临沂市中考数学试题和参考答案(word版).pdf
2024年临沂市中考数学真题试题及答案

2024年山东省临沂市中考数学真题试卷(枣庄、聊城、临沂、菏泽)一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1. 下列实数中,平方最大的数是( ) A. 3B.12C.1- D. 2-2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( ) A. 30.61910⨯B. 461.910⨯C. 56.1910⨯D. 66.1910⨯4. 下列几何体中,主视图是如图的是( )A. B. C. D.5. 下列运算正确的是( )A. 437a a a +=B. ()2211a a -=- C. ()2332a ba b =D. ()2212a a a a +=+6. 为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( ) A. 200B. 300C. 400D. 5007. 如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN ∠=︒,则n 的值为( )A. 12B. 10C. 8D. 68. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( ) A.19B.29C.13D.239. 如图,点E 为ABCD 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为( )A.52B. 3C.72D. 410. 根据以下对话给出下列三个结论①1班学生的最高身高为180cm ①1班学生的最低身高小于150cm ①2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( ) A. ①①B. ①①C. ①①D. ①①①二、填空题:本题共6小题,每小题3分,共18分.11. 因式分解:22x y xy +=________.12. 写出满足不等式组21215x x +≥⎧⎨-<⎩的一个整数解________.13. 若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________. 14. 如图,ABC ∆是O 的内接三角形,若OA CB ∥,25ACB ∠=︒,则CAB ∠=________.15. 如图,已知MAN ∠,以点A 为圆心,以适当长为半径作弧,分别与AM ,AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN ∠内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE ∠=︒,则F 到AN 的距离为________.16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. (11122-⎛⎫--⎪⎝⎭(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪+-⎝⎭,其中1a =.18. 【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈) 【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号) ①解直角三角形 ①三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.19. 某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水平,从全校学生的模型设计成绩中随机抽取部分学生的模型设计成绩(成绩为百分制,用x 表示),并将其分成如下四组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤. 下面给出了部分信息8090x ≤<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题 (1)请补全频数分布直方图(2)所抽取学生的模型设计成绩的中位数是________分(3)请估计全校1000名学生的模型设计成绩不低于80分的人数(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩. 某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下通过计算,甲、乙哪位学生的综合成绩更高?20. 列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与ky x=部分自变量与函数值的对应关系(1)求a ,b 的值,并补全表格(2)结合表格,当2y x b =+的图像在ky x=的图像上方时,直接写出x 的取值范围. 21. 如图,在四边形ABCD 中,AD BC ∥,60DAB ∠=︒,22AB BC AD ===.以点A 为圆心,以AD 为半径作DE 交AB 于点E ,以点B 为圆心,以BE 为半径作EF 所交BC 于点F ,连接FD 交EF 于另一点G ,连接CG .(1)求证:CG 为EF 所在圆的切线 (2)求图中阴影部分面积.(结果保留π)22. 一副三角板分别记作ABC 和DEF ,其中90ABC DEF ∠=∠=︒,45BAC ∠=︒,30EDF ∠=︒,AC DE =.作BM AC ⊥于点M ,EN DF ⊥于点N ,如图1.(1)求证:BM EN =(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点C 与点E 重合记为C ,点A 与点D 重合,将图2中的DCF 绕C 按顺时针方向旋转α后,延长BM 交直线DF 于点P . ①当30α=︒时,如图3,求证:四边形CNPM 为正方形①当3060α︒<<︒时,写出线段MP ,DP ,CD 的数量关系,并证明;当60120α︒<<︒时,直接写出线段MP ,DP ,CD 的数量关系.23. 在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =. (1)求m 的值(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.2024年山东省临沂市中考数学真题试卷答案(枣庄、聊城、临沂、菏泽)一、选择题.9. 解:延长DF 和AB ,交于G 点①四边形ABCD 是平行四边形 ①DC AB ∥,DC AB =即DC AG ∥ ①DEC GAE ∽ ①CE DE DCAE GE AG== ①5AC =,1CE =①514AE AC CE =-=-= ①14CE DE DC AE GE AG === 又①EF DE =,14DE DE GE EF FG ==+ ①13EF FG = ①14DC DC AG AB BG ==+,DC AB = ①13DC BG =①13EF DC FG BG == ①34BG FG AG EG == ①AE BF ∥①BGF AGE ∽ ①34BF FG AE EG == ①4AE =①3BF =.故选:B .10. 解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b 根据1班班长的对话,得180x ≤,350x a +=①350x a =-①350180a -≤解得170a ≥故①,①正确根据2班班长的对话,得140b >,290y b +=①290b y =-①290140y ->①150y <故①正确故选:D .二、填空题.11. 【答案】()2xy x +12. 【答案】1-(答案不唯一)【解析】解:21215x x +≥⎧⎨-<⎩①② 由①得:1x ≥-由①得:3x <①不等式组的解集为:13x -≤<①不等式组的一个整数解为:1-故答案为:1-(答案不唯一).13. 【答案】14【解析】解:①关于x 的方程2420x x m -+=有两个相等的实数根①2242444160b ac m m ∆=-=-⨯⨯=-= 解得:14m =. 故答案为:14. 14. 【答案】40︒【解析】解①连接OB①25ACB ∠=︒①250AOB ACB ∠=∠=︒①OA OB = ①()1180652OAB OBA AOB ∠=∠=︒-∠=︒ ①OA CB ∥①25A OAC CB ∠=︒∠=①40CAB OAB OAC ∠=∠-∠=︒故答案为:40︒.15.【解析】解:如图,过F 作FH AC ⊥于H由作图可得:BAP CAP ∠=∠,DE AB ⊥,122AF BF AB === ①67.5PQE ∠=︒①67.5AQF ∠=︒①9067.522.5BAP CAP ∠=∠=︒-︒=︒①45FAH ∠=︒①2AH FH AF ===①F 到AN16. 【答案】()2,1【解析】解:点()1,4经过1次运算后得到点为()131,42⨯+÷,即为()4,2 经过2次运算后得到点为()42,21÷÷,即为()2,1经过3次运算后得到点为()22,131÷⨯+,即为()1,4……发现规律:点()1,4经过3次运算后还是()1,4①202436742÷=①点()1,4经过2024次运算后得到点()2,1故答案为:()2,1.三、解答题.17. 【答案】(1)3 (2)3a - 2-18. 【答案】(1)A ,P 两点间的距离为89.8米;(2)①19. 【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【小问1详解】解:①510%50÷=,而8090x ≤<有20人①7080x ≤<有502051015---=补全图形如下。
2019年山东省临沂市中考数学试卷及答案(word版)

