三角形难题
超难题系列:八年级上册数学《三角形》21道超难题

超难题系列八年级上册数学《三角形》21道超难题一.选择题(共1小题)1.(2020春•南岗区校级月考)如图,在Rt△ABC中,∠BAC=90°,点D在BC上,过D作DF⊥BC交BA的延长线于F,连接AD、CF,若∠CFE=32°,∠ADB=45°,则∠B的大小是()A.32°B.64°C.77°D.87°二.解答题(共21小题)2.(2021春•江都区期中)【概念认识】如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.【问题解决】(1)如图②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分线BD交AC于点D,求∠BDC的度数;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻BC三分线和∠ACB邻BC三分线,且∠BPC=140°,求∠A的度数;【延伸推广】线所在的直线交于点P.若∠A=m°(m>54),∠B=54°,直接写出∠BPC的度数.(用含m的代数式表示)3.(2021•香洲区校级模拟)“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)4.(2019秋•揭阳期末)探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.5.(2019秋•长葛市期末)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E的大小.(用含α、β的代数式表示)6.(2019秋•辽阳期末)已知如图①,BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,BQ、CQ分别是∠PBC、∠PCB的角平分线,BM、CN分别是∠PBD、∠PCE的角平分线,∠BAC=α.(1)当α=40°时,∠BPC= °,∠BQC= °;(2)当α= °时,BM∥CN;(3)如图②,当α=120°时,BM、CN所在直线交于点O,求∠BOC的度数;(4)在α>60°的条件下,直接写出∠BPC、∠BQC、∠BOC三角之间的数量关系:.7.(2019春•高邑县期末)如图,点C、D分别在∠AOB的OA、OB边上运动(不与点O重合).射线CE与射线DF分别在∠ACD和∠CDO内部,延长EC与DF交于点F.(1)若∠AOB=90°,CE、DF分别是∠ACD和∠CDO的平分线,猜想:∠F的度数是否随C,D的运动发生变化?请说明理由.(2)若∠AOB=α°(0<α<180),∠ECD=1 /n ∠ACD,∠CDF=1/n ∠CDO,则∠F= °.(用含α、n的代数式表示)8.(2019春•芙蓉区校级期中)在△ABC中,AD⊥BC于点D,AE平分∠BAC.(1)如图,点D在线段BC上.①若∠B=70°,∠C=30°,则∠DAE= ;②若∠B=α,∠C=β,则∠DAE= .(用含α、β的代数式表示)(2)如图2,若点D在边CB的延长线上时,若∠ABC=α,∠C=β,写出∠DAE与α、β满足的数量关系式,并说明理9.(2018春•南安市期末)阅读理解:请你参与下面探究过程,完成所提出的问题.(Ⅰ)问题引入:如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=70°,则∠BOC= 度;若∠A=α,则∠BOC= (用含α的代数式表示);(Ⅱ)类比探究:如图②,在△ABC中,∠CBO=1/3 ∠ABC,∠BCO=1/3 ∠ACB,∠A=α.试探究:∠BOC与∠A的数量关系(用含α的代数式表示),并说明理由.如图③,BO、CO分别是△ABC的外角∠DBC,∠ECB的n等分线,它们交于点O,∠CBO=1/n ∠DBC,∠BCO=1/n∠ECB,∠A=α,求∠BOC的度数(用含α、n的代数式表示).10.(2018春•镇平县期末)已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.(1)直接写出c及x的取值范围;(2)若x是小于18的偶数①求c的长;②判断△ABC的形状.11.(2017秋•开江县期末)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=82°,则∠BEC= ;若∠A=a°,则∠BEC= .【探究】(1)如图2,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB,若∠A=a°,(2)如图3,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;(3)如图4,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.12.(2021春•镇江期末)直线AB、CD为平面内两条直线,点M、点N分别在直线AB、CD上,点P(P不在直线AB、CD上)为平面内一动点.(1)如图1,若AB、CD相交于点O,∠MON=40°;①当点P在△OMN内部时,求证:∠MPN-∠OMP-∠ONP=40°;②小芳发现,当点P在∠MON内部运动时,∠MPN、∠OMP、∠ONP还存在其它数量关系,这种数量关系是;③探究,当点P在∠MON外部时,∠MPN、∠OMP、∠ONP之间的数量关系共有种;(2)如图2,若AB∥CD,请直接写出∠MPN与∠AMP、∠CNP之间存在的所有数量关系是.13.