浙教版八年级数学上2.5逆命题和逆定理同步练习含答案
八上2.5逆命题和逆定理

易证△BPE≌△BPQ,△CPD≌△CPQ,
得BQ=BE,CQ=CD,则BC=BE+CD=7.
八年级上 2.5 答案
选择填空题答案
2.5 课前检测 1-6 CDA BAD 2.5 课后检测
1-3 DDC
4. 5
5. 有
6. 两个相等的角是同位角
八上 2.5 课后 No.2
D
八上 2.5 课后 No.3
C
八上 2.5 课后 No.4
5
l P
A
B
八上 2.5 课后 No.5
有
八上 2.5 课后 No.6
两个相等的角是同位角
八上 Байду номын сангаас.5 课后 No.7
逆命题是:如果a2=b2,那么a=b. 这是假命题. 反例:当a=1,b=-1时,a2=b2,但 a≠b.
D C
F
3 2 S 3= AB , ∵ S1 S2 S3 4
S1
A
S2
B
S3
3 3 3 2 2 ∴ AC BC AB 2 4 4 4
E
∴ AC 2 BC 2 AB 2
∴ ∠ACB=Rt∠.
八上 2.5 课后 No.9
真
假
八上 2.5 课后 No.9
解:(1)连结BC.根据△BCD≌△CBE, 得∠ABC=∠ACB,则AB=AC
八上 2.5 课后 No.8
F
逆命题:如图,以△ABC各边 为边向外作等边三角形,若三 个等边三角形的面积S1,S2,S3
D
C
S1
A
S2
B
S3
E
满足S1+S2=S3,则∠ACB=RT∠.
浙教版八年级数学上册第二章知识点+注意点+经典例题

八年级上册第二章《特殊三角形》2.1图形の轴对称[轴对称图形]1.如果一个图形沿某一条直线折叠,直线两旁の部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它の对称轴.2.有の轴对称图形の对称轴不止一条,如圆就有无数条对称轴.3.折叠后重合の点是对应点,叫做对称点。
[轴对称]有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合の点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.[图形轴对称の性质]①关于某直线对称の两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段の垂直平分线。
③轴对称图形の对称轴,是任何一对对应点所连线段の垂直平分线。
④如果两个图形の对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
[轴对称与轴对称图形の区别][线段の垂直平分线](1)经过线段の中点并且垂直于这条线段の直线,叫做这条线段の垂直平分线.(2)线段の垂直平分线上の点与这条线段两个端点の距离相等;反过来,与一条线段两个端点距离相等の点在这条线段の垂直平分线上.因此线段の垂直平分线可以看成与线段两个端点距离相等の所有点の集合.2.2 等腰三角形+2.3等腰三角形性质定理+2.4等腰三角形判定定理[等腰三角形]★1. 有两条边相等の三角形是等腰三角形。
★2. 在等腰三角形中,相等の两条边叫做腰,另一条边叫做底边.两腰所夹の角叫做顶角,腰与底边の夹角叫做底角.[等腰三角形の性质]★性质1:等腰三角形の两个底角相等(简写成“等边对等角”)★性质2:等腰三角形の顶角平分线、底边上の中线、底边上の高互相重合(三线合一).特别の:(1)等腰三角形是轴对称图形.(2)等腰三角形两腰上の中线、角平分线、高线对应相等.[等腰三角形の判定定理]★如果一个三角形有两个角相等,那么这两个角所对の边也相等(简写成“等角对等边”).特别の:(1)有一边上の角平分线、中线、高线互相重合の三角形是等腰三角形.(2)有两边上の角平分线对应相等の三角形是等腰三角形.(3)有两边上の中线对应相等の三角形是等腰三角形.(4)有两边上の高线对应相等の三角形是等腰三角形.[等边三角形]三条边都相等の三角形叫做等边三角形,也叫做正三角形.[等边三角形の性质]★等边三角形の三个内角都相等,•并且每一个内角都等于60°[等边三角形の判定方法]★(1)三条边都相等の三角形是等边三角形;★(2)三个角都相等の三角形是等边三角形;★(3)有一个角是60°の等腰三角形是等边三角形.2.5 逆命题和逆定理[逆命题和逆定理]命题:一般地,对某一件事情作出正确或不正确の判断の句子叫做命题。
