八年级数学 提公因式法(一)

合集下载

八年级-人教版-数学-上册-第1课时-提公因式法

八年级-人教版-数学-上册-第1课时-提公因式法

例2 把 2a(b+c)-3(b+c)分解因式. 分析:b+c是这两个式子的公因式,可以直接提出.
解:2a(b+c)-3(b+c) =(b+c)(2a-3).
如何检查因式分解是否正确?
如何检查因式分解是否正确? (1)因式分解的结果要写成乘积的形式; (2)分解后的各个因式不再含有公因式; (3)相同因式要写成幂的形式; (4)检查是否漏项,即在分解因式完成后,按照整式的乘法把 因式再乘回去,看结果是否与原式相等.如果相等,就说明没有漏 项;否则就漏项了.

因式分解
提公因式法
公因式
提公因式法 分解因式
定系数 定字母 定指数
一看系数 二看字母 三看字母指数 答:6a3b2-2ab3c-4ab2 的公因式是2ab2.
确定公因式的方法
确定公因式要做到“三定” (1)定系数:各项系数都是整数时,取各系数绝 对值的最大公因数; (2)定字母:公因式的字母是各项都含有的字母; (3)定指数:各项都含有的字母的指数,取最小 的指数.
因式分解
x2+x=x(x+1); x2-1=(x+1)(x-1); x2+2x+1=(x+1)(x+1).
上面我们把一个多项式化成了几个整式的积的形 式,像这样的式子变形叫做这个多项式的因式分解, 也叫做把这个多项式分解因式.
思考 观察下面的动图,你发现因式分解与整式的乘法有什么关系?
p(a+b+c)
提公因式法
ma+mb-mc=m(a+b-c).
一般地,如果多项式的各项有公因式,可以把这个 公因式提取出来,将多项式写成公因式与另一个因式的 乘积的形式,这种分解因式的方法叫做提公因式法.
思考 如何寻找公因式?6a3b2-2ab3c-4ab2 的公因式是什么?

人教版八年级数学上册因式分解(一)提取公因式运用公式法

人教版八年级数学上册因式分解(一)提取公因式运用公式法

因式分解(一) ——提公因式法、运用公因式【知识点】 1.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式;2.分解因式的方法:①提公因式法 ②运用公因式。

3.找公因式的方法:①公因式的系数是各项系数的最大公约数;②字母取各项中相同的字母;③相同字母的指数取次数最低的;常用公式a 2-b 2=(a+b )(a -b )a 2+2ab+b 2=(a+b )2a 2-2ab+b 2=(a -b )2a 3-b 3=(a -b )(a 2+ab+b 2)a 3+b 3=(a+b )(a 2-ab+b 2)2.运用公式分解多项式时,特别要注意多项式的系数,当多项式只有两项时,考虑用平方差公式;当多项式有三项时,考虑用完全平方公式。

【典型例题】例1 下列从左到右的变形,属于分解因式的是( )A. (x+3)(x -2)=x 2+x -6B. ax -ay+1=a(x -y)+1C. x 2-21y =(x+y 1)(x -y 1) D. 3x 2+3x=3x(x+1) 例2(1)3525x x + (2)253243143521x y x y x y +-例6 把下列各式分解因式:(1)a 2-4b 2; (2)442-+-x x(3)()()122++++b a b a (4)()()()()229262n m n m m n n m +++---例7 把下列各式分解因式:(1)x x x ++232; (2)()222224y x y x -+【课堂练习】1.写出下列多项式中公因式(1)a 2b -5ab+9b 的公因式 .(2)x 2y(x -y)+2xy(y -x) 的公因式 .2.分解因式2x(b -a)+y(a -b)+z(b -a)= .3.-4a 3b 2+6a 2b -2ab=-2ab( ).4.(-2a+b)(2a+3b)+6a(2a -b)=-(2a -b) ( ).5.因式分解9m 2-4n 4=( )2-( )2= 。