(2021春•永嘉县校级期中)如图1我们称之为“8字形”,请直接写出∠A,∠B,∠C,∠D之间的数量关系:;(3)如图2,∠1+∠2+∠3+∠4+∠5+∠6+∠7= 度(4)如图3所示,已知∠1=∠2,∠3=∠4,猜想∠B,∠P,∠D之间的数量关系,并证明.14.(2021春•安丘市期末)如图①,在△ABC中,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.(1)求∠DAE的度数;(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数.15.(2020秋•椒江区校级月考)在一个钝角三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“智慧三角形”.如,三个内角分别为120°,40°,20°的三角形是“智慧三角形”.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交射线OB于点C.(1)∠ABO的度数为°,△AOB (填“是”或“不是”)“智慧三角形”;(2)若∠OAC=20°,求证:△AOC为“智慧三角形”;(3)当△ABC为“智慧三角形”时,求∠OAC的度数.(直接写出答案)模型:角平分线模型16.(2020秋•阜平县期中)如图,△ABC中,AD是高,AE、BF是角平分线,它们相17.(2019春•庐江县期末)已知:三角形ABC和同一平面内的点D.(1)如图1,点D在BC边上,DE∥BA交AC于E,DF∥CA交AB于F.若∠EDF=85°,则∠A的度数为°.(2)如图2,点D在BC的延长线上,DF∥CA,∠EDF=∠A,证明:DE∥BA.(3)如图3,点D是三角形ABC外部的一个动点,过D作DE∥BA交直线AC于E,DF∥CA交直线AB于F,直接写出∠EDF与∠A的数量关系(不需证明).18.(2019春•新华区校级期末)直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),(1)如图1,已知AE、BE分别是∠BAO和∠ABO的角平分线,①当∠ABO=60°时,求∠AEB的度数;②点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况:若不发生变化,试求出∠AEB的大小;(2)如图2,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,请直接写出∠ABO的度数.19.(2018秋•崇左期末)将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,求∠AOC的度数,若∠AOC=135°,求∠BOD的度数.(2)如图(2)若∠AOC=150°,求∠BOD的度数.(3)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.20.(2019春•永年区期末)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180°.②新多边形的内角和与原多边形的内角和相等.③新多边形的内角和比原多边形的内角和减少了180°.(3)将多边形只截去一个角,截后形成的多边形的内角和为2520°,求原多边形的边数.21.(2019春•潍坊期末)△ABC中,∠C=80°,点D、E分别是△ABC边AC、BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在边AB上,且∠α=50°,如图1,则∠1+∠2= ;(2)若点P在边AB上运动,如图2所示,则∠α、∠1、∠2之间的关系为.(3)若点P运动到边AB的延长线上,如图3,则∠α、∠1、∠2之间有何关系?猜想并说明理由22.(2019春•城厢区校级期末)直线MN与直线PQ垂直相交于O,点A在射线OP 上运动,点B在射线OM上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(2)如图2,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF= °;在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.。
三角形(难题)

三角形(难题)一.选择题1.△ABC的三条外角平分线所在直线相交成一个△A′B′C′,则△A′B′C′()A.一定是直角三角形B.一定是钝角三角形C.一定是锐角三角形D.一定是等腰三角形2.在△ABC中,AB=AC=a,BC=b,∠A=36°,记m=,则m、n、p的大小关系为()A.m>n>p B.p>m>n C.n>p>m D.m=n=p3.设P1、P2、P3分别是以直角△ABC(C为直角)的边AB、BC、CA为边的正三角形,则P1的()为P2、P3的()之和.A.面积,面积B.周长,周长C.内角和,内角和D.AB边上的高,BC与CA边上的高4.如图,△ABC中,BD、CE是中线,BC=8cm,△ABC与△AEC的周长之差为6cm,△ABD 与△BDC的周长之差为2cm,则△BEC的周长为()A.16cm B.18cm C.20cm D.22cm5.边长为a、b、c的三角形满足:,则此三角形是()A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形6.杨小奇做了两块三角板,如果它们的三个内角分别是90°、75°、15°和90°、54°、36°,那么用这两块三角形可以画出()个互不相等的锐角.A.30 B.29 C.10 D.97.