【数学】人教版八年级上册第14章【说课稿】分解因式——提公因式法

合集下载

最新人教版八年级数学上册第14章教案之14.3.1 提公因式法分解因式

最新人教版八年级数学上册第14章教案之14.3.1 提公因式法分解因式

最新人教版八年级数学上册第14章教案14.3.1 提公因式法分解因式一、教学目标1.理解因式分解的概念,以及因式分解与整式乘法的关系.会用提取公因式的方法分解因式。

2.会确定公因式以及提出公因式后的另外一个因式。

二、教学过程(一)情境导入1.多媒体展示,让学生完成.计算:(1)m(a+b+c);(2)(a+b)(a-b);(3)(a+b)2.学生通过回忆前面所学的解题方法,完成解题,并积极作答:(1)m(a+b+c)=ma+mb+mc;(2)(a+b)(a-b)=a2-b2;(3)(a+b)2=a2+2ab+b2.2.学生通过对比上题发现:(1)ma+mb+mc=m(a+b+c);(2)a2-b2=(a+b)(a-b);(3)a2+2ab+b2=(a+b)2.3.教师肯定学生的表现,说明其过程正好与整式的乘法相反,它是把一个多项式化为几个整式的积的形式,该过程叫做因式分解,这节课我们就来探讨它.(二)合作探究探究点一:因式分解的概念例1 下列从左到右的变形中是因式分解的有()①x2-y2-1=(x+y)(x-y)-1;②x3+x=x(x2+1);③(x-y)2=x2-2xy+y2;④x2-9y2=(x +3y)(x-3y).A.1个B.2个C.3个D.4个解析:①没把一个多项式转化成几个整式积的形式,故①不是因式分解;②把一个多项式转化成几个整式积的形式,故②是因式分解;③是整式的乘法,故③不是因式分解;④把一个多项式转化成几个整式积的形式,故④是因式分解;故选B.方法总结:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.探究点二:提公因式法分解因式【类型一】确定公因式例2 多项式6ab2c-3a2bc+12a2b2中各项的公因式是()A.abc B.3a2b2C.3a2b2c D.3ab解析:系数的最大公约数是3,相同字母的最低指数次幂是ab,∴公因式为3ab.故选D.方法总结:确定多项式中各项的公因式,可概括为三“定”:(1)定系数,即确定各项系数的最大公约数;(2)定字母,即确定各项的相同字母因式(或相同多项式因式);(3)定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.【类型二】用提公因式法因式分解例3 因式分解:(1)8a3b2+12ab3c;(2)2a(b+c)-3(b+c);(3)(a+b)(a-b)-a-b.解析:将原式各项提取公因式即可得到结果.解:(1)原式=4ab2(2a2+3bc);(2)原式=(2a-3)(b+c);(3)原式=(a+b)(a-b-1).方法总结:提公因式法的基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式.【类型三】利用因式分解简化运算例4 计算:(1)39×37-13×91;(2)29×20.16+72×20.16+13×20.16-20.16×14.解析:(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.16,进而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.16+72×20.16+13×20.16-20.16×14=20.16×(29+72+13-14)=2016.方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.【类型四】利用因式分解整体代换求值例5 已知a+b=7,ab=4,求a2b+ab2的值.解析:原式提取公因式变形后,将a+b与ab的值代入计算即可求出值.解:∵a+b=7,ab=4,∴原式=ab(a+b)=4×7=28.方法总结:求代数式的值,有时要将已知条件看作一个整体代入求值.【类型五】因式分解与三角形知识的综合例6 △ABC的三边长分别为a、b、c,且a+2ab=c+2bc,请判断△ABC是等边三角形、等腰三角形还是直角三角形?并说明理由.解析:对已知条件进行化简后得到a=c,根据等腰三角形的概念即可判定.解:整理a+2ab=c+2bc得,a+2ab-c-2bc=0,(a-c)+2b(a-c)=0,(a-c)(1+2b)=0,∴(a-c)=0或(1+2b)=0,即a=c或b=-12(舍去),∴△ABC是等腰三角形.方法总结:通过提公因式分解因式,找出三边的关系来判定三角形的形状.【类型六】运用因式分解探究规律例7 阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述因式分解的方法是____________,共应用了______次;(2)若分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,则需应用上述方法______次,结果是____________;(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).解析:(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.解:(1)因式分解的方法是提公因式法,共应用了2次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需应用上述方法2015次,结果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法总结:解决此类问题需要认真阅读理解题意,根据已知得出分解因式的规律是解题关键.(三)板书设计提公因式法1.因式分解的概念:把一个多项式化成几个整式的积的形式.2.因式分解与整式乘法是方向相反的变形.3.提取公因式的方法:把多项式各项的公因式提取出来,写成公因式与另一个因式乘积的形式.。