初二数学上册【因式分解】解题常用8种总结

初二数学上册【因式分解】解题常用8种总结

初二数学上册【因式分解】解题常用8种总结一.提取公因式法(一)公因式是单项式的因式分解1.分解因式确定公因式的方法①系数:取各项系数的最大公因数;②字母(或多项式):取各项都含有的字母(或多项式);③指数:取相同字母(或多项式)的最低次幂.注意:公因式可以是单独的一个数或字母,也可以是多项式,当第一项是负数时可先提负号,当公因式与多项式某一项相同时,提公因式后剩余项是1,不要漏项.解:原式=一4m²n(m²一4m+7).(二)公因式是多项式的因式分解2.因式分解15b(2a一b)²+25(b一2a)²解:原式=15b(2a一b)²+25(2a一b)²=5(2a一b)²(3b+5)二.公式法(一)直接用公式法3.分解因式(1).(x²+y²)²一4x²y²(2).(x²十6x)²+18(x²+6x)十81解:(1)原式=(x²+y²+2xy)(x²+y²一2xy)=(x十y)²(x一y)²(2)原式=(x²十6x+9)²=[(x+3)²]²=(二)先提再套法4.分解因式(三)先局部再整法5.分解因式9x²一16一(x十3)(3x+4)解:原式=(3x十4)(3x一4)一(x十3)(3x十4)=(3x+4)[(3x一4)一(x+3)]=(3x十4)(2x一7)(四)先展开再分解法6.分解因式4x(y一x)一y²解:原式=4xy一4x²一y²=一(4x²一4xy+y²)=一(2x一y)²三.分组分解法7.分解因式x²一2xy+y²一9解:原式=(x一y)²一9=(x一y十3)(x一y一3)四.拆、添项法8.分解因式五.整体法(一)"提"整体9.分解因式a(x+y一z)一b(z一x一y)一c(x一z+y)解:原式=a(x十y一z)十b(x十y一z)一c(x十y一z)=(x十y一z)(a+b一c)(二)"当"整体10.分解因式(x+y)²一4(x+y一1)解:原式=(x+y)²一4(x+y)+4=(x十y一2)²(三)"拆"整体11.分解因式ab(c²+d²)+cd(a²+b²)解:原式=abc²+abd²+cda²+cdb²=(abc²+cda²)+(abd²+cdb²)=ac(bc十ad)+bd(ad+bc)=(bc十ad)(ac+bd)(四)"凑"整体12.分解因式x²一y²一4x+6y一5解:原式=(x²一4x十4)一(y²一6y+9)=(x一2)²+(y一3)²=[(x一2)十(y一3)][(x 一2)一(y一3)]=(x+y一5)(x一y十1)六.换元法13.分解因式(a²十2a一2)(a²+2a+4)+9解:设a²+2a=m,则原式=(m一2)(m+4)十9=m²十4m一2m一8+9=m²+2m 十1=(m+1)²=(a²+2a十1)²=七.十字相乘法公式:x²十(a十b)x十ab=(x+a)(x十b)或对于一个三项式若能象上边一样中间左侧上下相乘得x²,中间右侧上下相乘得ab,中间上下斜对角相乘之和为(a+b)x,则能进行分解,如:14.x²一5x一14解:原式=(x一7)(x十2)十字相乘法分解因式非常重,在以后有关代数式的运算,解方程等知识中常常用到.八.待定系数法15.分解因式x²+3xy+2y²十4x+5y+3解:因为x²+3xy+2y²=(x+y)(x+2y)设原式=(x+y+m)(x+2y十n)=x²十3xy+2y²十(m+n)x+(2m+n)y+mn.∴m=1,n=3∴原式=(x+y+1)(x+2y+3)【总结】因式分解的知识在代数中有着重要的地位,同学们要多加强这方面的练习,为以后的学习奠定扎实的基础。

人教版数学八年级数学上册14.3.1提取公因式法教案

人教版数学八年级数学上册14.3.1提取公因式法教案

课题:14.3.1因式分解(第1课时)——提公因式法一、教学目标1.知识与能力目标:(1)了解因式分解的概念(2)了解公因式的概念,能用提公因式法进行因式分解2.过程与方法目标:(1)学生通过观察类比体会因式分解的概念,提高知识迁移的能力,渗透类比的思想(2)学生通过探究找公因式的步骤,培养探究能力,通过总结锻炼语言表达能力3.情感态度与价值观目标本节课从学生已知的内容出发展开新的概念,学生在活动中提高数学学习的兴趣,并在自主探究过程中获得成功的体验,增强数学学习的自信心。