要使n(n≥4)边形具有稳定性,至少要添加()A.(n﹣3)条对角线B.(n﹣2)条对角线C.(n﹣1)条对角线D.n条对角线8.如果A,B两镇相距8千米,B,C两镇相距10千米,那么C,A两镇相距()A.2千米B.18千米C.2千米或8千米D.x千米,2≤x≤18,但x无法确定9.在△ABC中,若∠A>∠B,则边长a与c的大小关系是()A.a>c B.c>a C.a> c D.c>a二.填空题10.已知Rt△ABC的三边长都是整数,而且都不超过1999,其中∠A=90°,BC+AB=2AC,则一共有_________个这样的△ABC.11.已知直角三角形有一边是11,另两边的长度均为自然数,那么这个三角形的周长是_________.12.用120根火柴,首尾相接围成一个三条边互不相等的三角形,已知最大边是最小边的3倍,则最小边最少用了_________根火柴.13.在三边长为自然数、周长不超过100、最长边与最短边之差不大于2的三角形中,互不全等的三角形共有_________个.三.解答题14.如图,四边形ABCD中,BC>CD>DA,O为AB中点,且∠AOD=∠COB=60°,求证:CD+AD >BC.15.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD与CD﹣CB 的大小关系,并证明你的结论.解:结论:_________证明:16.设整数a,b,c(a≥b≥c)为三角形的三边长,满足a2+b2+c2﹣ab﹣ac﹣bc=13,求符合条件且周长不超过30的三角形的个数.17.如图,△ABC中,∠C为锐角,AD,BE分别是BC和AC边上的高线,设CD=BC,CE=AC,当m,n为正整数时,试判断△ABC的形状,并说明理由.A.一定是直角三角形B.一定是钝角三角形C.一定是锐角三角形D.一定是等腰三角形考点:三角形边角关系。
初二数学全等三角形难题

1、三角形ABC,角A=60°,∠B、∠C的角平分线BE与CD交与点O求:OE=OD.在BC上取点G,使得BD=BG因为∠A=60°所以∠BOC=120°因为∠DOB=∠EOC(对顶角)所以∠DOB=∠EOC=60°(360-120)/2尤SAS得△DBO≌△BOG所以DO=G0 ∠DOB=∠GOB=60°所以∠GOC=∠BOG=60°再由ASA得△OGC≌△OEC所以OG=OE因为OD=OG所以OE=OD2、已知在△ABC中,∠A=90°,AB=AC,AE⊥BD于E,∠ADB=∠CDF,延长AE交BC于F,求证:D为AC的中点作D关于BC的对称点G连接FG、CG由于角ADB=角BAF 所以角FDC=角BAF而角B=角C=45°所以角AFB=180°-角B-角BAF=180°-角C-角CDF=角DFG所以角AFD+角DFG=角AFD+角DFC+角AFB=180°所以A、F、G共线又因为角CAG=角ABD角ACG=2*45°=90°=角BAD所以三角形BAD全等于三角形ACG所以CG=AD又CG=DC所以AD=DC3.已知三角形ABC中,AD为BC边的中线,E为AC上一点,BE与AD交于F,若AE=EF,求证:AC=BF延长AD到M使DM=AD,连BM,CM∵AD=DM,BD=CD∴ABMC为平行四边形(对角线互相平分)∴AC‖BM,AC=BM(等于那个最后再用到)∴∠DAC=∠DMB(∠DAC即∠EAF,∠DMB即∠BMF下面用到)(内错角相等)……①在三角形AEF中,∵AE=EF∴∠EAF=∠EFA (等腰三角形)……②又∵∠EFA=∠BFM(对顶角相等)……③由①②③,得∠EAF=∠EFA=∠BFM=∠BMF在三角形BFM中,∵∠BFM=∠BMF∴三角形BFM为等腰三角形,边BF=BM由前面证得的AC=BM,得AC=BF4.已知三角形ABC,AD为BC边上的中线,E为AC上一点,AD、BE交于点F,且AE=EF,请问BF=AC吗?延长AD并过B点作AC的平行线,相交于G点则AC//BG,AE=EF,可得BF=BG在三角形BDG和三角形CDA中BD=CD,<ADC=<GDB,<DBG=<ACD,两三角形全等所以AC=BG=BF5、在△ABC中,∠ACB是直角,∠B= 60°,AD、CE分别是∠BAC、∠BCA 的平分线,AD、CE相交于点F。
全等三角形难题(含答案.解析)

∴∠D=∠CFE
又∵∠DCE=∠FCE
CE平分∠BCD
CE=CE
∴⊿DCE≌⊿FCE(AAS)
∴CD=CF
∴BC=BF+CF=AB+CD
8. 已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C
ED
C
F
AB
AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,
1<AD<3
∴AD=2
1
2.已知:D是AB中点,∠ACB=90°,求证:
CDAB
2
A
D
CB
延长CD与P,使D为CP中点。连接AP,BP
∵DP=DC,DA=DB
∴ACBP为平行四边形
又∠ACB=90
∴平行四边形ACBP为矩形
∴AB=CP=1/2AB
3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
AB=AE,BF=EF,
∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF
∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)。