2019年山东省临沂市中考数学试卷一、选择题(每小题3分,共42分)1.|﹣2019|=()A.2019B.﹣2019C.D.﹣2.如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°3.不等式1﹣2x≥0的解集是()A.x≥2B.x≥C.x≤2D.x4.如图所示,正三棱柱的左视图()A.B.C.D.5.将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)6.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.27.下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy28.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.9.计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.10.小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃11.如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π12.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>013.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND 14.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③二、填空题:(每题3分,共15分)15.计算:×﹣tan45°=.16.在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是.17.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.18.一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=.19.如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是.三、解答题:(共63分)20.解方程:=.21.争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是;频数分布表中a=;b=;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.22.鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.24.汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.25.如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE 沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE 的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.26.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c (a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.2019年山东省临沂市中考数学答案一、选择题(每小题3分,共42分)1-5 ABDAC 6-10 BCBAB 11-14 ADAD二、填空题:(每题3分,共15分)15.﹣1.16.(﹣2,2).17.11.18.±1019.8.三、解答题:(共63分)20.解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.21.解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:(3)根据题意得:300×=190,则该校七年级300名学生中,达到优秀等级的人数为190人.22.解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD==2km,即BD的长是2km.23.(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.24.解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14因此放水前y与x的关系式为:y=x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×10.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=x+14 (0<x<8)和.(x>8)(3)当y=6时,6=,解得:x=24,因此预计24h水位达到6m.25.解:过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠F AE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠F AG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠F AE,∠BAG=∠F AG,又∵∠BAD=90°,∴∠GAF+∠EAF=×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH 是∠EGM的平分线.26.解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,解得:a,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,1)或(﹣1﹣,﹣).。
2021年山东省临沂市中考数学真题(word版,含答案)

秘密★启用前试卷类型:A 2021年临沂市初中学业水平考试试题数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.12-的相反数是(A)12-.(B)2-.(C)2.(D)12.2.2021年5月15日,天问一号探测器成功着陆火星,中国成为全世界第二个实现火星着陆的国家. 据测算,地球到火星的最近距离约为55 000 000 km. 将数据55 000 000用科学记数法表示应为(A)5.5×106.(B)0.55×108.(C)5.5×107.(D)55×106.3.计算3325a a⋅的结果是(A)610a.(B)910a.(C )37a . (D )67a .4.如图所示的几何体的主视图是5.如图,AB ∥CD ,∠AEC =40°,CB 平分∠DCE ,则∠ABC 的度数为 (A )10°.(B )20°. (C )30°.(D )40°.6.方程256x x -=的根是 (A )17x =, 28x =. (B )17x =, 28x =-.(C )17x =-,28x =.(D )17x =-,28x =-.7.不等式113x x -<+的解集在数轴上表示正确的是(A ) (B )(C )(D )(第4题图)(第5题图)ABCDE8.计算11()()a b b a-÷-的结果是(A )ab -.(B )a b .(C )ba-.(D )b a.9.如图,点A ,B都在格点上,若BC =,则AC 的长为 (A. (B. (C)(D)10.现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是 (A )12. (B )23.(C )34.(D )56.11.如图,P A ,PB 分别与⊙O 相切于点A ,B ,∠P =70°,C 为⊙O 上一点,则∠ACB 的度数是(A ) (B ) (C ) (D )(第9题图)(A)110°. (B)120°. (C)125°. (D)130°.P(第11题图)12.某工厂生产A ,B 两种型号的扫地机器人. B 型机器人比A 型机器人每小时的清扫面积多50%;清扫1002m 所用的时间,A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为 (A )1001002.0.53x x =+ (B )1002100.0.53x x +=(C )1002100.3 1.5x x+=(D )1001002.1.53x x =+13.已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若0b >,则11a b<. 其中正确的个数是(A )1.(B )2.(C )3.(D )4.14.实验证实,放射性物质放出射线后,质量将减少,减少的速度开始较快,后来较慢,物质所剩的质量与时间成某种函数关系. 下图为表示镭的放射规律的函数图象.据此可计算32 mg 镭缩减为1 mg 所用的时间大约是(A )4860年.(B )6480年.(C )8100年.(D )9720年.(第14题图)18m 时间/年质量1214m 0m第Ⅱ卷(非选择题共78分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:328a a-=.16.比较大小:265(填“﹥”“﹤”或“=”).17.某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图. 这个班参赛学生的平均成绩是.18.在平面直角坐标系中,□ABCD的对称中心是坐标原点,顶点A,B的坐标分别是(1-,1),(2,1). 将□ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是. 19.数学知识在生产和生活中被广泛应用. 下列实例所应用的最主要的几何知识,说法正确的是(只填写序号).①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;②车轮做成圆形,应用了“圆是中心对称图形”;③学校门口的伸缩门由菱形而不是其它四边形组成,应用了“菱形对角线互相垂直且平分”;④地板砖可以做成矩形,应用了“矩形对边相等”.三、解答题(本大题共7小题,共63分)20.(本小题满分7分)计算:2211|2|2222⎛⎫⎛⎫-+--+⎪ ⎪⎝⎭⎝⎭.(第19题图)准星缺口290成绩95100人数(第17题图)3585实施乡村振兴计划以来,我市农村经济发展进入了快车道. 为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.69 0.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89 研究小组的同学对以上数据进行了整理分析,得到下表:(1)表格中:a = ,b = ,c = ,d = ; (2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.22.(本小题满分7分)如图,在某小区内拐角处的一段道路上,有一儿童在C 处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A 处驶来. 已知CM =3 m ,CO =5 m ,DO =3 m ,∠AOD =70°,汽车从A 处前行多少米,才能发现C 处的儿童(结果保留整数)? (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75; sin70°≈0.94,cos70°≈0.34,tan70°≈2.75.)分组频数 0.65≤x <0.70 2 0.70≤x <0.75 3 0.75≤x <0.80 10.80≤x <0.85 a0.85≤x <0.90 4 0.90≤x <0.95 20.95≤x <1.00b统计量平均数中位数众数数值0.84cdABCD OM (第22题图)2号楼已知函数3, 1,3, 11,3, 1.x x y x x x x ⎧±-⎪⎪=-±±⎨⎪⎪±⎩(1)画出函数图象;列表: x … … y……描点,连线. 