在学习的过程中渗透对数学类比的思想方法的理解。

二、教学重、难点重点:运用提公因式法分解因式难点:正确理解因式分解的概念,准确找出公因式三、教法设计类比与探究式的教学方法四、学法设计自主探究与合作交流五、教学过程教学过程教学内容师生互动设计意图活动一温故知新迁移类比问题1:(1)你能用简便方法计算下列算式吗?14.31714.36214.321⨯+⨯+⨯你的依据是什么?(2)能将mmm176221++写成乘积的形式吗?(3)那cmbmam++呢?(4)能将以下多项式写成乘积的形式吗?______2⨯=+xx______12⨯=-x你的依据是什么?教师提问后,学生迅速演算,举手回答问题。

学生回答乘法分配律(逆运算),教师给予补充学生根据整式乘法中的运算经验将题中的多项式转化成两个式子乘积的形式。

学生回答依据:整式乘法的逆运算从学生比较熟悉的结构但又不能一眼看出答案的算式出发,让学生迅速参与到课堂中来。

由数字算式拓展到多项式,学生由前面的解题经验迁移类比,将多项式化成乘积形式。

八年级下册数学因式分解题

八年级下册数学因式分解题

八年级下册数学因式分解题一、提取公因式法。

1. 分解因式:6ab + 3ac- 解析:公因式为3a,提取公因式后得到3a(2b + c)。

2. 分解因式:5x^2y-10xy^2- 解析:公因式为5xy,分解结果为5xy(x - 2y)。

3. 分解因式:9m^3n - 3m^2n^2- 解析:公因式为3m^2n,因式分解得3m^2n(3m - n)。

4. 分解因式:4a^3b - 6a^2b^2+2ab^3- 解析:公因式为2ab,分解后为2ab(2a^2-3ab + b^2)。

5. 分解因式:x(a - b)+y(b - a)- 解析:首先将y(b - a)变形为-y(a - b),公因式为(a - b),结果为(a - b)(x - y)。

6. 分解因式:3(x - y)^2-2(y - x)- 解析:将(y - x)变形为-(x - y),公因式为(x - y),得到(x - y)[3(x - y)+2]=(x - y)(3x - 3y + 2)。

7. 分解因式:2m(m - n)^2-8m^2(n - m)- 解析:将(n - m)变形为-(m - n),公因式为2m(m - n),分解结果为2m(m - n)[(m - n)+4m]=2m(m - n)(5m - n)。

二、公式法(平方差公式a^2-b^2=(a + b)(a - b))8. 分解因式:x^2-9- 解析:x^2-9=x^2-3^2,根据平方差公式,分解为(x + 3)(x - 3)。

9. 分解因式:16y^2-25- 解析:16y^2-25=(4y)^2-5^2,因式分解得(4y + 5)(4y - 5)。

10. 分解因式:49 - m^2- 解析:49 - m^2=7^2-m^2,根据平方差公式分解为(7 + m)(7 - m)。

11. 分解因式:(x + 2)^2-y^2- 解析:根据平方差公式a=(x + 2),b = y,分解为(x+2 + y)(x + 2-y)。

八年级数学提公因式法(一)(北师版)(基础)(含答案)

八年级数学提公因式法(一)(北师版)(基础)(含答案)

提公因式法(一)(北师版)(基础)一、单选题(共10道,每道10分)1.将分解因式时,应提取的公因式是( )A.a2B.aC.axD.ay答案:B解题思路:此多项式中公因式为a,∴故选B.试题难度:三颗星知识点:略2.下列各组多项式中,没有公因式的是( )A.ax-bx和by-ayB.3x-9xy和6y2-2yC.(x+y)2和-x-yD.ma+b和a+b答案:D解题思路:选项A:∵ax-bx=x(a-b),by-ay=-y(a-b)∴两个多项式有公因式(a-b),正确;选项B:∵3x-9xy=3x(1-3y),6y2-2y=-2y(1-3y)∴两个多项式有公因式(1-3y),正确;选项C:∵(x+y)2,-x-y=-(x+y)∴两个多项式有公因式(x+y),正确;选项D:ma+b和a+b没有公因式,错误;故选D.试题难度:三颗星知识点:略3.将提公因式后,另一个因式是( )A.a+2bB.a-2bC.-a+2bD.a+b答案:A解题思路:公因式为-ab,故:故选A.试题难度:三颗星知识点:略4.把分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:公因式为,故:故选C.注意:提公因式要彻底.试题难度:三颗星知识点:略5.在下列分解因式的过程中,分解因式正确的是( )A.-xz+yz=-z(x+y)B.3a2b-2ab2+ab=ab(3a-2b)C.6xy2-8y3=2y2(3x-4y)D.m(x-2)+3(2-x)=(x-2)(m+3)答案:C解题思路:选项A:-xz+yz=-z(x-y),错误;选项B:3a2b-2ab2+ab=ab(3a-2b+1),错误;选项C:6xy2-8y3=2y2(3x-4y),正确;选项D:m(x-2)+3(2-x)=(x-2)(m-3),错误;故选C.试题难度:三颗星知识点:略6.把多项式分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:故选C.试题难度:三颗星知识点:略7.若,,则( )A.1B.4C.2D.6答案:B解题思路:∵,,∴故选B.试题难度:三颗星知识点:略8.如图,边长为a,b的矩形的周长为14,面积为10,则的值为( )A.140B.70C.91D.24答案:B解题思路:由题意得,2(a+b)=14,ab=10故选B试题难度:三颗星知识点:略9.把因式分解,结果正确的是( )A. B.C. D.答案:D解题思路:故选D.试题难度:三颗星知识点:略10.的结果是( )A. B.C.-2D.2答案:B解题思路:故选B试题难度:三颗星知识点:略。