4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
A
2
1
F
C
D
E
B
过C作CG∥EF交AD的延长线于点G
CG∥EF,可得,∠EFD=CGD
DE=DC
∠FDE=∠GDC(对顶角)
∴△EFD≌△CGD
EF=CG
∠CGD=∠EFD
又,EF∥AB
∴,∠EFD=∠1
∠1=∠2
∴∠CGD=∠2
全等三角形难题集锦超级好

1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ; (2)试证明:EM-PM=AM.2.已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图B E3.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB ,连接AE CD ,. (1)求证:AGE DAC △≌△;(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.CGAEDBF4、在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;ADBECF 1A1CADBECF 1A1C5. 如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .ABCD EF6已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°, EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.A EC F BD图1图3ADFECBADBCE 图2F7、已知AC//BD,∠CAB和∠DBA的平分线EA、EB与CD相交于点E.求证:AB=AC+BD.8.等边△ABC,D为△ABC外一点,∠BDC=120°,BD=DC.∠MDN=60°射线DM与直线AB相交于点M,射线DN与直线AC相交于点N,①当点M、N在边AB、AC上,且DM=DN时,直接写出BM、NC、MN之间的数量关系.②当点M、N在边AB、AC上,且DM≠DN时,猜想①中的结论还成立吗?若成立,请证明.③当点M、N在边AB、CA的延长线上时,请画出图形,并写出BM、NC、MN之间的数量关系.DCBA9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证BC =AB +AD ;(2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;10、如图,四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,AD+AB=2AE ,则∠B 与∠ADC 互补.为什么?ABCD FE 图2DBEAC图十一11如图,在△ABC 中∠ABC,∠ACB 的外角平分线交P.求证:AP 是∠BAC 的角平分线12、如图在四边形ABCD 中,AC 平分∠BAD ,∠ADC +∠ABC =180度,CE ⊥AD 于E ,猜想AD 、AE 、AB 之间的数量关系,并证明你的猜想,EBAC图2DCB13如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD14如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CF15如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。
完整版)全等三角形难题题型归类及解析

完整版)全等三角形难题题型归类及解析1.在三角形ABC中,AD是角BAC的平分线,AE=AC,DE=2cm,BD=3cm,求BC的长度。
为了解决这个问题,我们可以利用角平分线的轴对称性,构造全等三角形ADE和ABC。
因为AE=AC,所以三角形ADE和三角形ABC的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠DAE=∠CAB,∠AED=∠ACB。
又因为AD是角BAC的平分线,所以∠DAE=∠EAC,因此∠CAB=2∠EAC。
设BC=x,则根据正弦定理可得:3/x=sin(2EAC)/sin(EAC),化简后得到x=6.2.在三角形ABC中,BD是角ABC的平分线,AB=BC,P在BD上,PM⊥AD于M,PN⊥CD于N,求解PM与PN 的关系。
首先,我们可以利用角平分线的性质,构造等腰三角形ABD和CBD。
因为AB=BC,所以三角形ABD和三角形CBD的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠BDA=∠BDC,∠ADB=∠CDB。
又因为BD是角ABC的平分线,所以∠ADB=∠BDC,因此∠BDA=∠CDB。
因此,三角形APM和三角形CPN是全等的。
因为全等三角形的对应边相等,所以PM=PN。
3.在三角形OAB中,P是角OAB的平分线上的一点,PC⊥OA于C,∠OAP+∠OBP=180°,OC=4cm,求解AO+BO的值。
我们可以利用角平分线的轴对称性,构造全等三角形OAC和OBC。
因为∠OAP+∠OBP=180°,所以∠AOP=∠BOP=90°。
因此,三角形OAP和三角形OBP是直角三角形。
设AO=x,BO=y,则根据勾股定理可得:x^2+PC^2=OP^2,y^2+PC^2=OP^2.又因为OC=4cm,所以PC=2cm。