逆命题和逆定理同步练习含答案

逆命题和逆定理 同步练习【课堂训练】1.下列命题中,假命题...是( )A .两点之间,线段最短 B .角平分线上的点到这个角的两边的距离相等 C .两组对边分别平行的四边形是平行四边形 D .对角线相等的四边形是矩形 2. 下列命题中正确的是( ) A .矩形的对角线相互垂直 B .菱形的对角线相等 C .平行四边形是轴对称图形D .等腰梯形的对角线相等3. 分析下列命题:①四边形的地砖能镶嵌(密铺)地面;②不同时刻的太阳光照射同一物体,则其影长都是相等的;③若在正方形纸片四个角剪去的小正方形边长越大,则所制作的无盖长方体形盒子的容积越大. 其中真命题...的个数是( ) A .3B .2C .1D .04. 在下列命题中,是真命题的是( )A .两条对角线相等的四边形是矩形 B .两条对角线互相垂直的四边形是菱形 C .两条对角线互相平分的四边形是平行四边形 D .两条对角线互相垂直且相等的四边形是正方形5. 已知下列命题:①若00a b >>,,则0a b +>; ②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分. 其中原命题与逆命题均为真命题的个数是( ) A .1个B .2个C .3个D .4个6. 已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个. 7. 下列命题中,正确命题的个数为( )(1)若样本数据3、6、a 、4、2的平均数是4,则其方差为2(2)“相等的角是对顶角”的逆命题 (3)对角线互相垂直的四边形是菱形(4)若二次函数23(1)y x k =-+图象上有三个点1)y ,(22y ,),1()y ,则321y y y >> A .1个B .3个C .2个D .4个8.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题: . 【课后训练】1.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做________.2.如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的________,这两个定理叫做_________.3.每个命题都有它的________,但每个真命题的逆命题不一定是真命题. 4.线段垂直平分线性质定理的逆定理是_____________________. 5.命题“对顶角相等”的逆命题是_____________________,是_____命题. 6.下列说法中,正确的是( )A .每一个命题都有逆命题B .假命题的逆命题一定是假命题C .每一个定理都有逆定理D .假命题没有逆命题 7.下列命题的逆命题为真命题的是( )A .如果a=b ,那么a 2=b 2 B .平行四边形是中心对称图形 C .两组对角分别相等的四边形是平行四边形 D .内错角相等8.下列定理中,有逆定理的是( )A .四边形的内角和等于360°B .同角的余角相等C .全等三角形对应角相等D .在一个三角形中,等边对等角 9.写出下面命题的逆命题,并判断其真假.10.写出下列命题的逆命题,并判断逆命题的真假.如果是真命题,请给予证明;如果是假命题,请举反例说明.(1)有两边上的高相等的三角形是等腰三角形.(2)三角形的中位线平行于第三边.11.写出符合下列条件的一个原命题:(1)原命题和逆命题都是真命题.(2)原命题是假命题,但逆命题是真命题.(3)原命题是真命题,但逆命题是假命题.(4)原命题和逆命题都是假命题.12.已知在四边形ABCD中,对角线AC与BD相交于点O,①AB∥CD,②AO=CO,③,AD=BC,④∠ABC=∠ADC.(1)请从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为真命题,请对你所构造的一个真命题给予证明.(2)能否从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为假命题?若能,请写出一个满足条件的假命题,并举反例说明.参考答案1. 答案:D2. 答案:D3. 答案:C4. 答案:C5. 答案:B6. 答案:47. 答案:B8. 