初中数学_提公因式法教学设计学情分析教材分析课后反思

初中数学_提公因式法教学设计学情分析教材分析课后反思

4.2 提公因式法(1)●学习目标分析(一)知识与技能1.了解公因式的意义,能准确的确定一个多项式各项的公因式;2.初步会用提公因式法分解因式,进一步理解因式分解与整式乘法的关系.(二)方法与过程经历探索寻找多项式各项的公因式的过程,培养合作探究的意识,积累合作的经验,进一步培养学生认真、严谨的科学态度.(三)情感态度价值观积极参与数学活动,养成独立思考的习惯,提高数学合作交流意识水平,加强学生的直觉思维并渗透化归的思想方法,进一步深化学生逆向思维能力.●教学重点能观察出多项式的公因式,并能利用提公因式法分解因式.●教学难点正确识别多项式各项的公因式.●教学方法独立思考、合作交流探究.●教具准备:多媒体课件●探究活动设计本节教学共设计了两个探究活动:一是探究如何确定公因式;二是探究如何提取公因式分解因式。

探究方法与步骤:1、创设问题情境,引发学生独立思考。

2、学生小组合作交流,共同探究。

3、交流展示讨论结果,归纳总结探究结论。

●教学过程设计:第一环节:温故知新1.因式分解的概念:把一个多项式化为___________的形式, 这种变形叫做把这个多项式因式分解,也叫分解因式。

2.下面由左到右的变形,哪个是分解因式?(1) 5x(2x -1)= 10x 2-5x(2) 10x 2-5x = 5x(2x -1)整式乘法与分解因式之间的关系是什么?【设计意图】 因式分解的概念及整式乘法与分解因式之间的关系两个知识点与本节课的学习紧密相关。

提公因式法分解因式实质上是逆用整式乘法中的单项式乘多项式将一个多项式化为两个整式乘积的形式。

第2题中设计的的两个等式也旨在渗透这一点。

加上课件动态演示互逆变形过程,增强了直观性。

通过分析因式分解与整式乘法之间的互逆过程学习因式分解的方法,以提高学生对知识间联系的认识。

第二环节:创设情境、导入新课近年来,我国土地沙漠化问题严重. 3月12日植树节到来之际,,学校组织了 “我参与、我奉献、我快乐”植树活动,要求每行种树15棵,其中初一年级种树27行,初二年级种树35行,初三年级种树38行,问完成这次植树活动学校共需要多少棵树苗?师:解决这个问题,你能列出怎样的算式?哪种算式计算起来较为简便?生:列式:①15×27+15×35+15×38②15×(27+35+38)15×27+15×35+15×38=15×(27+35+38)=15×100=1500师:这种运算方法的根据是什么?生:根据是乘法对加法的分配律师:为什么能逆用分配律呢?这个式子的各项有什么特点?生:这个式子的各项有相同的因数。

八年级数学下册《提公因式法》典型例题1(含答案)

八年级数学下册《提公因式法》典型例题1(含答案)