得到函数图象.(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由; (3)设(x 1,y 1),(x 2,y 2)是函数图象上的点,若x 1+x 2=0,证明:y 1+y 2=0. 24.(本小题满分9分)如图,已知在⊙O 中,AB =BC =CD ,OC 与AD 相交于点E . 求证:(1)AD //BC ;(2)四边形BCDE 为菱形.≤≥ (第24题图)CDOEAB< < y O x426 24 -2-4-6-2 -4公路上正在行驶的甲车,发现前方20 m 处沿同一方向行驶的乙车后,开始减速. 减速后甲车行驶的路程s (单位:m )、速度v (单位:m/s )与时间t (单位:s )的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9 m/s 时,它行驶的路程是多少?(2)若乙车以10 m/s 的速度匀速行驶,两车何时相距最近,最近距离是多少?26.(本小题满分13分)如图,已知正方形ABCD ,点E 是BC 边上一点,将△ABE 沿直线AE 折叠,点B 落在点F 处,连接BF 并延长,与∠DAF 的平分线相交于点H ,与AE ,CD 分别相交于点G ,M ,连接HC .(1)求证:AG =GH ;(2)若AB =3,BE =1,求点D 到直线BH 的距离;(3)当点E 在BC 边上(端点除外)运动时,∠BHC 的大小是否变化?为什么?15.530 43.556 8(第25题图)s (m) v (第26题图)DBMAHG EFC秘密★启用前 试卷类型:A2021年临沂市初中学业水平考试试题数学参考答案及评分标准说明:解答题给出了部分解答方法,考生若有其它解法,应参照本评分标准给分. 一、选择题(每小题3分,共42分)15.2(2)(2)a a a +-; 16.<; 17.95.5; 18.(4,1)-; 19.①③. 三、解答题20.解:2211|22⎫⎫+-⎪⎪⎭⎭1111)2222······························································ 3分(1)- ······································································································· 5分= ························································································································· 7分21.解:(1)a =5 ,b =3 , c =0.82 ,d = 0.89. ········································································ 4分(2)1430021020⨯=(户), 因此,家庭人均收入不低于0.8万元的大约有210户. ···································· 6分 (3)因为样本的中位数是0.82,0.83 >0.82,所以可以估计梁飞家的人均收入超过村里一半以上的家庭. ··························· 7分22.解:由题意,3sin0.65COM∠==,因此∠COM≈37°.∵∠DOB与∠COM为对顶角,∴∠DOB≈37°. ·····················································································································2分在Rt△DOB中,∵tan∠DOB=BD DO,∴BD=DO·tan∠DOB≈3×0.75=2.25.·······················································································4分在Rt△DOA中,∵tan∠DOA=AD DO∴AD=DO·tan∠DOA≈3×2.75=8.25. ······················································································6分∴AB=AD-BD=8.25-2.25=6(m).因此,汽车前行约6米,才能发现儿童. ··········································································7分23.解:(1)列表:································2分描点,画出如图所示图象.···························································································5分(2)由图象可知,当1x =- 时,函数取得最小值,=3y -最小;当1x =时,函数取得最大值,=3y 最大. ························································································································· 7分(3)方法一: ∵x 1+x 2=0,∴x 2=-x 1. 当x 1≤-1时,x 2≥1,y 1=13x ,y 2=23x , 121212123()330x x y y x x x x ++=+== . 当x 1≥1时,x 2≤-1,同理可知y 1+y 2=0 ······································································· 8分 当-1<x 1<1时,-1<x 2<1,y 1=3x 1,y 2=3x 2,121212333()0y y x x x x +=+=+=.综上所述,若x 1+x 2=0,则y 1+y 2=0. ·············································································· 9分 方法二:因为该函数的图象关于原点中心对称,由x 1+x 2=0,得12x x =-,可知点(x 1,y 1)与点(x 2,y 2)关于原点对称,所以y 1 =-y 2 ,即y 1+y 2=0. ···················· 9分 24.证明:(1)如图24-1,连接BD .∵AB CD =,∴ADB DBC ∠=∠························· 2分 ∴AD ∥BC. ······································· 3分 (2)如图24-2,连接OB ,OD , ∵BC CD =,图24-1C∴BC CD.··················································································································4分∵OB =OD ,BC =CD , ∴OC 垂直平分BD .∴EB =ED . ········································ 5分 ∴BEC DEC ∠=∠. 又∵AD ∥BC , ∴BCE DEC ∠=∠. ∴BEC BCE ∠=∠.∴BC =EB . ·························································································································· 7分 ∴BC =CD =ED =EB . ············································································································· 8分 ∴四边形BCDE 是菱形. ································································································· 9分 方法二:∵OB =OD ,BC =DC ,OC =OC , ∴△OBC ≌△ODC .∴∠BCO =∠DCO . ·········································································································· 5分 又∵AD ∥BC , ∴∠DEC =∠BCE . ∴∠DCO =∠DEC .∴DE =DC . ························································································································· 7分图24-2∴四边形BCDE 是平行四边形. ····················································································· 8分 ∴四边形BCDE 是菱形. ································································································ 9分25.解:(1)由题意,设2s at bt =+,v =mt +16.∵抛物线过点(2,30),(4,56),∴4230,16456.a b a b +=⎧⎨+=⎩··········································································································· 1分解得1,216.a b ⎧=-⎪⎨⎪=⎩ ··············································································································· 2分 ∴s 与t 的函数关系式为21162s t t =-+. ····································································· 3分∵直线过点(8,8), ∴8m +16=8. ∴m =-1.