将PC代入上面的两个式子中,得到x^2+y^2=OP^2-4.又因为三角形OAC和三角形OBC是全等的,所以x=y,因此2x^2=OP^2-4,即OP^2=2x^2+4.因此,AO+BO=2x=2√((OP^2-4)/2)=2√(2x^2)=2√(2y^2)=2√(2x^2+4)/2=2√(OP^2)/2=OP√2=2√6.4.在三角形ABC中,E在边AC上,且∠XXX∠ABC。
(专题精选)初中数学三角形难题汇编及答案解析

∴∠BAE=∠EAD=60°
∴△ABE是等边三角形,
∴AE=AB=BE,∠AEB=60°,
∵AB= BC,
∴AE=BE= BC,
∴AE=CE,故①正确;
∴∠EAC=∠ACE=30°
∴∠BAC=90°,
∴S△ABC= AB•AC,故②错误;
∵BE=EC,
∴E为BC中点,O为AC中点,
(专题精选)初中数学三角形难题汇编及答案解析
一、选择题
1.如图,已知 ,若 , , ,下列结论:① ;② ;③ ;④ 与 互补;⑤ ,其中正确的有()
A.2个B.3个C.4个D.5个
【答案】C
【解析】
【分析】
根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.
∴S△ABE=S△ACE=2S△AOE,故③正确;
∵四边形ABCD是平行四边形,
∴AC=CO,
∵AE=CE,
∴EO⊥AC,
∵∠ACE=30°,
∴EO= EC,
∵EC= AB,
∴OE= BC,故④正确;
故正确的个数为3个,
故选:C.
【点睛】
此题考查平行四边形的性质,等边三角形的判定与性质.注意证得△ABE是等边三角形是解题关键.
15.如图,四边形 和 都是正方形,点 在 边上,点 在对角线 上,若 ,则 的面积是()
A.6B.8C.9D.12【答Βιβλιοθήκη 】B【解析】【分析】
根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE= EH= EF,EF= AE,即可得到结论.
(专题精选)初中数学三角形难题汇编含答案解析

(专题精选)初中数学三角形难题汇编含答案解析一、选择题1.如图,正方体的棱长为6cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )A .9B .310C .326+D .12【答案】B【解析】【分析】 将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB=22(36)3310++= .故选:B .【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.2.如图,在△ABC 中,AC =BC ,D 、E 分别是AB 、AC 上一点,且AD =AE ,连接DE 并延长交BC 的延长线于点F ,若DF =BD ,则∠A 的度数为( )A.30 B.36 C.45 D.72【答案】B【解析】【分析】由CA=CB,可以设∠A=∠B=x.想办法构建方程即可解决问题;【详解】解:∵CA=CB,∴∠A=∠B,设∠A=∠B=x.∵DF=DB,∴∠B=∠F=x,∵AD=AE,∴∠ADE=∠AED=∠B+∠F=2x,∴x+2x+2x=180°,∴x=36°,故选B.【点睛】本题考查等腰三角形的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D【解析】【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.4.如图,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE, CE,如图:在射线AD上取点F连接BF, CF,如图,依此规律,第n个图形中全等三角形的对数是()A.n B.2n-1 C.(1)2n nD.3(n+1)【答案】C【解析】【分析】根据条件可得图1中△ABD ≌△ACD 有1对三角形全等;图2中可证出△ABD ≌△ACD ,△BDE ≌△CDE ,△ABE ≌△ACE 有3对全等三角形;图3中有6对全等三角形,根据数据可分析出第n 个图形中全等三角形的对数.【详解】∵AD 是∠BAC 的平分线,∴∠BAD =∠CAD .在△ABD 与△ACD 中,AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD ≌△ACD .∴图1中有1对三角形全等;同理图2中,△ABE ≌△ACE ,∴BE =EC ,∵△ABD ≌△ACD .∴BD =CD ,又DE =DE ,∴△BDE ≌△CDE ,∴图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n 个图形中全等三角形的对数是()12n n +.故选C.【点睛】考查全等三角形的判定,找出数字的变化规律是解题的关键.5.如图,点O 是ABC ∆的内心,M 、N 是AC 上的点,且CM CB =,AN AB =,若100ABC ∠=︒,则MON ∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】根据题意,连接OA ,OB ,OC ,进而求得BOC MOC ∆≅∆,AOB AON ∆≅∆,即∠CBO =∠CMO ,∠OBA =∠ONA ,根据三角形内角和定理即可得到∠MON 的度数.