《提公因式法》典型例题例题1 找出下列式子中的公因式:(1)bc a b a a 222330,8,4-;(2))1)(1(8,)1(42-++y y x y x ;例题2.分解因式:m m m 126323+--例题3.分解因式:323)(24)(18)(6x y x y y x ---+--.例题4.解方程:0)2313)(21(6)1823)(612(=-++-+x x x x .例题5.不解方程组⎩⎨⎧=+=-,134,32n m n m求:32)2(2)2(5m n n m n ---的值.参考答案例题1 分析 多项式中各项都含有的因式是公因式,公因式中的系数是各项系数的最小公倍数,各项中共同含有的字母的公因式是各项中这个字母次数最低的幂.解答 (1)公因式是22a .(2)公因式是)1(4+y x .说明 字母的指数中含有字母时,要判断哪个指数是最小的.解答 m m m 126323+--).42(3)1263(223-+-=-+-=m m m m m m说明 观察到第一项的系数是负数,我们先把“-”号提出来,便于继续分解因式.例题3.分析 观察题目结构特征:第一项系数是负数,且有因式)(y x -,第二、三项有因式)(x y -,这就启发我们只要把)(x y -前面添上负号,就变成)(y x --,这样三项中均有公因式了.解答 323)(24)(18)(6x y x y y x ---+--[]).1()(18)333()(6)(43)()(6)(24)(18)(6222323+--=-+---=------=-+-+--=y x y x y x y x y x y x y x y x y x y x说明 对于)(y x -与)(x y -的符号有下面的关系:⎪⎪⎩⎪⎪⎨⎧--=--=---=-ΛΛΛΛ3322)()(,)()(),(x y y x x y y x x y y x 感兴趣的同学可以寻找其中的规律.分析 方程左边的第一项有因式)12(6)612(+=+x x ,第二项有因式)12(6+x . 所以我们应先提取公因式,再化简求解.解答 原方程依次变形为:[].21.012,0)5()12(6,0)2313()1823()12(6,0)2313)(12(6)1823)(12(6-=∴=+=-⋅+=-+-+=-++-+x x x x x x x x x x例题5.分析 把所求的式子利用因式分解法转化为关于)2(n m -与n m 34+的因式,再代入求解.解答 32)2(2)2(5m n n m n ---[])34()2()2(25)2()2(2)2(52232n m n m n m n n m n m n m n +-=-+-=-+-=∵⎩⎨⎧=+=-,134,32n m n m ∴原式9132=⋅=.说明 在解题过程中,巧妙地运用了转化思想,用提公因式法分解因式作为桥梁,把题给方程组和所求多项式结合起来,体现了思维的广阔性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学提公因式法(一)
●教学目标
(一)教学知识点
让学生了解多项式公因式的意义,初步会用提公因式法分解因式.
(二)能力训练要求
通过找公因式,培养学生的观察能力.
(三)情感与价值观要求
在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯,同时培养学生的合作交流意识,还能使学生初步感到因式分解在简化计算中将会起到很大的作用.
●教学重点
能观察出多项式的公因式,并根据分配律把公因式提出来.
●教学难点
让学生识别多项式的公因式.
●教学方法
独立思考——合作交流法.
●教具准备
投影片两张
第一张(记作§2.2.1 A)
第二张(记作§2.2.1 B)
●教学过程
Ⅰ.创设问题情境,引入新课
投影片(§2.2.1 A)
[师]从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些.这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法.
Ⅱ.新课讲解
1.公因式与提公因式法分解因式的概念.
[师]若将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m,则这块场地
的面积为ma+mb+mc,或m(a+b+c),可以用等号来连接.
ma+mb+mc=m(a+b+c)
从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?
[生]等式左边的每一项都含有因式m,等式右边是m与多项式(a+b+c)的乘积,从左边到右边是分解因式.
[师]由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式.
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m 从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法.
2.例题讲解
[例1]将下列各式分解因式:
(1)3x+6;
(2)7x2-21x;
(3)8a3b2-12ab3c+abc
(4)-24x3-12x2+28x.
分析:首先要找出各项的公因式,然后再提取出来.