∴16v t =-+. ·················································································································· 4分 当9v =时,169t -+=,∴7t =, ··········································································· 5分当7t =时,21716787.52s =-⨯+⨯=.因此,当甲车减速至9 m/s 时,行驶的路程是87.5 m. ············································· 7分 (2)方法一:设两车距离为w ,则211020(16)2w t t t =+--+ .整理得:()21622y t =-+. ··········································································································· 8分 ∵12>0,∴w 有最小值. 当6t =时, ···················································································································· 9分 w 最小= 2.所以当甲车减速行驶6秒时,两车距离最近,最近距离为2米. ·························· 11分 方法二:由题意知,当甲车速度减至10m/s 时,两车距离最近.当10v =时,1610t -+=,∴6t =. ············································································ 8分 此时,甲车行驶的路程为:21616678(m)2s =-⨯+⨯=, ························································································· 9分乙车行驶的路程为10660(m)⨯=, ∴两车相距6020782(m)+-=.因此,当甲车减速行驶6秒时,两车相距最近,最近距离是2米. ······················ 11分26.证明:(1)如图26-1.∵点B ,F 关于AE 对称,∴AE ⊥BF ,BAG FAG ∠=∠. ························································································ 1分 ∵AH 平分∠DAF , ∴D AH FAH ∠=∠.∴114522GAH GAF FAH BAF DAF ∠=∠+∠=∠+∠=︒. ··········································· 2分∴AG HG. ··················································································································3分(2)连接DH .由题意可知AD =AB =AF , 在△ADH 和△AFH 中,,,,AD AF DAH FAH AH AH =⎧⎪∠=∠⎨⎪=⎩∴△ADH ≌△AFH .∴DH=FH ,45AHD AHG ∠=∠=︒. ∴90DHB ∠=︒.∴DH 的长即为点D 到直线BH 的距离. ····································································· 4分 ∵AB =3,BE =1,∴AE . ········································································ 5分 ∵BG ⊥AE ,∴AB BE BG AE ⋅===. ·················································································· 6分∴AG =. ························································· 7分 方法一:连接BD,BD = ∵GH =AG ,∴BH =BG+ GH =BG+ AG . ∴+= ························································································· 8分 图26-1DABG EFHMC。
2022年山东省临沂市中考数学试题(含答案)

绝密★启用前试卷类型:A2022年临沂市初中学生学业考试试题数 学本卷须知:1.本试卷分第一卷〔选择题〕和第二卷〔非选择题〕,共8页,总分值120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题本卷须知见答题卡,答在本试卷上不得分.第一卷〔选择题 共42分〕一、选择题〔本大题共14小题,每题3分,共42分〕在每题所给出的四个选项中,只有一项为哪一项符合题目要求的.1.-3的相反数是〔A 〕3.〔B 〕-3.〔C 〕13.〔D 〕13-.2.根据世界贸易组织(W T O )秘书处初步统计数据,2022年中国货物进出口总额为 4160 000 000 000美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以记为〔A 〕124.1610⨯美元.〔B 〕134.1610⨯美元.3.如图,l 1∥l 2,∠A =40°,∠1=60°,那么∠2的度数为 〔A 〕40°. 〔B 〕60°. 〔C 〕80°. 〔D 〕100°.4.以下计算正确的选项是〔A 〕223a a a +=.〔B 〕2363)a b a b =(. 〔C 〕22()m m a a +=.〔D 〕326a a a ⋅=.2 C〔第3题图〕l 1B1l 25.不等式组-2≤11x +<的解集,在数轴上表示正确的选项是〔A 〕〔C 〕 62211(a aa a -+〔A 〕32.〔B 〕32-.〔C 〕12. 〔D 〕12-. 7.将一个n 边形变成n +1边形,内角和将 〔A 〕减少180°.〔B 〕增加90°. 〔C 〕增加180°.〔D 〕增加360°.8.某校为了丰富学生的校园生活,准备购置一批陶笛,A 型陶笛比B 型陶笛的单价低20元,用2700元购置A 型陶笛与用4500元购置B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的选项是〔A 〕2700450020x x =-.〔B 〕2700450020x x =-. 〔C 〕2700450020x x =+.〔D 〕2700450020x x =+. 9.如图,在⊙O 中,AC ∥OB ,∠BAO =25°, 那么∠BOC 的度数为〔A 〕25°. 〔B 〕50°. 〔C 〕60°. 〔D 〕80°.10.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是〔A 〕16.〔B 〕13.〔C 〕12.-1 -2 -3 2 0 1-1 -2 -3 -1 -2 -3 〔第9题图〕B15°60°75° 〔第13题图〕 A C 东北〔D 〕23.11.一个几何体的三视图如下列图,这个几何体的侧 面积为〔A 〕2πcm 2. 〔B 〕4πcm 2. 〔C 〕8πcm 2. 〔D 〕16πcm 2. 12.请你计算: (1)(1)x x -+, 2(1)(1)x x x -++,…,〔A 〕11n x +-. 〔B 〕11n x ++. 〔C 〕1n x -.〔D 〕1n x +.13.如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,假设渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,那么B ,C 之间的距离为〔A 〕20海里.〔B 〕103海里. 〔C 〕202海里. 〔D 〕30海里.14.在平面直角坐标系中,函数22(y x x x =-≥0)的图象为1C ,1C 关于原点对称的图象为2C ,那么直线y a =〔a 为常数〕与1C ,2C 的交点共有〔A 〕1个. 〔B 〕1个,或2个.〔C 〕1个,或2个,或3个.〔D 〕1个,或2个,或3个,或4个.第二卷〔非选择题 共78分〕本卷须知:1.第二卷分填空题和解答题.2.第二卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题〔本大题共5小题,每题3分,共15分〕 15.在实数范围内分解因式:36x x -=.16.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示: 那么这50均课外阅读时间17AC BC =,那么ABCD 18三角形OAB 过点D 19.是互不相同....现的.如一组数1记为A ={1,2,3定义:集合合称为集合A 5},那么A+B =.A三、解答题〔本大题共7小题,共63分〕20.〔本小题总分值7分〕 计算:11sin 6032831-︒+⨯+.21.〔本小题总分值7分〕随着人民生活水平的提高,购置老年代步车的人越来越多.这些老年代步车却成为交通平安的一大隐患.针对这种现象,某校数学兴趣小组在 老年代步车现象的调查报告 中就“你认为对老年代步车最有效的的管理措施〞随机对某社区局部居民进行了问卷调查,其中调查问卷设置以下选项〔只选一项〕:A :加强交通法规学习;B :实行牌照管理;C :加大交通违法处分力度;D :纳入机动车管理;E :分时间分路段限行.调查数据的局部统计结果如下表:〔第21题图〕 〔1〕据上述统计表中的数据可得m =_______,n =______,a =________; 〔2〕在答题卡中,补全条形统计图;〔3〕该社区有居民2600人,根据上述调查结果,请你估计选择“D :纳入机动车管理〞的居民约有多少人22.〔本小题总分值7分〕如图,等腰三角形ABC 的底角为30°, 以BC 为直径的⊙O 与底边AB 交于点D ,过D 作DE AC ⊥,垂足为E .〔1〕证明:DE 为⊙O 的切线;〔2〕连接OE ,假设BC =4,求△OEC 的面积.管理措施 答复人数 百分比A 25 5%B 100 mC 75 15%D n 35%E 125 25% 合计a100%A B C D E 管理措施人数200175 150 125 100755025〔第22题图〕BCODE23.〔本小题总分值9分〕对一张矩形纸片ABCD 进行折叠,具体操作如下:第一步:先对折,使AD 与BC 重合,得到折痕MN ,展开;第二步:再一次折叠,使点A 落在MN 上的点A '处,并使折痕经过点B ,得到折痕BE ,同时,得到线段BA ',EA ',展开,如图1;第三步:再沿EA '所在的直线折叠,点B 落在AD 上的点B '处,得到折痕EF ,同时得到线段B F ',展开,如图2.