【说课稿】 分解因式——提公因式法(2)

【说课稿】 分解因式——提公因式法(2)

分解因式——提公因式法教材:义务教育课程标准实验教科书数学八年级上册第十四章第3节。

《因式分解》第一课时“因式分解的意义及用提公因式法分解因式”,下面我从:教材分析、目标分析、教学过程、教法与学法及评价等五部分来说这一节课,其中教学过程分为:复旧孕新、类比引入、学习新知、巩固新知、自主小结及学生作业6个部分,整个过程以计算题为载体,让学生在已有知识的基础上认识新的知识。

一、教材分析:1.教材的地位及作用:因式分解是代数式的一种重要恒等变形。

它是学习分式的基础,又在代数式的运算、解方程、函数中有广泛的应用,它是继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。

这一思想贯穿后继学习的各种因式分解方法。

2.教学重点:了解因式分解的意义,会用提公因式法分解因式。

3.教学难点:整式乘法与因式分解之间的关系。

二、目标分析:1.知识与能力目标:了解因式分解的意义,以及它与整式乘法的关系,学会用提取公因式方法分解因式。

2.过程与方法:经历从分解因数到分解因式的类比过程,掌握因式分解的概念,通过与多项式的乘法相比较,发展逆向思维能力。

3.情感态度与价值观:在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值。

三、过程分析:《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人”为了向学生提供更多从事数学活动的机会,我将本节课的教学过程设定为以下六个环节,分别为复旧孕新、类比引入、学习新知、巩固新知、自主小结及学生作业。

1.复旧孕新,算一算(看谁算得快)①-25×4+75×4②a()③(a+1)(a-2)④(2y)2[设计意图]通过算一算,让学生用已有知识解决问题,感受数学知识给自己带来收获的愉快,同时为后面学习新知作出铺垫。

2.类比引入,填一填①将60分解成质数的乘积的形式为:。

《因式分解——提公因式法》说课稿1可修改全文

《因式分解——提公因式法》说课稿1可修改全文

可编辑修改精选全文完整版
说课:14.3.1因式分解---提公因式法
一、 教材分析
提公因式法是人教版教材八年级上册第14章第3节第一部分的内容,它是既整式乘法和整式除法后的又一重要的内容,这也是整式乘法的延续,与前面的知识联系十分紧密,也是学生以后学习化简,一元一次运算的重要基础,学习好此节内容会使学生以后运算更加简单。

二、 学情分析
初二年级两个班均为普通班,多数学生基础较差,他们自我学习能力很弱,上课只能以课本基础的知识为主,来激发更多的学生参与学习。

而在知识基础上,学生们已经学过整式的乘法,而且他们在小学已经接触了公因数的概念和乘法分配率,因此学习本节内容稍显容易,但在分解过程中的常规易错点问题,必需让学生反复训练,才能达预期目的。