[师]请大家互相交流.
[生]解:(1)3x+6=3x+3×2=3(x+2);
(2)7x2-21x=7x·x-7x·3=7x(x-3);
(3)8a3b2-12ab3c+abc
=8a2b·ab-12b2c·ab+ab·c
=ab(8a2b-12b2c+c)
(4)-24x3-12x2+28x
=-4x(6x2+3x-7)
3.议一议
[师]通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.
[生]首先找各项系数的最大公约数,如8和12的最大公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最低的.
4.想一想
[师]大家总结得非常棒.从例1中能否看出提公因式法分解因式与单项式乘以多项式有什么关系?
[生]提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.
Ⅲ.课堂练习
(一)随堂练习
1.写出下列多项式各项的公因式.
(1)ma+mb(m)
(2)4kx-8ky(4k)
(3)5y3+20y2(5y2)
(4)a2b-2ab2+ab(ab)
2.把下列各式分解因式
(1)8x-72=8(x-9)
(2)a2b-5ab=ab(a-5)
(3)4m3-6m2=2m2(2m-3)
(4)a2b-5ab+9b=b(a2-5a+9)
(5)-a2+ab-ac=-(a2-ab+ac)=-a(a-b+c)
(6)-2x3+4x2-2x=-(2x3-4x2+2x)=-2x(x2-2x+1)
(二)补充练习
投影片(§2.2.1 B)
[生]解:3x-6xy+x=x(3x-6y)
[师]大家同意他的做法吗?
[生]不同意.
改正:3x2-6xy+x=x(3x-6y+1)
[师]后面的解法是正确的,出现错误的原因是受到1作为项的系数通常可以省略的影响,而在本题中是作为单独一项,所以不能省略,如果省略就少了一项,当然不正确,所以多项式中某一项作为公因式被提取后,这项的位置上应是1,不能省略或漏掉.
在分解因式时应如何减少上述错误呢?
将x写成x·1,这样可知提出一个因式x后,另一个因式是1.
Ⅳ.课时小结
1.提公因式法分解因式的一般形式,如:
ma+mb+mc=m(a+b+c).
这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的单项式.
2.提公因式法分解因式,关键在于观察、发现多项式的公因式.
3.找公因式的一般步骤
(1)若各项系数是整系数,取系数的最大公约数;
(2)取相同的字母,字母的指数取较低的;
(3)取相同的多项式,多项式的指数取较低的.
(4)所有这些因式的乘积即为公因式.
4.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生.
5.公因式相差符号的,如(x-y)与(y-x)要先统一公因式,同时要防止出现符号问题. Ⅴ.课后作业
习题2.2
1.解:(1)2x2-4x=2x(x-2);
(2)8m2n+2mn=2mn(4m+1);
(3)a2x2y-axy2=axy(ax-y);
(4)3x3-3x2-9x=3x(x2-x-3);
(5)-24x2y-12xy2+28y3
=-(24x2y+12xy2-28y3)
=-4y(6x2+3xy-7y2);
(6)-4a3b3+6a2b-2ab
=-(4a3b3-6a2b+2ab)
=-2ab(2a2b2-3a+1);
(7)-2x2-12xy2+8xy3
=-(2x2+12xy2-8xy3)
=-2x(x+6y2-4y3);
(8)-3ma3+6ma2-12ma
=-(3ma3-6ma2+12ma)
=-3ma(a2-2a+4);
2.利用因式分解进行计算
(1)121×0.13+12.1×0.9-12×1.21
=12.1×1.3+12.1×0.9-1.2×12.1
=12.1×(1.3+0.9-1.2)
=12.1×1=12.1
(2)2.34×13.2+0.66×13.2-26.4
=13.2×(2.34+0.66-2)
=13.2×1=13.2
(3)当R1=20,R2=16,R3=12,π=3.14时
πR12+πR22+πR32
=π(R12+R22+R32)
=3.14×(202+162+122)
=2512
Ⅳ.活动与探究
利用分解因式计算:
(1)32004-32003;
(2)(-2)101+(-2)100.
解:(1)32004-32003
=32003×(3-1)
=32003×2
=2×32003
(2)(-2)101+(-2)100 =(-2)100×(-2+1)
=(-2)100×(-1)
=-(-2)100
=-2100
●板书设计
●备课资料
参考练习
一、把下列各式分解因式:
1.2a-4b;
2.ax2+ax-4a;
3.3ab2-3a2b;
4.2x3+2x2-6x;
5.7x2+7x+14;
6.-12a2b+24ab2;
7.xy-x2y2-x3y3;
8.27x3+9x2y.
参考答案:
1.2(a-2b);
2.a(x2+x-4);
3.3ab(b-a);
4.2x(x2+x-3);
5.7(x2+x+2);
6.-12ab(a-2b);
7.xy(1-xy-x2y2);
8.9x2(3x+y).。

相关文档
最新文档