【详解】如图,连接OA ,OB ,OC ,∵点O 是ABC ∆的内心,∴BCO MCO ∠=∠,∵CM =CB ,OC =OC ,∴()BOC MOC SAS ∆≅∆,∴CBO CMO ∠=∠,同理可得:AOB AON ∆≅∆,∴ABO ANO ∠=∠,∵100CBA CBO ABO ∠=∠+∠=︒,∴100CMO ANO ∠+∠=︒,∴180()80MON CMO ANO ∠=︒-∠+∠=︒,故选:C.【点睛】本题主要考查了三角形全等的性质及判定,三角形的内角和定理及角度的转换,熟练掌握相关辅助线的画法及三角形全等的判定是解决本题的关键.6.下列命题是假命题的是( )A .三角形的外心到三角形的三个顶点的距离相等B .如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C .将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限D .若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m £ 【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m £,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.7.如图,在△ABC 中,∠C=90°,∠A=30°,以点B 为圆心,适当长为半径的画弧,分别交BA ,BC 于点M 、N ;再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则下列说法中不正确的是()A .BP 是∠ABC 的平分线B .AD=BDC .:1:3CBD ABD S S =V V D .CD=12BD 【答案】C【解析】【分析】 A 、由作法得BD 是∠ABC 的平分线,即可判定;B 、先根据三角形内角和定理求出∠ABC 的度数,再由BP 是∠ABC 的平分线得出∠ABD =30°=∠A,即可判定;C ,D 、根据含30°的直角三角形,30°所对直角边等于斜边的一半,即可判定.【详解】解:由作法得BD 平分∠ABC ,所以A 选项的结论正确;∵∠C =90°,∠A =30°,∴∠ABC =60°,∴∠ABD =30°=∠A ,∴AD =BD ,所以B 选项的结论正确;∵∠CBD =12∠ABC =30°, ∴BD =2CD ,所以D 选项的结论正确;∴AD =2CD ,∴S△ABD=2S△CBD,所以C选项的结论错误.故选:C.【点睛】此题考查含30°角的直角三角形的性质,尺规作图(作角平分线),解题关键在于利用三角形内角和进行计算.8.图中的三角形被木板遮住了一部分,这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能【答案】D【解析】从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D.9.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm【答案】B【解析】【分析】根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【详解】∵BD是∠ABC的平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD是公共边,∴△ABD≌△EBD (AAS),∴AD=ED,AB=BE,∴△DEC的周长是DE+EC+DC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=10 cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.10.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.23B.13C.4 D.32【答案】B【解析】【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt △OBD 中,根据勾股定理,得: OB= 22BD OD 13+=故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC 判定点O 在AD 上.11.如图,AA',BB'表示两根长度相同的木条,若O 是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为( )A .8 cmB .9 cmC .10 cmD .11 cm【答案】B【解析】 解:由题意知:OA =OA ′,∠AOB =∠A ′OB ′,OB =OB ′,∴△AOB ≌△A ′OB ′,∴A ′B ′=AB =9cm .故选B .点睛:本题考查了全等三角形的判定及性质的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.12.如图,在ABC ∆中,AB AC =,分别是以点A ,点B 为圆心,以大于12AB 长为半径画弧,两弧交点的连线交AC 于点D ,交AB 于点E ,连接BD ,若40A ∠=︒,则DBC ∠=( )A .40︒B .30︒C .20︒D .10︒【答案】B【解析】【分析】 根据题意,DE 是AB 的垂直平分线,则AD=BD ,40ABD A ==︒∠∠,又AB=AC ,则∠ABC=70°,即可求出DBC ∠.【详解】解:根据题意可知,DE 是线段AB 的垂直平分线,∴AD=BD ,∴40ABD A ==︒∠∠,∵AB AC =, ∴1(18040)702ABC ∠=⨯︒-︒=︒, ∴704030DBC ∠=︒-︒=︒;故选:B.