三、 教学目标
1、理解因式分解的概念,能够准确的判断什么是因式分解。

2、明白公因式的概念,熟练运用提公因式法分解因式。

3、经历探索提公因式法分解因式的过程,学会逆向思考和整体看待的数学思想。

重点: 理解因式分解的定义及运用提取公因式法分解因式
难点: 理解因式分解与整式乘法的关系,熟练运用提取公因式法分解因式
四、 教学方法与教学手段
运用类比,演绎归纳的方法引导学生自主学习,自主归纳。

五、 教学流程图。

2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案 提公因式法

2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案  提公因式法

第十四章整式的乘法与因式分解14.3 因式分解14.3.1 提公因式法一、教学目标【知识与技能】1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念;2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式.【过程与方法】经历从分解因数到分解因式的类比过程,感受因式分解在解决问题中的作用.【情感、态度与价值观】培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】因式分解的概念;提公因式法分解因式.【教学难点】正确理解因式分解的概念,准确找出公因式.五、课前准备教师:课件、三角尺、直尺等.学生:直尺、练习本、铅笔、钢笔或圆珠笔.六、教学过程(一)导入新课我们知道,利用整式的乘法运算,可以将几个整式的积化为一个多项式的形式,反过来,能不能将一个多项式化成几个整式的积的形式呢?若能,这种变形叫做什么呢?(出示课件2)(二)探索新知1.创设情境,探究提公因式法分解因式教师问1:请同学们先完成下列计算,看谁算得又准又快.(1)20×(-3)2+60×(-3);(2)1012-992;(3)572+2×57×43+432.学生回答:如下:解:方法一:(1)20×(-3)2+60×(-3)=20×9-180=180-180=0;(2)1012-992=10201-9801=400;(3)572+2×57×43+432=3249+4902+1849=8151+1849=10000.方法二:(1)20×(-3)2+60×(-3)=-3×[20×(-3)+60]=1-3×[-60+60]=0;(2)1012-992=(101+99)(101-99)=200×2=400;(3)572+2×57×43+432=3(57+43)2=1002=10000.教师问2:上边两种方法,哪一种简单呢?学生回答:方法二简单.教师讲解:在上述运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式使运算变得简单易行,类似地,在式的变形中,有时也需要将一个多项式写成几个整式的乘积形成,这就是我们从今天开始要探究的内容——因式分解.(板书课题)教师问3:如图,一块菜地被分成三部分,你能用不同的方式表示这块草坪的面积吗?(出示课件4)学生回答:方法一:m(a+b+c);方法二:ma+mb+mc教师问4:m(a+b+c)=ma+mb+mc是整式的乘法,那么ma+mb+mc=m(a+b+c),你猜想是什么呢?学生回答:因式分解.教师问5:请同学们运用整式乘法法则或公式填空:(出示课件5)(1) m(a+b+c)= ____________________ ;(2) (x+1)(x–1)=___________________;(3) (a+b)2 = ______________________.学生回答:(1) m(a+b+c)= ma+mb+mc ;(2) (x+1)(x–1)=x2-1;(3) (a+b)2 = a2+2ab+b2.教师问6:根据等式的性质填空:(1) ma+mb+mc=( )( )(2) x2–1 =( )( )(3) a2 +2ab+b2 =( )2学生回答:(1) ma+mb+mc=( m)( a+b+c )(2) x2–1 =( x+1)( x-1)(3) a2 +2ab+b2 =( a+b)2教师问7:比一比,这些式子有什么共同点?学生讨论后回答:左边是多项式,右边是多相式的乘积.教师总结:(出示课件6)把一个多项式化为几个整式的乘积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.教师问8:你认为因式分解与整式乘法有什么关系?(出示课件7)学生思考回答,师生共同解答如下:因式分解与整式乘法是互逆变形关系,整式乘法是一种运算,而因式分解是对多项式的一种变形,不是运算.教师问9:x2–1 = (x+1)(x–1)有何特征呢?学生回答:左边是多项式,右边是几个整式的乘积例1:下列从左到右的变形中是因式分解的有( )(出示课件8)①x2–y2–1=(x+y)(x–y)–1;②x3+x=x(x2+1);③(x–y)2=x2–2xy+y2;④x2–9y2=(x+3y)(x–3y).A.1个B.2个C.3个D.4个因式分解是积的形式,①是和的形式,所以不是因式分解,②是因式分解,③是整式的乘法,④是因式分解.故选B.答案:B.总结点拨:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解的右边是两个或几个因式积的形式,整式乘法的右边是多项式的形式.教师问10:再观察下面问题中的第(1)题和第(3)题,你能发现什么特点?(1)x2+x=________;(2)x2-1=________;(3)am+bm+cm=________.学生独立思考后回答:发现(1)中各项都有一个相同的因式x,(3)中各项都有一个相同的因式m.教师问11:观察下列多项式,它们有那些相同的因式?(出示课件10)pa+pb+pc,x2+x学生回答:前者的相同因式为p,后者的相同因式为x。