〔1〕证明:30ABE ∠=°;24.〔本小题总分值9分〕某景区的三个景点A ,B ,C 在同一线路上,甲、乙两名游客从景点A 出发,甲步行到景点C ,乙乘景区观光车先到景点B ,在B 处停留一段时间后,再步行到景点C . 甲、乙两人离开景点A 后的路程S 〔米〕关于时间t 〔分钟〕的函数图象如下列图.根据以上信息答复以下问题: 〔1〕乙出发后多长时间与甲相遇 〔2〕要使甲到达景点C 时,乙与 C 的路程不超过400米,那么乙从景点B 步行到景点C 的速度至少为多少 〔结果精确到0.1米/分钟〕25.〔本小题总分值11分〕问题情境:如图1,四边形ABCD 是正方形,M 是 BC 边上的一点,E 是CD 边的中点,AE 平分DAM ∠.探究展示:〔1〕证明:AM AD MC =+; 〔2〕AM DE BM =+是否成立假设成立,请给出证明;假设不成立,请说明理由.拓展延伸:〔3〕假设四边形ABCD 是长与宽不相等的矩形, 其他条件不变,如图2,探究展示〔1〕、〔2〕中的结 论是否成立请分别作出判断,不需要证明.26.〔本小题总分值13分〕〔第23题图〕BCN A '图1AB D CN A 'FB '图2E〔第24题图〕t 〔分钟〕ABMDEC图1A BM图2 DEC 〔第25题图〕M ED AM 甲 乙3020 6090 30005400S 〔米〕如图,在平面直角坐标系中,抛物线与x 轴 交于点A (-1,0)和点B (1,0),直线21y x =- 与y 轴交于点C ,与抛物线交于点C ,D .〔1〕求抛物线的解析式; 〔2〕求点A 到直线CD 的距离;〔3〕平移抛物线,使抛物线的顶点P 在直线 CD 上,抛物线与直线CD 的另一个交点为Q ,点 G 在y 轴正半轴上,当以G ,P ,Q 三点为顶点的 三角形为等腰直角三角形时,求出所有符合条件的绝密★启用前试卷类型:A 2022年临沂市初中学生学业考试试题数学参考答案及评分标准一、选择题〔每题3分,共42分〕 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案AADBBDCDBCBACC[来二、填空题〔每题3分,共15分〕15.(6)(6)x x x +-; 16.5.3; 17.1819; 18.1y x=; 19.{-3,-2,0,1,3,5,7}.〔注:各元素的排列顺序可以不同〕 20.解:原式3131328(31)(31)--+⨯+- 3132-〔6分〕 =122-=32.〔7分〕〔注:此题有3项化简,每项化简正确得2分〕〔第26题图〕xyA BCDOBCODEGFA21.〔1〕20%,175,500.〔3分〕〔2〕〔注:画对一个得1分,共2分〕〔3〕∵2600×35%=910〔人〕,∴选择D选项的居民约有910人.〔2分〕22.〔1〕〔本小问3分〕证明:连接OD.∵OB=OD,∴∠OBD=ODB.又∵∠A=∠B=30°,∴∠A=∠ODB,∴DO∥AC.〔2分〕∵DE⊥AC,∴OD⊥DE.∴DE为⊙O的切线.〔3分〕〔2〕〔本小问4分〕连接DC.∵∠OBD=∠ODB=30°,∴∠DOC=60°.∴△ODC为等边三角形.∴∠ODC=60°,∴∠CDE=30°.又∵BC=4,∴DC=2,∴CE=1.〔2分〕方法一:过点E作EF⊥BC,交BC的延长线于点F.∵∠ECF=∠A+∠B=60°,∴EF=C E·sin60°=133.〔3分〕∴S△OEC1133222OC EF=⋅=⨯=〔4分〕过点O作OG⊥AC,交AC的延长线于点G.∵∠OCG=∠A+∠B=60°,……………〔2分〕管理措施人数200175150125100755025A B C D E∴OG =OC ·sin60°=2×32=3.〔3分〕 ∴S △OEC 11313.222CE OG =⋅=⨯⨯=〔4分〕方法三: ∵OD ∥CE , ∴S △OEC = S △DEC .又∵DE=DC ·cos 30°=2×32=3,〔3分〕 ∴S △OEC 11313.222CE DE =⋅=⨯⨯=〔4分〕23.证明:〔1〕〔本小问5分〕由题意知,M 是AB 的中点,∴AB=A'B ,∠ABE=∠A'BE.〔2分〕 在Rt △A'MB 中,12MB =A'B , ∴∠BA'M=30°,〔4分〕∴∠ABE=30°.〔5分〕 〔2〕〔本小问4分〕 ∵∠ABE=30°, ∴∠EBF=60°, ∠BEF=∠AEB=60°,∴△BEF 为等边三角形.〔2分〕 由题意知,△BEF 与△B'EF 关于EF 所在的直线对称. ∴BE =B'E =B'F =BF , ∴四边形BF 'B E 为菱形.〔4分〕 24.解:〔1〕〔本小问5分〕当0≤t ≤90时,设甲步行路程与时间的函数解析式为S =at . ∵点(90,5400)在S =at 的图象上,∴a =60.当20≤t ≤30时,设乙乘观光车由景点A 到B 时的路程与时间的函数解析式为S =mt+n . ∵点(20,0),(30,3000)在S =mt+n 的图象上, ∴200,303000.m n m n +=⎧⎨+=⎩解得300,6000.m n =⎧⎨=-⎩〔2分〕∴函数解析式为S =300t -6000(20≤t ≤30).〔3分〕CN BA '图1ED A M B '图2A BD CN A 'F ME根据题意,得60,3006000, S tS t=⎧⎨=-⎩解得25,1500.ts=⎧⎨=⎩〔4分〕∴乙出发5分钟后与甲相遇.〔5分〕〔2〕〔本小问4分〕设当60≤t≤90时,乙步行由景点B到C的速度为v米/分钟,根据题意,得5400-3000-(90-60)v≤400,〔2分〕解不等式,得v ≥20066.73≈.〔3分〕∴乙步行由B到C的速度至少为66.7米/分钟.〔4分〕25. 证明:〔1〕〔本小问4分〕方法一:过点E作EF⊥AM,垂足为F.∵AE平分∠DAM,ED⊥AD,∴ED=EF.〔1分〕由勾股定理可得,AD=AF.〔2分〕又∵E是CD边的中点,∴EC=ED=EF.又∵EM=EM,∴Rt△EFM≌Rt△ECM.∴MC=MF.〔3分〕∵AM=AF+FM,∴AM=AD+MC.〔4分〕方法二:连接FC. 由方法一知,∠EFM=90°, AD=AF,EC=EF. 〔2分〕那么∠EFC=∠ECF,∴∠MFC=∠MCF.∴MF=MC.〔3分〕∵AM=AF+FM,∴AM=AD+MC.〔4分〕方法三:延长AE,BC交于点G.∵∠AED=∠GEC,∠AD E=∠GCE=90°,DE=EC,∴△ADE≌△GCE.∴AD=GC, ∠DAE=∠G.〔2分〕又∵AE平分∠DAM,C GAB M D EFN∴∠DAE=∠MAE , ∴∠G=∠MAE , ∴AM=GM ,〔3分〕∵GM=GC+MC=AD+MC , ∴AM=AD+MC .〔4分〕 方法四:连接ME 并延长交AD 的延长线于点N , ∵∠MEC =∠NED , EC =ED ,∠MCE =∠NDE=90°, ∴△MCE ≌△NDE .∴MC =ND ,∠CME=∠DNE .〔2分〕 由方法一知△EFM ≌△ECM , ∴∠FME=∠CME ,∴∠AMN=∠ANM .〔3分〕∴AM=AN=AD+DN=AD +MC.〔4分〕 〔2〕〔本小问5分〕成立.〔1分〕方法一:延长CB 使BF=DE ,连接AF ,∵AB=AD ,∠ABF=∠ADE=90°, ∴△ABF ≌△ADE ,∴∠F AB=∠EAD ,∠F=∠AED.〔2分〕∵AE 平分∠DAM ,∴∠DAE=∠MAE . ∴∠F AB=∠MAE ,∴∠F AM=∠F AB+∠BAM=∠BAM+∠MAE=∠BAE.〔3分〕 ∵AB ∥DC ,∴∠BAE=∠DEA , ∴∠F=∠F AM , ∴AM=FM.〔4分〕又∵FM=BM+BF=BM+DE , ∴AM=BM+DE.〔5分〕 方法二:设MC=x ,AD=a.由〔1〕知 AM=AD+MC=a+x. 在Rt △ABM 中,∵222AM AB BM =+,AB MDECF∴14x a =.〔4分〕∴34BM a =,54AM a =,∵BM+DE=315424a a a +=,∴AM BM DE =+.〔5分〕 〔3〕〔本小问2分〕 AM=AD+MC 成立,〔1分〕 AM=DE+BM 不成立.〔2分〕 26.〔1〕〔本小问3分〕解:在21y x =-中,令0x =,得 1y =-.∴C (0,-1)〔1分〕∵抛物线与x 轴交于A (-1,0), B (1,0), ∴C 为抛物线的顶点.设抛物线的解析式为21y ax =-, 将A (-1,0)代入,得 0=a -1. ∴a =1.∴抛物线的解析式为21y x =-.〔3分〕 〔2〕〔本小问5分〕 方法一:设直线21y x =-与x 轴交于E ,那么1(2E ,0).〔1分〕∴2151()2CE =+,13122AE =+=.〔2分〕 连接AC ,过A 作A F ⊥CD ,垂足为F , S △CAE 1122AE OC CE AF =⋅=⋅,〔4分〕 即13151222AF ⨯⨯=, ∴35AF =〔5分〕 方法二:由方法一知,图1x yAB C DO F E M∠AFE=90°,32AE=,52CE=.〔2分〕在△COE与△AFE中,∠COE=∠AFE=90°,∠CEO=∠AEF,∴△CO E∽△AF E .∴AF AECO CE=,〔4分〕即32 152 AF=.∴355AF=.〔5分〕〔3〕〔本小问5分〕由2211x x-=-,得10x=,22x=.∴D(2,3).〔1分〕如图1,过D作y轴的垂线,垂足为M,由勾股定理,得222425CD=+=.〔2分〕在抛物线的平移过程中,PQ=CD.〔i〕当PQ为斜边时,设PQ中点为N,G(0,b),那么GN=5.∵∠GNC=∠EOC=90°,∠GCN=∠ECO,∴△GN C ∽△EO C.∴GN CG OE CE=,5152,∴b=4.∴G(0,4) .〔3分〕〔ii〕当P为直角顶点时,设G(0,b),那么25PG=同〔i〕可得b=9,x yECOGQPN图2那么G (0,9) .〔4分〕〔iii 〕当Q 为直角顶点时, 同〔ii 〕可得G (0,9) .综上所述,符合条件的点G 有两个,分别是1G (0,4),2G (0,9).〔5分〕。
2023年山东临沂中考数学试卷试题及答案解析(精校打印版)