答案:如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直参考答案:1.互逆命题2.逆定理,互逆定理3.逆命题4.到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上5.如果两个角相等,那么它们是对顶角;假6.A 7.C 8.D9.(1)真,如果x(x-2)=0,那么x=2;假(2)真,三边对应相等的两个三角形全等;真(3)真,在一个三角形中,等角对等边;真(4)真,等边三角形是等腰三角形;假(5)假,如果两个角互补,那么这两个角是同旁内角;假10.(1)等腰三角形两腰上的高相等,是真命题,证明略(2)平行于三角形一边的线段是三角形的中位线,是假命题,反例略11.略12.(1)答案不唯一,如选①和②等,证明略(2)如选①和③,反例略逆命题和逆定理同步练习一、选择题1.下列四句话中,正确的是()A、任何一个命题都有逆命题B、任何一个定理都有逆定理C、若原命题为真,则其逆命题也为真D、若原命题为假,则其逆命题也假A、假命题的逆命题定是假命题B、定理一定有逆定理C、真命题的逆命题定是真命题D、命题一定有逆命题3.下列命题中,错误的是()A、角平分线上的点到这个角的两边的距离相等B、到线段两个端点距离相等的点,在这条线段的垂直平分线上C、任何命题都有逆命题D、任何定理都有逆定理4.下列说法错误的是()A、任意一个命题都有逆命题B、定理“全等三角形的对应角相等”有逆定理C、正方形都相似是真命题D、“画平行线”不是命题5.下列说法错误的是()A、任何命题都有逆命题B、定理都有逆定理C、命题的逆命题不一定是正确的D、定理的逆定理一定是正确的6. 下列说法正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、真命题的逆命题是假命题7. 下列说法中正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、假命题的逆命题是假命题A、真命题的逆命题是真命题B、每个定理都有逆定理C、每个命题都有逆命题D、假命题的逆命题是假命题9. 下列说法正确的是()A、每个命题都有逆命题B、真命题的逆命题是真命题C、假命题的逆命题是真命题D、每个定理都有逆定理二、填空题1.请写出定理:“全等三角形三个角相等”的逆定理,并判断命题的真假.,.2.请写出定理:“等腰三角形的两个底角相等”的逆定理..3. 写出定理“角平分线上的点到这个角两边的距离相等”的逆定理是= .4. 写出你熟悉的一个定理:,写出这个定理的逆定理:.5. 是定理“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”的逆定理.6.命题“如果一个数能被10整除,那么这个数也一定能被5整除”的逆命题是,这个逆命题为(填“真命题”或“假命题”)7. 命题“全等三角形的对应角相等”的逆命题是,这个逆命题是命题.(填“真”或“假”)三、解答题1.请你写出命题“等腰三角形的两个底角相等”的逆命题,并判断逆命题的真假;若是真命题,请写出已知、求证、证明;若是假命题,则请举反例证明.2.已知命题“等腰三角形两腰上的高相等”.(1)写出逆命题;(2)逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”,“求证”,再进行“证明”;如果是假命题,请举反例说明.3. 请写出“全等三角形的对应角相等”的逆命题,判断此逆命题的真假性,并给出证明.参考答案一、选择题1.解:A、命题的逆命题就是把原命题的题设和结论互换,故任何命题都有逆命题,故本选项正确,B、定理,逆定理都是真命题,但定理的逆命题不一定都是真命,故本选项错误,C、若原命题为真,则其逆命题不一定为真,故本选项错误,D、若原命题为假,则其逆命题不一定为真,故本选项错误.故选A.2. 解:A、假命题的逆命题定不一定是假命题,如:两个角相等三角形是等腰三角形,它的逆命题是真命题,本选项错误;B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,本选项错误;C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是相等的角是对顶角,它是假命题而不是真命题,本题错误;D、命题一定有逆命题,本选项正确;故选D.3. 