数学人教版八年级上册提公因式法说课稿

数学人教版八年级上册提公因式法说课稿

14.3因式分解(一)14.3.1提公因式法说课稿古丽娜尔一、教材分析:(一)教材的地位和作用本节课是人教版八年级上册第十四章第3节因式分解的第一课时《提公因式法》。

学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的价值。

它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的严重基础。

事实上,因式分解是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,所以因式分解这一节在整个教材中起到了承上启下的作用。

(二)根据课程标准,结合教材的编写意图,为了让学生理解并掌握因式分解的概念,理解因式分解是式子的变形,而提公因式法是因式分解这一节学习的第一种分解因式的方法,是最基本的也是最严重的方法,本节课确定如下的学习目标和学习重点、难点。

学习目标:1、了解因式分解的意义;2、认识因式分解与整式乘法的互逆关系,并能运用这种关系寻求因式分解的方法;3、了解公因式的概念,会用提公因式法分解因式;4、培养学生独立思考的习惯,同时还要培养学生的合作交流意识。

学习重点:因式分解的概念及运用提公因式法分解因式。

学习难点:正确找出多项式各项的公因式及提公因式后另一个因式的确定;因式分解与整式乘法的区别和联系。

二、学情分析:1、八年级的学生已经学习了整式乘法,有了初步的逆变形思维能力,具备一定的分析、判断和运用法则的能力,对乘法的分配律也得到了进一步的理解。

2、八年级的学生通过三学小组模式的学习,已经具备了一定的自学、互学能力,所以本节课中应努力多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究怎样确定公因式和如何用提公因式法分解因式。

在教学中教师既要注意学法指导,更要重视培养他们的数学学习习惯和数学思想。

三、教法与学法分析:教法分析:针对八年级学生的知识结构和心理特征,本节课选择“三学小组”模式组织教学,采用观察、讨论、演示、类比、比较、概括等多种方法组织教学,利用多媒体辅助教学,呈现知识的形成过程,充分调动多种感官参与学习,让学生用类比推理的方法探究,由浅入深,由分外到大凡地提出问题。

人教版八年级上数学说课稿《第14章整式的乘法与因式分解》

人教版八年级上数学说课稿《第14章整式的乘法与因式分解》

人教版八年级上数学说课稿《第14章整式的乘法与因式分解》一. 教材分析《人教版八年级上数学》第14章整式的乘法与因式分解,是在学生掌握了有理数的运算、整式的加减、幂的运算等知识的基础上进行学习的。