试卷类型:A2023年临沂市初中学业水平考试试题数学注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第I卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.---的结果是()1.计算(7)(5)-B.12C.2-D.2A.12∠的度数是()2.下图中用量角器测得ABCA.50︒B.80︒C.130︒D.150︒3.下图是我国某一古建筑的主视图,最符合视图特点的建筑物的图片是()A.B.C...某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了两处桂花的位置关于小路对称,在分别以两条小路为的坐标为(6,2)-,则点A .(6,2)B .5.在同一平面内,过直线的位置关系是()A .相交B .相交且垂直6.下列运算正确的是(A .321a a -=C .()257a a =7.将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是(A .60°B .8.设15455m =-,则实数A .5m <-B .9.在项目化学习中,“水是生命之源名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是(A .16B .10.正在建设中的临滕高速是我省方总量为5310m ,设土石方日平均运送量为时间为t (单位:天),则A .反比例函数关系C .一次函数关系0k >0kb <0k b +>16.小明利用学习函数获得的经验研究函数①当1x <-时,x 越小,函数值越小;②当10x -<<时,x 越大,函数值越小;(2)①这组数据的中位数是_____________;②分析数据分布的情况(写出一条即可)_____________(3)若85分以上(不含85分)成绩为优秀等次,请预估该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数.19.如图,灯塔A周围9海里内有暗礁.一渔船由东向西航行至北偏西58°方向上,继续航行6海里后到达C 处,测得灯塔A 在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin 320.530,cos 320.848,tan 320.625;sin 580.848,︒︒︒︒≈≈≈≈cos580.530tan58 1.6︒≈︒≈,)20.大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M 型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M 型平板电脑价值多少元?(2)小敏若工作m 天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)?21.如图,O 是ABC 的外接圆,BD 是O 的直径,,AB AC AE BC =∥,E 为BD 的延长线与AE 的交点.(1)求证:AE 是O 的切线;(2)若75,2ABC BC ∠=︒=,求 CD的长.22.如图,90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系1.C【分析】直接利用有理数的减法法则进行计算即可.【详解】解:2(7)(5)()57=----+=-;故选C .【点睛】本题考查有理数的减法,熟练掌握减一个负数等于加上它的相反数,是解题的关键.2.C【分析】由图形可直接得出.【详解】解:由题意,可得130ABC ∠=︒,故选:C .【点睛】本题考查角的度量,量角器的使用方法,正确使用量角器是解题的关键.3.B【分析】依次观察各建筑物的图片即可作出判断,注意所有的看到的棱都应表现在主视图中.【详解】解:最符合视图特点的建筑物的图片是选项B 所示图片.故选:B .【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.A【分析】根据关于y 轴对称的点的特点:纵坐标不变,横坐标互为相反数,进行求解即可.【详解】解:由题意,得:点B 的坐标为(6,2);故选A .【点睛】本题考查坐标与轴对称.熟练掌握关于y 轴对称的点的特点:纵坐标不变,横坐标互为相反数,是解题的关键.5.C【分析】根据“在同一平面内,垂直于同一直线的两直线互相平行”即可作出判断.【详解】解:∵在同一平面内,过直线l 外一点P 作l 的垂线m ,即l m ⊥,又∵过P 作m 的垂线n ,即n m ⊥,∴l n ∥,∴直线l 与n 的位置关系是平行,故选:C .【点睛】本题考查平行线的判定.掌握平行线判定的方法是解题的关键.6.D故选:A.【点睛】本题考查了不等式的性质,实数的大小比较,借助数轴比较是解题的关键.13.24【分析】根据菱形面积等于两条对角线乘积的一半进行计算即可.【详解】解:根据菱形面积等于两条对角线乘积的一半可得:∴DF BC ∥,DE AC ∥∴ ∽ADF ABC ,BDE △∴13DF AD BC AB ==,DE AC =∵69AC BC ==,,∴3DF =,4DE =,根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.【点睛】本题考查二次函数、反比例函数与不等式等知识,解题的关键是理解题意,学会画出函数图象,利用图象解决问题,属于中考常考题型.17.(1)3x >(2)从第①步开始出错,过程见解析(2)解:①中位数是909190.5 2+=;故答案为90.5;②测试成绩分布在9195的较多(不唯一)(3)解:67360048020++⨯=(人),答:估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为人.【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.渔船没有触礁的危险【分析】过点A作AD BC⊥,分别解Rt【详解】解:过点A作AD BC⊥,由题意,设AD x=,为等边三角形,求出半径和COD ∠的度数,利用弧长公式进行计算即可.【详解】(1)证明:连接AO 并延长交BC 于点F ,∵O 是ABC 的外接圆,∴点O 是ABC 三边中垂线的交点,∵AB AC =,∴AO BC ⊥,∵AE BC ∥,∴AO AE ⊥,∵AO 是O 的半径,∴AE 是O 的切线;(2)解:连接OC ,∵AB AC =,∴75ABC ACB ∠=∠=︒,∴18027530BAC ∠=︒-⨯︒=︒,∴260BOC BAC ∠=∠=︒,∵OB OC =,∴BOC 为等边三角形,∴2===OC OB BC ,∴180120COD BOC ∠=︒-∠=︒,∴90,A AB AC∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC=∴CBD CEF≌∴=45E DBC ∠=∠︒∴EF BD∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG∠=∠∴EG EC=∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,。
山东省临沂市中考数学试题及答案【word版】

绝密★启用前 试卷类型:A临沂市初中学生学业考试试题数 学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.四个数—3、0、1、2,其中负数是 (A) —3. (B) 0.(C) 1(D) 2.2.如图,直线AB ∥CD ,∠A = 40°,∠D = 45°,则∠1等于 (A) 80°.(B) 85°. (C) 90°.(D) 95°.3.下列计算正确的是(A) 32x x x -=. (B) 326x x x ⋅=. (C). 32x x x ÷= (D). 325()x x =4.不等式组33324x x x ⎧⎪⎨-⎪⎩<+≥2,的解集,在数轴上表示正确的是5.如图,一个空心圆柱体,其主视图正确的是45°40°1DCBA6.某校九年级一共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是(A) 18.(B).16 (C) 38.(D) 12.7. 一个正多边形内角和等于540°,则这个正多边形的每一外角等于 (A) 108°.(B) 90°. (C) 72°.(D) 60°.8.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是,78()3230x y A x y +=⎧⎨+=⎩ 78()2330x y B x y +=⎧⎨+=⎩ 30()2378x y C x y +=⎧⎨+=⎩ 30()3278x y D x y +=⎧⎨+=⎩ 9.某老师为了解学生周末学习情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是 (A) 4. (B) 3.(C) 2(D) 1.10.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C.若∠ACB=30°,AB=3,则阴影部分面积是(A)3. (B)6π. (C) 36π-. (D)36π-. 11.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是第3个图形第2个图形第1个图形(A) 2n+1. (B) n 2-1. (C) n 2+2n.(D) 5n-2.12.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD 、BD ,则下列结论:①AC=AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是 (A) 0 . (B) 1 . (C) 2 .(D) 3 .13. 二次函数y=ax 2+bx+c ,自变量x 与函数y 的对应值如下表: x … -5 -4 -3 -2 -1 0 … y…4-2-24…下列说法正确的是(A)抛物线的开口向下 (B) 当x >—3时,y 随x 的增大而增大. (C) 二次函数的最小值是—2 (D) 抛物线的对称轴是x=—52. 14.直线y=—x+5与双曲线ky x=(x >0)相交于A 、B 两点,与x 轴相交于C 点,△BOC 的面积是52.若将直线y=—x+5向下平移1个单位,则所得直线与双曲线ky x =(x >0)的交点有 (A) 0个.(B) 1个. (C) 2个.(D) 0个,或1个,或2个.第Ⅱ卷(非选择题 共78分)二、填空题(本大题共5小题,每小题3分,共15分) 15.分解因式:x 3—2x 2+x= .16.计算:aa a -+-1112= . 17.如图,在△ABC 中,点D 、E 、F 分别在AB 、AC 、BC 上,DE ∥BC ,EF//AB.若AB=8,BD=3,BF=4,EDCBA则FC 的长为 .第18题图第17题图ABCD EFOGF EDCBA18.如图,将一张矩形纸片ABCD 折叠,使两个顶点A 、C 重合,折痕为FG ,若AB=4,BC=8,则△ABF 的面积为 .19.一般地,当α、β为任意角时,sin (α+β)与sin (α—β)的值可以用下面的公式求得: sin (α+β)=sin αcos β+cos αsin β;sin (α—β)= sin αcos β—cos αsin β . 例如sin90°=sin (60°+30°)= sin60°cos30°+cos60°sin30°=21212323⨯+⨯=1 . 类似地,可以求得sin15°的值是 . 