解:A、∵角平分线上的点到这个角的两边的距离相等,这是正确的,故本选项错误;B、到线段两个端点距离相等的点,在这条线段的垂直平分线上,这是正确的,故本选项错误;C、任何命题都有逆命题,这是正确的,故本选项错误;D、∵任何定理不一定有逆定理,这是错误的,故本选项正确.故选D.4. 解:A、命题都有题设和结论,交换题设和结论,就得到逆命题,正确;B、定理“全等三角形的对应角相等”的逆命题是对应角相等的三角形全等,错误;C、所有正方形都相似,正确;D、画平行线是作图,没有题设与结论,不是命题,正确.故选B.5. 解:A正确;B错误,正确的命题才是定理,定理的逆命题不一定是正确的,故不能说定理都有逆定理;C正确;D正确;故选B.6. 解:A、每个命题都有逆命题,故本选项正确.B、每个定理不一定都有逆定理,故本选项错误.C、真命题的逆命题不一定是真命题,故本选项错误.D、真命题的逆命题不一定是假命题,故本选项错误.故选A.7. 解:A、每个命题都有逆命题,正确;B、每个定理都有逆定理,错误,只有正确的命题才是定理,错误;C、真命题的逆命题不一定是真命题,错误;D、假命题的逆命题不一定是假命题,错误.故选A8. 解:A、真命题的逆命题不一定是真命题,故本选项错误,B、每个定理都有逆命题,故本选项错误,C、每个命题都有逆命题,故本选项正确,D、假命题的逆命题不一定是假命题,故本选项错误,故选:C.9. 解:A、正确;B、错误,不能确定;C、错误,不能确定;D、错误,不能确定.故选A.二、填空题1.解:定理:“全等三角形三个角相等”的逆定理是三个角对应相等的两个三角形全等,三个角对应相等的两个三角形不一定全等,∴该命题为假命题,故答案为:三个角对应相等的两个三角形全等,假命题.2.有两个角相等的三角形是等腰三角形.3. 到角的两边距离相等的点在角平分线上4. 两直线平行,同位角相等同位角相等,两直线平行.5. 两条平行线被第三条直线所截,同旁内角互补6. 如果一个数能被5整除,那么这个数能被10整除假命题7.对应角相等的三角形全等假三、解答题1.2.3.。
初中数学浙教版八年级上册《2.5逆命题和逆定理》练习题

逆命题与逆定理班级:___________姓名:___________得分:__________一、选择题1、下列判断是正确的是()A.真命题的逆命题是假命题B.假命题的逆命题是真命题C.定理逆命题的逆命题是真命题D.真命题都是定理2.已知下列命题:①若a≤0,则|a|=-a;②若ma²>na²,则m>n;③同位角相等,两直线平行;④对顶角相等.其中原命题与逆命题均为真命题的个数是()A.1 个B.2 个C.3 个D.4 个3.下列命题的逆命题是真命题的是()A.对顶角相等B.如果两个角是直角那么这两个角相等C.全等三角形的对应角等D.两直线平行,内错角相等4.下列命题中,逆命题不正确的是()A.两直线平行,同旁内角互补B.直角三角形的两个锐角互余C.全等三角形对应角相等D.直角三角形斜边上的中线等于斜边的一半5.下列命题中,其逆命题成立的是()A.如果a>0,b>0,那么ab>0B.两直线平行,内错角相等C.能被9整除的数,也能被3整除D.如果a=0,b=0,那么ab=0二、填空题1、“若x+y=0,则x、y互为相反数.”的逆命题是______.2. 下列命题:①全等三角形的面积相等;②平行四边形的对角线互相平分;③同旁内角互补,两直线平行.其中逆命题为真命题的有:______(请填上所有符合题意的序号).3. 请写出定理:“等腰三角形的两个底角相等”的逆定理______.4. 已知命题“线段垂直平分线上的任意一点到这条线段两个端点的距离相等”,用“如果…,那么…”的形式写出它的逆命题,并判断其真假.逆命题:______.这个逆命题是______ 命题(填“真”或“假”).5. 在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等、在上述定理中,存在逆定理的是______(填序号)三、解答题1. 写出下列两个定理的逆命题,并判断真假(1)在一个三角形中,等角对等边.(2)四边形的内角和等于360°.2. 写出下列命题的逆命题:(1)两条直线被第三条直线所截,如果有一对同位角相等,那么这两条直线平行;(2)角平分线上的点到角的两边的距离相等;(3)若r²=a,则r叫a的平方根;(4)如果a≥0,那么√a²=a.