这一章的内容包括整式的乘法运算、平方差公式、完全平方公式、因式分解等。

整式的乘法与因式分解在数学中占有重要的地位,它不仅在初中数学中有着广泛的应用,而且对高中数学的学习也有很大的帮助。

二. 学情分析八年级的学生已经具备了一定的数学基础,对整式的加减、幂的运算等知识有一定的了解。

但是,学生在学习这一章的内容时,可能会觉得比较困难,因为这一章的内容既有运算,又有公式的记忆,还有因式分解的方法,需要学生对知识进行深入的理解和掌握。

三. 说教学目标1.知识与技能目标:使学生掌握整式的乘法运算,理解并掌握平方差公式、完全平方公式,学会因式分解的方法。

2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的美。

四. 说教学重难点1.教学重点:整式的乘法运算,平方差公式、完全平方公式的记忆,因式分解的方法。

2.教学难点:平方差公式、完全平方公式的推导,因式分解的方法的灵活运用。

五. 说教学方法与手段在本节课的教学中,我将采用自主学习、合作交流、教师讲解等教学方法。

同时,利用多媒体教学手段,如PPT、网络资源等,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过复习整式的加减、幂的运算等知识,引导学生进入整式的乘法与因式分解的学习。

2.教学新课:讲解整式的乘法运算,引导学生推导平方差公式、完全平方公式,教授因式分解的方法。

3.练习巩固:布置相关的练习题,让学生进行自主练习,巩固所学知识。

4.课堂小结:对本节课的内容进行总结,帮助学生加深对知识的理解。

5.布置作业:布置适量的作业,让学生在课后进行复习和巩固。

八年级数学上册14.3因式分解14.3.1提公因式法说课稿(新版)新人教版

八年级数学上册14.3因式分解14.3.1提公因式法说课稿(新版)新人教版

八年级数学上册 14.3 因式分解 14.3.1 提公因式法说课稿(新版)新人教版一. 教材分析《八年级数学上册》第14.3节是关于因式分解的内容,其中14.3.1节是提公因式法。

这一节内容是在学生已经掌握了多项式乘法、完全平方公式和平方差公式的基础上进行教学的。

教材通过引入提公因式法,使学生能够更好地理解和掌握因式分解的方法,为后续学习更复杂的因式分解方法打下基础。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于多项式乘法和完全平方公式等概念有一定的了解。

但是,学生在学习过程中可能会对因式分解的方法和思路感到困惑,特别是对于提公因式法的应用可能会存在一定的困难。

因此,在教学过程中,需要关注学生的学习情况,针对学生的困惑进行解答和指导。

三. 说教学目标1.知识与技能目标:使学生掌握提公因式法的概念和步骤,能够灵活运用提公因式法进行因式分解。

2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的解决问题的能力和合作意识。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的耐心和自信心。

四. 说教学重难点1.教学重点:使学生掌握提公因式法的概念和步骤,能够灵活运用提公因式法进行因式分解。

2.教学难点:如何引导学生理解和掌握提公因式法的应用,以及如何解决因式分解过程中的关键步骤。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法进行教学。

2.教学手段:利用多媒体课件、黑板和教学卡片等辅助教学。

六. 说教学过程1.引入新课:通过一个具体的例子,让学生观察和分析,引导学生思考如何将一个多项式进行因式分解。

2.讲解提公因式法:讲解提公因式法的概念和步骤,通过示例进行讲解,让学生理解和掌握提公因式法的应用。

3.练习与讨论:给出一些练习题,让学生独立进行因式分解,然后进行小组讨论,共同解决问题。

4.总结与拓展:对提公因式法进行总结,引导学生思考如何解决更复杂的因式分解问题。

人教版初中数学八年级上册《提公因式》说课稿

人教版初中数学八年级上册《提公因式》说课稿

人教版初中数学八年级上册《提公因式》说课稿14.3.1提公因式说课稿(一)学习目标:知识与技能:1.了解因式分解的意义,并能够理解因式分解与多项式乘法的区别与联系.2.会用提公因式法进行因式分解.过程与方法:了解公因式的概念,和提取公因式的方法。

情感态度与价值观:树立学生全面认识问题、分析问题的思想,提高学生的观察能力、逆向思维能力.学习重点:掌握提取公因式,公式法进行因式分解.学习难点:怎样进行多项式的因式分解,如何能将多项式分解彻底.课时安排:1课时。