20. (本小题满分7分)计算:|—3|+3tan30°—12—(2016—π)021. (本小题满分7分)为了解某校九年级学生的身高情况,随机抽取了部分学生的身高进行调查,利用所得数据绘成如下统计图表:频数分布表 频数分布直方图身高分组 频数 百分比 x <155 5 10% 155≤x <160 a 20% 160≤x <165 15 30% 165≤x <170 14 b x ≥170 6 12% 总计100%(1)填空:a= ,b= ; (2)补全频数分布直方图;(3)该校九年级一共有600名学生,估计身高不低于165cm 的学生大约有多少人?22. (本小题满分7分)一艘轮船位于灯塔P 南偏西60°方向,距离灯塔20海里的A 处,它向东航行多少海里到达灯塔P 南偏西45方向上的B 处(参考数据:3≈1.732,结果精确到0.1)?23. (本小题满分9分)如图,A 、P 、B 、C 是圆上的四个点,∠APC=∠CPB=60°,AP 、CB 的延长线相交于点D. (1)求证:△ABC 是等边三角形;(2)若∠PAC=90°,AB=23,求PD 的长.24. (本小题满分9分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克. (1)请分别写出甲乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式; (2)小明应选择哪家快递公司更省钱?25.(本小题满分11分)PDCBA东北如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE.连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断并予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.26.(本题满分13分)如图,在平面直角坐标系中,直线y=—2x+10与x轴、y轴相交于A、B两点.点C的坐标是(8,4),连接AC、BC.(1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由。
2020年临沂市中考数学试卷(word版,含原创解析)

2020年临沂市初中学业水平考试试题数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分12分,考试时间120分钟,答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置,考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题共42分)一.选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列温度比2C-︒低的是(A)3C-︒(B)1C-︒(C)1C︒(D)3C︒2.下列交通标志中,是中心对称图形的是(A)(B)(C)(D)3.如图,数轴上点A对应的数是32,将点A沿数轴向左移动2个单位至点B,则点B对应的数是(A)12-(B)2-(C)72(D)124.根据图中三视图可知该几何体是(A )三棱锥 (B )三棱柱 (C )四棱锥 (D )四棱柱 5.如图,在ABC 中,AB AC =,40A ∠=︒,CD AB ∥,则BCD ∠=(A )40︒ (B )50︒ (C )60︒ (D )70︒ 6.计算322(2)a a -÷的结果是(A )32a - (B )42a - (C )34a (D )44a7.设2a ,则(A )23a << (B )34a << (C )45a << (D )56a << 8.一元二次方程2480x x --=的解是(A )12x =-+,22x =--B )12x =+22x =-(C )12x =+22x =- (D )1x =,2x =-9.从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是(A )112 (B )18(C )16 (D )12 10.《孙子算经》中是国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘2人,则有9人步行.问人与车各多少?设有x 人,y 辆车,可列方程组为(A )2392x y x y ⎧=+⎪⎪⎨⎪+=⎪⎩ (B )2392x y x y ⎧=-⎪⎪⎨-⎪=⎪⎩ (C )2392x y x y ⎧=+⎪⎪⎨-⎪=⎪⎩ (D )2392x y x y ⎧=-⎪⎪⎨⎪-=⎪⎩11.下图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是(A )甲平均分高,成绩稳定(B )甲平均分高,成绩不稳定 (C )乙平均分高,成绩稳定(D )乙平均分高,成绩不稳定 12.如图,P 是面积为S 的ABCD 内任意一点,PAD 的面积为1S ,PBC 的面积为2S ,则(A )122S S S +> (B )122SS S +< (C )122SS S +=(D )12S S +的大小与P 点位置有关 13.计算11x y x y ---的结果为(A )(1)(1)x y x y -+-- (B )(1)(1)x y x y --- (C )(1)(1)x y x y ---- (D )(1)(1)x yx y +--14.如图,在O 中,AB 为直径,80AOC ∠=︒,点D 为弦AC 的中点,点E 为BC 上任意一点,则CED ∠的大小可能是(A )10︒ (B )20︒ (C )30︒ (D )40︒第Ⅱ卷(非选择题 共78分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生必须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二.填空题(本大题共5小题,每小题3分,共15分) 15.解不等式210x +<的解集是 . 16.若1a b +=,则2222a b b -+-= .17.点1,2m (-)和点2n (,)在直线2y x b =+上,则m 与n 的大小关系是 . 18.如图,在ABC 中,D 、E 为边AB 的三等分点,EF DG AC ∥∥,H 为AF 与DG 的交点,若6AC =,则DH = .19.我们知道,两点之间线段最短,因此,连接两点间线段的长度叫两点间的距离;同理,连接直线外一点与直线上各点的所有的线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段A 中,最短线段的长度,叫做点到曲线的距离.依次定义,如图,在平面直角坐标系中,点(2,1)到以原点为圆心,以1为半径的圆的距离为.三.解答题(本大题共7小题,共63分)20.(本小题满分7分)︒.计算:sin6021.(本小题满分7分)2020年是脱贫攻坚年,为实现全员脱贫目标,某村贫困户在当地政府的支持帮助下,办起了养鸡场.经过一段时间的精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们的质量的统计数据如下:根据以上信息,解答下列问题:(1)表中a = .补全频数分布直方图; (2)这批鸡中质量不小于1.7kg 的大约有多少只?(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/千克的价格售出这批鸡后,该村贫困户能否脱贫? 22.(本小题满分7分)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足6075α︒︒.现有一架长为5.5m 的梯子.(1)使用这架样子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子的底端距离墙面的距离2.2m 时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据: sin750.97︒≈,cos750.26︒≈,tan75 3.73︒≈, sin23.60.40︒≈,cos66.40.40≈,tan21.80.40︒≈)23.(本小题满分9分)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系.当4R =Ω时,9A I =.(1)写出I 与R 的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;(3)如果以此蓄电池为电源的用电器的限制电流不能超过10 A ,那么用电器可变电阻应控制在什么范围内? 24.(本小题满分9分)已知1O 的半径为1r ,2O 的半径为2r ,为1O 为圆心,以12r r +的长为半径画弧,再以线段12O O 的中点P 为圆心,以1212O O 的长为半径画弧,两弧交于点A ,连接1O A ,2O A ,1O A 交1O 于点B ,过点B 作2O A 的平行线BC 交2O 于点C .(1)求证:BC 是2O 的切线;(2)若12r =,21r =,126O O =,求阴影部分的面积.25.(本小题满分11分)已知抛物线22232(0)y ax ax a a =--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点1(,)P m y ,2(3,)Q y 在抛物线上,若12y y <,求m 的取值范围. 26.(本小题满分13分)如图,菱形ABCD 的连长为1,60ABC ∠=︒,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,G ,AE ,EF 的中点分别为M ,N .(1)求证:AF EF =; (2)求MN NG +的最小值;(3)当点E 在AB 上运动时,CEF ∠的大小是否变化?为什么?2020年临沂市初中学业水平考试试题数学参考答案与解析一.选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列温度比2C-︒低的是(A)3C-︒(B)1C-︒(C)1C︒(D)3C︒【答案】A【解析】根据正数>0>负数,两个负数绝对值大的反而小可求得答案.2.下列交通标志中,是中心对称图形的是(A)(B)(C)(D)【答案】B【解析】选项A、C为轴对称图形,选项D即不是轴对称,也不是中心对称图形.3.如图,数轴上点A对应的数是32,将点A沿数轴向左移动2个单位至点B,则点B对应的数是(A)12-(B)2-(C)72(D)12【答案】A【解析】根据平移的规律,B点坐标为31222-=-,故答案为A.4.根据图中三视图可知该几何体是(A )三棱锥 (B )三棱柱 (C )四棱锥 (D )四棱柱 【答案】B【解析】由主视图和左视图可知该几何体为柱体,由俯视图可知其为三棱柱. 5.如图,在ABC 中,AB AC =,40A ∠=︒,CD AB ∥,则BCD ∠=(A )40︒ (B )50︒ (C )60︒ (D )70︒ 【答案】D【解析】由AB=AC ,且40A ∠=︒,可求得18040702B ACD ︒-︒∠=∠==︒,再由CD AB ∥,利用两直线平行,内错角相等可得70BCD B ∠=∠=︒. 6.计算322(2)a a -÷的结果是(A )32a - (B )42a - (C )34a (D )44a 【答案】D【解析】利用幂的乘方和同底数幂的除法计算即可.