四、证明题请你写出命题“等腰三角形的两个底角相等”的逆命题,并判断逆命题的真假;若是真命题,请写出已知、求证、证明;若是假命题,则请举反例证明.参考答案一、选择题2、B【解析】①若a≤0,则|a|=-a,是真命题,逆命题是若|a|=-a则a≤0,是真命题,②若ma2>na2,则m>n,是真命题,逆命题是若m>n,则ma2>na2,是假命题,③同位角相等,两直线平行,是真命题,逆命题是两直线平行,同位角相等,是真命题,④对顶角相等,是真命题,逆命题是相等的角是对顶角,是假命题,原命题与逆命题均为真命题的个数是2个;故选B.3、D【解析】A、对顶角相等的逆命题为“相等的角为对顶角”,此命题为假命题,故本选项错误;B、如果两个角是直角那么这两个角相等的逆命题为“如果两个角相等,那么这两个角为直角”,此命题为假命题,故本选项错误;C、全等三角形的对应角等的逆命题为“对应角相等的三角形是全等三角形”,此命题为假命题,故本选项错误;D、两直线平行,内错角相等的逆命题为“如果内错角相等,那么两直线平行”,此命题为真命题,故本选项正确;故选D.4.C【解析】A、两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确;B、直角三角形的两个锐角互余的逆命题是两个锐角互余的三角形是直角三角形,正确;C、全等三角形对应角相等的逆命题是对应角相等的三角形是全等三角形,错误;D、直角三角形斜边上的中线等于斜边的一半的逆命题是斜边上的中线等于斜边的一半的三角形是直角三角形,正确;故选C.5. B【解析】A、如果a>0,b>0,那么ab>0,其逆命题为如果ab>0,则a>0,b>0,此逆命题为假命题,所以A选项错误;B、两直线平行,内错角相等的逆命题为内错角相等,内错角相等,此逆命题为真命题,所以B选项正确;C、能被9整除的数,也能被3整除的逆命题为能被3整除,也能被9整除的数,此逆命题为假命题,所C选项错误;D、如果a=0,b=0,那么ab=0的逆命题为如果ab=0,则a=0,b=0,此逆命题为假命题,所以D选项错误.故选B.二、填空题1、若x,y互为相反数,则x+y=0.【解析】“若x+y=0,则x、y互为相反数.”的逆命题是:若x,y互为相反数,则x+y=0”.故答案为:若x,y互为相反数,则x+y=0.2、②③【解析】①全等三角形的面积相等,逆命题是面积相等是三角形是全等三角形,是假命题;②平行四边形的对角线互相平分,逆命题是对角线互相平分的四边形是平行四边形,是真命题;③同旁内角互补,两直线平行,逆命题是两直线平行,同旁内角互补,是真命题.综上所述,逆命题为真命题的有②③.故答案为:②③.3、有两个角相等的三角形是等腰三角形【解析】根据等角对等边知,“等腰三角形的两个底角相等”的逆定理:有两个角相等的三角形是等腰三角形.4. 如果一个点到线段的两端点的距离相等,那么这个点在线段的垂直平分线上,真【解析】命题“线段垂直平分线上的任意一点到这条线段两个端点的距离相等”其逆命题是:如果一个点到线段的两端点的距离相等,那么这个点在线段的垂直平分线上,为真命题,故答案为:如果一个点到线段的两端点的距离相等,那么这个点在线段的垂直平分线上,真.5. ①③④⑤【解析】①中,即是勾股定理,存在逆定理,故正确;②中,三个角对应相等的两个三角形不一定是全等三角形,所以不存在逆定理,故错误;③中,即等腰三角形的性质定理,存在逆定理,即等角对等边,故正确;④中,即线段垂直平分线的性质,存在逆定理,即到线段两个端点的距离相等的点在线段的垂直平分线上,故正确;⑤中,即角平分线的性质定理,存在逆定理,即到角两边距离相等的点在角的平分线上.故填①③④⑤.三、解答题1.【解析】(1)逆命题:在一个三角形中,等边对等角.真命题.(2)内角和等于360°的多边形是四边形.真命题.2. 【解析】(1)两条平行线被第三条直线所截,同位角相等;(2)到角的两边的距离相等的点在角平分线上;(3)若r是a的平方根,那么r²=a;(4)如果√a²=a,那么a≥0.四、证明题【解析】因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.已知:△ABC中,∠B=∠C,求证:△ABC是等腰三角形.证明:过点A作AH⊥BC于点H,则∠AHB=∠AHC=90°,在△ABH和△ACH中,∵∠B=∠C ∠BHA=∠AHC AH=AH ,∴△ABH≌△ACH(AAS),∴AB=AC,∴△ABC是等腰三角形.。