导学过程:一、新课导入:问题一:1. 回忆:运用前两节所学的知识填空:(1)2(x+3)=___________________;(2)x2(3+x)=_________________;(3)m(a+b+c)=_______________________.二、预习导学:阅读课本114和115页的内容。

根据上面的式子,完成下题:(1)2x +6=( )( );(2)3x 2+x 3=( )();(3)ma +mb +mc =( )2.3.观察上面的式子,说说他们在形式上有什么区别?4.因式分解的概念:分解因式的对象是______________,结果是____________的形式.三、问题探究:1、填空:①多项式有 项,每项都含有,是这个多项式的公因式.②3x 2+x 3有 项,每项都含有,是这个多项式的公因式. ③pa+pb+pc 有 项,每项都含有,是这个多项式的公因式. 多项式各项都含有的 ,叫做这个多项式各项的公因式.2.提公因式法分解因式.如果一个多项式的各项含有公因式,那么就可以 ,从而将多项式化成两个的乘积的形式,这种分解因式的方法叫做提公因式法.如:ma +mb +mc =m (a +b +c )3.辨一辨:下列各式从左到右的变形,哪些是因式分解?(1)4a(a +2b)=4a 2+8ab ;( )(2)6ax -3ax 2=3ax(2-x); () 62 xa 2-4=(a +2)(a -2);( )(4)x 2-3x +2=x(x -3)+2. ()(5)36 ()(6)()4、试一试: 用提公因式法分解因式:(1)3x+6=3()(2)7x 2-21x=7x()(3)24x 3+12x 2 -28x=4x() (4)-8a 3b 2+12ab 3c-ab=-ab( )5.归纳:公因式的构成:①系数:各项系数的最大公约数;②字母:各项都含有的相同字母;③指数:相同字母的最低次幂.6. (1)、用提公因式法分解因式的一般步骤:a 、确定公因式b 、把公因式提到括号外面后,用原多项式除以公因式所得商作为另一个因式.(2)、为了检验分解因式的结果是否正确,可以用整式乘法运算来检验.7、把下列多项式分解因式:2525a a -+ (2)239a ab - (3)323812a b ab c + (4)2()3()a b c b c +-+四、拓展延伸:1.把下列各式分解因式:(1)-4kx-8ky(2)-4x+2x 2(3)-8m 2 n-2mn (4)(2a+b)(2a-3b)-3a(2a+b)(5)4(x-y )3-8x(y-x)2(6)(1+x)(1-x)-(x-1)2.利用因式分解计算:21×3.14+62×3.14+17×3.143.分若解因式,则m 的值为.ab a b a 1232•=⎪⎭⎫ ⎝⎛+=+x a b x a bx ()()n x x mx x ++=-+3152五、检测反馈:1.下列各式中,从等式左边到右边的变形,属因式分解的是 (填序号)① ② ③④2.课本练习P 115练习1,2,3题3.练一练:把下列各式分解因式:(1)ma+mb (2)5y 3-20y 2 (3)3()2()m x y n y x ---4.把下列各式分解因式:(1)-24x 3+28x 2-12x (2)-4a 3b 3+6a 2b-2ab(3)6a(m-2)+8b(m-2)六、学后记:本节课我的收获是:七、板书设计:因式分解----提公因式法1.因式分解的概念:2.公因式的构成:①系数:各项系数的最大公约数;②字母:各项都含有的相同字母;③指数:相同字母的最低次幂.3.用提公因式法分解因式的一般步骤:(1) 确定公因式(2)把公因式提到括号外面后,用原多项式除以公因式所得商()22221y x y x-•=-()()y x y x y x -+=-22()()222244y x y x y x -+=-()2222y xy x y x ++=+作为另一个因式.八、课后反思:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分解因式——提公因式法
教材:义务教育课程标准实验教科书数学八年级上册第十四章第3节。

