,每班至少1个球,问共有多少种不同的分法?
注释:每组允许有零个元素时也可以用插板法,其原理不同,注意下题解法的区别。
【例题】将8个完全相同的球放到3个不同的盒子中,一共有多少种方法?
解析:此题中没有要求每个盒子中至少放一个球,因此其解法不同于上面的插板法,但仍旧是插入2个板,分成三组。
但在分组的过程中,允许两块板之间没有球。
其考虑思维为插入两块板后,与原来的8个球一共10个元素。
所有方法数实际是这10个元素的一个队列,但因为球之间无差别,板之间无差别,所以方法数实际为从10个元素所占的10个位置中挑
2个位置放上2个板,其余位置全部放球即可。
因此方法数为。
210C 注释:特别注意插板法与捆绑法、插空法的区别之处在于其元素是相同的。
四、具体应用
【例题】一条马路上有编号为1、2、……、9的九盏路灯,现为了节约用电,要将其中的三盏关掉,但不能同时关掉相邻的两盏或三盏,则所有不同的关灯方法有多少种?
解析:要关掉9盏灯中的3盏,但要求相邻的灯不能关闭,因此可以先将要关掉的3盏灯拿出来,这样还剩6盏灯,现在只需把准备关闭的3盏灯插入到亮着的6盏灯所形成的空隙之间即可。
6盏灯的内部及两端共有7个空,故方法数为。
37C 【例题】一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。
问总共可以有多少总方案?
A、120
B、320
C、400
D、420
解析:考虑一侧的关灯方法,10盏灯关掉3盏,还剩7盏,因为两端的灯不能关,表示3盏关掉的灯只能插在7盏灯形成的6个内部空隙中,而不能放在两端,故方法数为,36C 总方法数为。
()2
36400C =注释:因为两边关掉的种数肯定是一样的(因为两边是同等地位),而且总的种数是一边的种数乘以另一边的种数,因此关的方案数一定是个平方数,只有C 符合。