浙教版八年级上册数学 2.5 逆命题和逆定理同步练习(包含答案)

2.5 逆命题和逆定理基础闯关全练1.下列说法正确的是( )A.命题都有逆命题B.定理都有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题2.下列定理中,哪些有逆定理?如果有逆定理,写出它的逆定理;如果没有,请写出它的逆命题(1)同旁内角互补,两直线平行.(2)全等三角形的面积相等.3.如图2-5-1,AC=AD,BC=BD.则( )图2-5-1A.CD垂直平分AB B.AB垂直平分CDC.CD平分∠ACB D.以上结论均不对能力提升全练1.请写出下列定理的逆命题,并判定这个逆命题是不是定理.(1)对顶角相等:(2)两条直线平行,同位角相等.2.如图2-5-2.在△ABC中.AB=AC,点P,Q,尺分别在AB,BC,AC上,且PB=QC,QB =RC.求证:点Q在PR的垂直平分线上.图2-5-23.如图2-5-3,四边形ABCD中,AB的垂直平分线与CD的垂直平分线交于点P.且PA= PD.求证:点P-定在BC的垂直平分线上.图2-5-3三年模拟全练把一张长方形纸条按如图2-5-4所示的方式折叠,使点C落在C’处,设BC’交AD于点D,则点D在BD的垂直平分线上,你能说明理由吗?图2-5-4五年中考全练一、填空题1.命题“四边相等的四边形是菱形”的逆命题是____________.二、解答题2.如图2-5-5,已知等腰三角形ABC中,AB =AC,点D,E分别在边AB、AC上,且AD=AE,连结BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.图2-5-5核心素养全练如图2-5-6.(1)在四边形ABCD中,△ABC与△ADC的面积相等.求证:直线AC必平分BD:(2)写出(1)的逆命题,这个命题是否正确?为什么?图2-5-6答案:基础闯关全练1.A命题都有逆命题是正确的,不能由原命题的真假判断其逆命题的真假,所以真命题的逆命题不一定是真命题,假命题的逆命题也不一定是假命题,定理不一定都有逆定理,故选A.2.解析(1)有逆定理,逆定理为“两直线平行,同旁内角互补”.(2)没有逆定理,逆命题为“面积相等的两个三角形全等”.3.B 根据AC=AD,BC=BD可知点A、B都在CD的垂直平分线上.故AB所在直线为CD的垂直平分线,即AB垂直平分CD.能力提升全练1.解析(1)逆命题:如果两个角相等,那么这两个角是对顶角,这是一个假命题,不是定理.(2)逆命题:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,这是一个定理.2.证明∵AB=AC.∴∠B=∠C(等边对等角),又∵PB =QC,QB=RC,∴△BPQ≌△CQR( SAS),∴QP=QR,∴点Q在PR的垂直平分线上.3.证明如图,连结PB、PC.∵点P是AB、CD的垂直平分线的交点,∴PA= PB.PC =PD.又∵PA =PD,∴PB=PC,∴点P一定在BC的垂直平分线上,三年模拟全练解析理由:∵AD//BC,∴∠CBD= ∠ADB.又∵∠CBD=∠C'BD,∴∠C'BD= ∠ADB,∴OB=OD,∴点D在BD的垂直平分线上.五年中考全练一、填空题1.答案菱形的四条边相等解析命题“四边相等的四边形是菱形”的条件是“一个四边形的四条边都相等”,结论是“这个四边形是菱形”,它的逆命题是“如果一个四边形是菱形,那么这个四边形的四条边都相等”,即“菱形的四条边相等”.二、解答题2.解析(1) ∠ABE= ∠ACD.理由如下:在△ABE与△ACD中,∵AB=AC,∠BAE= ∠CAD,AE=AD,∴△ABE'≌△ACD( SAS).∴∠ABE= ∠ACD.(2)证明:∵AB=AC,∴∠ABC= ∠ACB.由(1)可知∠ABE= ∠ACD,∴∠FBC= ∠FCB,∴FB= FC.又∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即过点A、F的直线垂直平分线段BC.核心素养全练解析(1)过点B作BE∠AC,垂足为E,过D作DF⊥AC,垂足为F.如图,已知,且两个三角形有同底AC,∴两三角形的高线相等,即BE= DF.设AC与BD交于点D,易证△BOF≌△DOF( AAS).∴OB= OD,即直线AC平分BD.(2)逆命题:若四边形ABCD的对角线AC平分对角线BD,则AC必将四边形分成两个面积相等的三角形.这个逆命题是正确的,理由如下:如图,∵OB= OD,∠BOE= ∠DOF,∠BEO= ∠DF0=90°,∴△BOE≌△DOF.∴BF,= DF.即两个三角形的高线相等,∴.。