【点睛】 本题考查了垂直平分线的性质,等腰三角形的性质,以及三角形的内角和,解题的关键是熟练掌握所学的性质,正确求出DBC ∠的度数.13.如图,在□ABCD 中,延长CD 到E ,使DE =CD ,连接BE 交AD 于点F ,交AC 于点G .下列结论中:①DE =DF ;②AG =GF ;③AF =DF ;④BG =GC ;⑤BF =EF ,其中正确的有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由AAS 证明△ABF ≌△DEF ,得出对应边相等AF=DF ,BF=EF ,即可得出结论,对于①②④不一定正确.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,即AB ∥CE ,∴∠ABF=∠E ,∵DE=CD ,∴AB=DE ,在△ABF 和△DEF 中,∵===ABF E AFB DFE AB DE ∠∠⎧⎪∠∠⎨⎪⎩, ∴△ABF ≌△DEF (AAS ),∴AF=DF ,BF=EF ;可得③⑤正确,故选:B .【点睛】此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.14.如图,在ABC ∆,90C =o ∠,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N ,为圆心,大于12MN 长为半径画弧,两弧交于点O ,作弧线AO ,交BC 于点E .已知3CE =,5BE =,则AC 的长为( )A .8B .7C .6D .5【答案】C【解析】【分析】 直接利用基本作图方法得出AE 是∠CAB 的平分线,进而结合全等三角形的判定与性质得出AC=AD ,再利用勾股定理得出AC 的长.【详解】过点E 作ED ⊥AB 于点D ,由作图方法可得出AE 是∠CAB 的平分线,∵EC ⊥AC ,ED ⊥AB ,∴EC=ED=3,在Rt △ACE 和Rt △ADE 中,AE AE EC ED ⎧⎨⎩==, ∴Rt △ACE ≌Rt △ADE (HL ),∴AC=AD ,∵在Rt △EDB 中,DE=3,BE=5,∴BD=4,设AC=x,则AB=4+x,故在Rt△ACB中,AC2+BC2=AB2,即x2+82=(x+4)2,解得:x=6,即AC的长为:6.故答案为:C.【点睛】此题主要考查了基本作图以及全等三角形的判定与性质、勾股定理等知识,正确得出BD 的长是解题关键.15.如图,已知A ,D,B,E在同一条直线上,且AD = BE, AC = DF,补充下列其中一个条件后,不一定能得到△ABC≌△DEF 的是()A.BC = EF B.AC//DF C.∠C = ∠F D.∠BAC = ∠EDF 【答案】C【解析】【分析】根据全等三角形的判定方法逐项判断即可.【详解】∵BE=CF,∴BE+EC=EC+CF,即BC=EF,且AC = DF,∴当BC = EF时,满足SSS,可以判定△ABC≌△DEF;当AC//DF时,∠A=∠EDF,满足SAS,可以判定△ABC≌△DEF;当∠C = ∠F时,为SSA,不能判定△ABC≌△DEF;当∠BAC = ∠EDF时,满足SAS,可以判定△ABC≌△DEF,故选C.【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.16.如图,AD∥BC,∠C =30°,∠ADB:∠BDC= 1:2,则∠DBC的度数是( )A.30°B.36°C.45°D.50°【答案】D【解析】【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【详解】∵AD∥BC,∠C=30°∴∠ADC=150°,∠ADB=∠DBC∵∠ADB:∠DBC=1:2∴∠ADB=13×150°=50°,故选D.【点睛】熟练掌握平行线的性质是本题解题的关键.17.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()A.1倍B.2倍C.3倍D.4倍【答案】B【解析】设原直角三角形的三边长分别是,且,则扩大后的三角形的斜边长为,即斜边长扩大到原来的2倍,故选B.18.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?().A.0根B.1根C.2根D.3根【答案】B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B19.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【答案】D【解析】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS 和HL是解题的关键.20.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【答案】A【解析】【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=12∠A,然后把∠A的度数代入计算即可.【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=12∠A=12×30°=15°.故选A.【点睛】点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.。