《因式分解》第一课时“因式分解的意义及用提公因式法分解因式”,下面我从:教材分析、目标分析、教学过程、教法与学法及评价等五部分来说这一节课,其中教学过程分为:复旧孕新、类比引入、学习新知、巩固新知、自主小结及学生作业6个部分,整个过程以计算题为载体,让学生在已有知识的基础上认识新的知识。

一、教材分析:
1.教材的地位及作用:因式分解是代数式的一种重要恒等变形。

它是学习分式的基础,又在代数式的运算、解方程、函数中有广泛的应用,它是继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。

这一思想贯穿后继学习的各种因式分解方法。

2.教学重点:了解因式分解的意义,会用提公因式法分解因式。

3.教学难点:整式乘法与因式分解之间的关系。

二、目标分析:
1.知识与能力目标:了解因式分解的意义,以及它与整式乘法的关系,学会用提取公因式方法分解因式。

2.过程与方法:经历从分解因数到分解因式的类比过程,掌握因式分解的概念,通过与多项式的乘法相比较,发展逆向思维能力。

3.情感态度与价值观:在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值。

三、过程分析:
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人”为了向学生提供更多从事数学活动的机会,我将本节课的教学过程设定为以下六个环节,分别为复旧孕新、类比引入、学习新知、巩固新知、自主小结及学生作业。

1.复旧孕新,算一算(看谁算得快)
①-25×4+75×4②a(m+n)③(a+1)(a-2)④(x-2y)2
[设计意图]通过算一算,让学生用已有知识解决问题,感受数学知识给自己带来收获的愉快,同时为后面学习新知作出铺垫。

2.类比引入,填一填
①将60分解成质数的乘积的形式为:。

②将99分解成质数的乘积的形式为:。

③将x2+x写成整式的乘积的形式为:。

X2-1写成整式的乘积的形式为:。

[设计意图]让学生经历从分解因数到分解因式的过程,让学生体会数学思想——
类比思想。

3.学习新知,议一议:
(1)下列各式从左到右的变形是否为因式分解。

①(x+1)(x―1)=x2―1 ②7x―7=7(x―1)
③x2―4y2=(x+2y)(x―2y)④2x(x―3y)=2x2-6xy
⑤y2+x2-4=y2+(x-2)(x+2)
[设计意图]使学生从感性到理性理解因式分解的意义,认识因式分解这种变形的特征。

(2)小组活动,共同探究:因式分解与整式乘法有什么关系?
(互逆变形)
[设计意图]通过小组活动,激发学生学习的积极性,鼓励学生参与探究,、合作交流,让学生自我思考归纳总结,体会数学的价值。

(3)你能很快地把下列各式进行因式分解吗?说说你的理由。

①5a+5b+5c=②3x-3=
③ma+mb+mc=④ab2-a2b=
[设计意图]利用数学情景,激发学生探究知识的欲望,逐步推导归纳得出结论。

(4)运用新知,教学例题
4.巩固新知,练一练:p167/1
[设计意图]与例题配套的练习题,要求学生独立完成,学练结合,落实本节课的重点。

5.自主小结,说一说:
[设计意图]训练学生概括归纳能力,有助于学生把所学的知识条理化系统化。

6.学生作业,做一做p170/1p167/2、3
[设计意图]巩固所学新知,让学生感受成功的喜悦,再次体会数学知识的价值。

四、教法与学法分析:采用对比、类比、尝试教学,以学生为主体,教师为主导,引导学生“动手实践,自主探索,合作交流,充分鼓励、启发、引导学生在探索和思考中获取知识。

”通过分层次的练习,让学生掌握一个又一个的知识点,全面提高学生的计算能力和思维能力。

五、评价分析:
1.以计算题为载体,让学生在多次闯关中,充分体验成功的喜悦。

2.以培养学生的类比、归纳能力为目标,重视概念的提取过程,知识的形成及解题思路的探索过程,学生掌握了新的知识,提高了逆向思维的能力,对于类比的数学思想有了一定的理解,对于矛盾对立统一的哲学观点也有了一个初步认
识。

相关文档
最新文档