浙教版数学八年级上册2.5《逆命题和逆定理》教学设计

浙教版数学八年级上册2.5《逆命题和逆定理》教学设计一. 教材分析《逆命题和逆定理》是浙教版数学八年级上册第2.5节的内容。
本节内容是在学生已经掌握了命题与定理的基本知识的基础上进行教学的。
通过本节课的学习,使学生掌握逆命题的概念,理解逆定理的含义,并能够运用逆定理解决一些实际问题。
教材通过生活中的实例,引导学生探究逆命题和逆定理,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,他们已经学习了命题与定理的基本知识,对于新的知识有一定的接受能力。
但是,对于一些抽象的概念和理论,学生可能还存在着一定的理解难度。
因此,在教学过程中,需要通过生活中的实例和具体的操作,帮助学生理解和掌握逆命题和逆定理。
三. 教学目标1.知识与技能目标:使学生掌握逆命题的概念,理解逆定理的含义,并能够运用逆定理解决一些实际问题。
2.过程与方法目标:通过探究逆命题和逆定理的过程,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:使学生掌握逆命题的概念,理解逆定理的含义。
2.难点:对于逆定理的理解和运用。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生探究逆命题和逆定理。
2.小组合作学习:让学生在小组内进行讨论和交流,培养团队合作意识。
3.问题驱动法:通过问题的设置和解决,激发学生的学习兴趣和解决问题的能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示生活中的实例和相关的理论知识。
2.教学素材:准备一些相关的数学题目,用于巩固和拓展学生的知识。
3.教学设备:准备白板和粉笔,用于板书和展示。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,引导学生思考逆命题和逆定理的概念。
例如,假设有一个命题:“如果一个人是学生,那么他喜欢数学。
”那么这个命题的逆命题就是:“如果一个人喜欢数学,那么他是学生。
2.5 逆命题和逆定理八年级上册数学浙教版

(2)条件是“两个三角形有一边和这条边上的高分别相等”,结论是“这两个三角形的面积相等”.逆命题是“如果两个三角形的面积相等,那么这两个三角形有一边和这条边上的高分别相等”.
敲黑板 写一个命题的逆命题的方法写原命题的逆命题时,先将原命题写成“如果 ,那么 ”的形式,再互换条件与结论,进而写出原命题的逆命题.
解: . 理由如下: ,∴点 在线段 的垂直平分线上. , .∴点 在线段 的垂直平分线上.由“两点确定一条直线”可知线段 所在的直线是线段 的垂直平分线,又 为 上任意一点,<</m> .
例题点拨要证明一点在一条线段的垂直平分线上,只要说明这个点到这条线段的两个端点的距离相等即可.
B
解析:选项A中,其逆命题是两个相等的角是对顶角,是假命题.选项B中,其逆命题是同位角相等,两直线平行,是真命题.选项C中,其逆命题是三组角对应相等的两个三角形全等,是假命题.选项D中,其逆命题是四个角都相等的四边形是正方形.四个角都相等的四边形也可以是长方形,故其逆命题是假命题.
链接教材 本题取材于教材第67页课内练习第1题,考查了判断一个命题的逆命题的真假,需要先写出原命题的逆命题再判断真假.教材习题还需要判断原命题的真假.注意原命题是真命题,它的逆命题不一定是真命题.
逆命题的真假与原命题的真假无关
知识点2 互逆定理 重点
互逆定理:如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的逆定理,这两个定理叫做互逆定理.
注意 (1)任何命题都有逆命题,但不一定每个定理都有逆定理.只有当原定理的逆命题能被证明是真命题时,才能称这个逆命题为原定理的逆定理.(2)互逆命题不一定都是真命题,但互逆定理一定都是真命题.
浙教版八年级数学上《2.5逆命题和逆定理》同步集训含答案

2.5逆命题和逆定理1. 已知命题“如果a+b=0,那么a,b互为相反数”,写出它的逆命题:如果a,b互为相反数,那么a+b=0.2.“等边三角形有两个角都等于60°”的逆命题为有两个角是60°的三角形是等边三角形.这个逆命题是真命题(填“真”或“假”).3.给出下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③角平分线上的点到角的两边距离相等;④不是对顶角的角不相等.其中原命题与逆命题均为真命题的有(A)A. 1个B. 2个C. 3个D. 4个4. 给出下列结论:①到角两边距离相等的点,在这个角的平分线上;②角的平分线与三角形的角平分线都是射线;③任何一个命题都有逆命题;④假命题的逆命题一定是假命题.其中正确的有(B) A.1个B.2个C.3个D.4个5. 下列四个命题中,逆命题正确的是(D)A.两个数的差为正数,则这两个数都为正数B.如果a2+b2=0,那么a=0C.如果一个三角形为锐角三角形,那么这个三角形三个角中必存在大于60°的角D.如果两个角有一条公共边,并且这两个角的和是180°,那么这两个角互为邻补角6.下列命题中,逆命题正确的是(B)A.若a=b,则|a|=|b|B.两直线平行,同位角相等C.全等三角形的对应角相等D. 直角都相等7.下列定理中,无逆定理的是(B)A.两直线平行,内错角相等B.对顶角相等C.全等三角形的三条边对应相等D.在同一个三角形中,等边对等角8.写出下列命题的逆命题,并判断真假.(1)如果一个三角形是等边三角形,那么它的三个内角都相等;(2)如果a=5,那么a(a-5)=0.(3)如果ab=0,那么a=0,b=0.【解】(1)如果一个三角形的三个内角都相等,那么这个三角形是等边三角形.是真命题.(2)如果a(a-5)=0,那么a=5.是假命题.(3)如果a=0,b=0,那么ab=0.是真命题.9.下列定理中,哪些有逆定理?如果有逆定理,请写出它的逆定理.(1)两边及其夹角对应相等的两个三角形全等;(2)三角形的外角和等于360°;(3)等腰三角形顶角的平分线与底边上的高线互相重合.【解】(1)有逆定理.如果两个三角形全等,那么这两个三角形的两边及其夹角对应相等.(2)无逆定理.(3)有逆定理.若一个三角形的一个角的平分线与这个角所对边上的高线互相重合,则这个三角形是等腰三角形.10.对于以下说法:①如果一个命题是真命题,那么它的逆命题不一定是真命题;②每个定理都有逆定理;③基本事实是通过推理判断为正确的命题;④“同位角相等”是定理.其中正确的说法有(A)A. 1个B. 2个C. 3个D. 4个【解】命题“对顶角相等”的逆命题是相等的角是对顶角.从这个例子可看出①对②错.定理是通过推理判断为正确的命题,故③错.“同位角相等”是假命题,定理都是真命题,故④错.11. 材料:如果两个命题中,一个命题的条件和结论分别是另一个命题的条件和结论的否定,则称这两个命题互为否命题.逆命题的否命题称为逆否命题.有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则1-q有平方根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.其中真命题的序号有(C)A.①②③B.③④C.①③D.①④【解】①逆命题是:若x,y互为相反数,则x+y=0.它是真命题.②否命题是:若两个三角形不是全等三角形,则这两个三角形的面积不相等.它是假命题.③逆命题是:若1-q有平方根,则q≤1.它是真命题.④逆否命题是:三个内角不相等的三角形是等边三角形.它是假命题.12.举反例说明定理“全等三角形的面积相等”没有逆定理.(第12题解)【解】逆命题:如果两个三角形面积相等,那么这两个三角形全等.反例:如解图所示,l1∥l2,△ABC和△BCD同底等高,∴△ABC的面积等于△BCD的面积,但△ABC和△BCD不全等.故此定理没有逆定理.13.已知下列命题:①若a≤0,则|a|=-a;②若ma2>na2,则m>n;③对顶角相等.其中原命题与逆命题均为真命题的个数是(B)A. 0B. 1C. 2D. 3【解】①命题“若a≤0,则|a|=-a”是真命题,逆命题为“若|a|=-a,则a≤0”,是真命题;②命题“若ma2>na2,则m>n”是真命题,逆命题为“若m>n,则ma2>na2”,是假命题;③命题“对顶角相等”是真命题,逆命题为“相等的角是对顶角”,是假命题.所以原命题与逆命题均为真命题的个数是1.。