原式=624a a ÷=44a .7.设2a ,则(A )23a << (B )34a << (C )45a << (D )56a << 【答案】C【解析】由4<7<9,可得23<<,所以425<,即45a <<. 8.一元二次方程2480x x --=的解是(A )12x =-+,22x =--B )12x =+22x =-(C )12x =+22x =- (D )1x =,2x =-【答案】B【解析】直接利用一元二次方程的求根公式即可求得答案. 因为1,4,8a b c ==-=-所以2(4)41(8)48=--⨯⨯-=,所以2x ==±所以12x =+,22x =-9.从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是(A )112 (B )18(C )16 (D )12 【答案】C 【解析】四个人中选两个,则有12种等可能的结果,而恰好抽到某两个的可能有两种,故其概率为212=16. 10.《孙子算经》中是国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘2人,则有9人步行.问人与车各多少?设有x 人,y 辆车,可列方程组为(A )2392x y x y ⎧=+⎪⎪⎨⎪+=⎪⎩ (B )2392x y x y ⎧=-⎪⎪⎨-⎪=⎪⎩ (C )2392x y x y ⎧=+⎪⎪⎨-⎪=⎪⎩ (D )2392xy x y ⎧=-⎪⎪⎨⎪-=⎪⎩【答案】B【解析】利用总人数除以每辆车所乘坐的人数可表示出实际用车,结合条件可列出方程组. (1)每辆车乘坐3人,则实际用车数为3x,还剩两辆车,即实际用了(y -2)辆,可得方程23xy =-, (2)每辆车乘坐2人,还有9人步行,则说明实际乘车的人数为(x-9)人,车无剩余,则有92x y -=,则可列出方程. 11.下图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是(A )甲平均分高,成绩稳定(B )甲平均分高,成绩不稳定 (C )乙平均分高,成绩稳定(D )乙平均分高,成绩不稳定 【答案】D【解析】由数据可看出乙的从100分到80分,所以波动较大,故不稳定,又甲的成绩要偏低些,故其平均分要低,故选D. 12.如图,P 是面积为S 的ABCD 内任意一点,PAD 的面积为1S ,PBC 的面积为2S ,则(A )122S S S +> (B )122S S S +< (C )122SS S += (D )12S S +的大小与P 点位置有关 【答案】C【解析】方法一,可利用特殊点,即可取P 为四边形ABCD 对角线的交点,则容易得出答案;方法二,过P 作AD 和BC 的垂线,利用三角形与平行四边形的面积公式求解亦可 13.计算11x y x y ---的结果为 (A )(1)(1)x y x y -+-- (B )(1)(1)x y x y --- (C )(1)(1)x y x y ---- (D )(1)(1)x yx y +--【答案】A【解析】利用分式的运算性质进行通分,再分子相加减即可.11x y x y ---=(1)(1)(1)(1)(1)(1)x y y x x y x y -------=(1)(1)(1)(1)xy x yx yx y x y -------=(1)(1)xy x xy y x y --+--=(1)(1)x y x y -+--.14.如图,在O 中,AB 为直径,80AOC ∠=︒,点D 为弦AC 的中点,点E 为BC 上任意一点,则CED ∠的大小可能是(A )10︒ (B )20︒ (C )30︒ (D )40︒ 【答案】C【解析】可利用点E 的特殊位置来限定出CED ∠的取值范围. 当点E 与B 重合时,如图因为D 为弦AC 的中点,连接OD 并延长,交圆O 于点F ,延长BD 交圆O 于点G ,则可得1402AOD COD AOC ∠=∠=∠=︒,所以此时1202CBF COF ∠=∠=︒,当点E 从B 移动到C 时,则点G 从F 移动到A ,但与A 、F 均不重合, 所以CF CG AC <<,故CBF CED CBA ∠<∠<∠, 所以2040CED ︒<∠<︒, 故选C.二.填空题(本大题共5小题,每小题3分,共15分)15.解不等式210x +<的解集是 . 【答案】12x <-【解析】直接利用不等式的性质求解即可. 16.若1a b +=,则2222a b b -+-= . 【答案】1-【解析】利用平方差公式分解因式后整体代入即可求得答案 因为1a b +=,所以2222()()22222121a b b a b a b b a b b a b -+-=+-+-=-+-=+-=-=-.17.点1,2m (-)和点2n (,)在直线2y x b =+上,则m 与n 的大小关系是 . 【答案】m <n【解析】方法一,把两点的坐标代入用b 分别表示出m 与n ,进行比较大小即可,12()12m b b =⨯-+=-,224m b b =⨯+=+,显然b-1<b+4,即m <n ;方法二,利用一次函数的增减性,在2y x b =+中,k=2>0,则y 随x 的增大而增大, 由于122-<,所以m <n .18.如图,在ABC 中,D 、E 为边AB 的三等分点,EF DG AC ∥∥,H 为AF 与DG 的交点,若6AC =,则DH = .【答案】1 【解析】由D 、E 为边AB 的三等分点,EF DG AC ∥∥,可知DH 为AEF 的中位线, 在ABC 中,13EF BE AC BA ==,且AC=6,所以EF=2,所以DH=1. 19.我们知道,两点之间线段最短,因此,连接两点间线段的长度叫两点间的距离;同理,连接直线外一点与直线上各点的所有的线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依次定义,如图,在平面直角坐标系中,点(2,1)A 到以原点为圆心,以1为半径的圆的距离为 .1 【解析】问题的实质为点圆距离,故可连接OA ,利用两点间距离或勾股定理可求得圆的半径为1,故A 1. 三.解答题(本大题共7小题,共63分) 20.(本小题满分7分)计算:sin 602︒. 【分析】利用二次根式的性质及运算,结合特殊角的三角函数值进行计算即可.【解答】sin 60-︒=1123-=163- 【点评】本题主要考查二次根式运算及特殊角的三角函数值,熟练运用二次根式的性质及熟记特殊角的三角函数值是解题的关键. 21.(本小题满分7分)2020年是脱贫攻坚年,为实现全员脱贫目标,某村贫困户在当地政府的支持帮助下,办起了养鸡场.经过一段时间的精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们的质量的统计数据如下:1.7≤x<1.9 1.88根据以上信息,解答下列问题:(1)表中a=.补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/千克的价格售出这批鸡后,该村贫困户能否脱贫?【分析】(1)利用各组频数之和=样本容量即可求得a的值,从而可把图形补充完整;(2)从样本中可求得质量不小于1.7千克的频率,利用样本估计总体的思想可求得答案;(3)根据组中值,可计算出这50只鸡的总质量,从而可估计出3000只鸡的质量,从而求得卖得的收入,比较即可判断.【解答】解:(1)因为样本容量为50,所以506915812a=----=,故答案为12,补全频数分布直方图,如图:(2)根据题意可得8300048050⨯=(只), 答:这批鸡中质量不小于1.7kg 的大约有480只;(3)根据题意可得15(6 1.09 1.212 1.415 1.68 1.8)⨯⨯+⨯+⨯+⨯+⨯=1080(元),即50只鸡可以卖1080元,所以3000只鸡可卖10806064800⨯=(元),又64800>54000, 所以该村贫困户能脱贫.【点评】本题主要考查统计中的样本、样本容量,频数分布直方图以及统计中“用样本估计总体”的重要思想.特别是(3)题中考查学生应用知识解决实际问题的能力,体现数学素养的考查.22.(本小题满分7分)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足6075α︒︒.现有一架长为5.5m 的梯子.(1)使用这架样子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子的底端距离墙面的距离2.2m 时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据: sin750.97︒≈,cos750.26︒≈,tan75 3.73︒≈, sin23.60.40︒≈,cos66.40.40≈,tan21.80.40︒≈)【分析】(1)当α最大时,则BC 最大,根据条件解直角三角形即可求得BC 的最大值;(2)根据题中所给数据可求得cos α的值,从而可求得α的大小,再结合题目中所给α的范围进行判断即可.【解答】解:(1)当75α=︒时,用此梯子可攀上的墙最高, 在ABC 中,AB=5.5,因为sin BCABα=,所以sin 5.5sin75 5.50.97 5.335 5.3BC AB α==⨯︒=⨯=≈(米), 即使用这架样子最高可以安全攀上5.3米的墙; (2)由题意可知AC=2.2,在ABC 中, 2.2cos 0.45.5AC AB α===,所以66.4α=︒, 此时满足6075α︒︒,故能够安全使用这架梯子. 【点评】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义是解题的关键,题目不难,注重了对学生实际应用的考查. 23.(本小题满分9分)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系.当4R =Ω时,9A I =. (1)写出I 与R 的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;(3)如果以此蓄电池为电源的用电器的限制电流不能超过10 A ,那么用电器可变电阻应控制在什么范围内?【分析】(1)利用待定系数法直接求解即可;(2)根据画函数图象的步骤列表、描点、连线完成即可;(3)可由函数解析式列不等式求解,亦可根据函数图象求解.【解答】解:(1)根据题意可设(0)kI R R=>, 因为当4R =Ω时,9A I =, 所以4936k =⨯=, 所以I 与R 的函数解析式为36(0)I R R=>;函数图象如图:(3)令10I ≤,即3610R≤,且R>0,解得 3.6R ≥, 即用电器可变电阻应控制在不低于3.6Ω范围内. 【点评】本题为反比例函数的实际应用题目,主要考查待定系数法及函数思想的应用.求解析式时注意R 的取值范围,画图时注意图象的光滑,特别是第(3)小题,同样考查学生的实际应用能力.24.(本小题满分9分)已知1O 的半径为1r ,2O 的半径为2r ,以1O 为圆心,以12r r +的长为半径画弧,再以线段12O O 的中点P 为圆心,以1212O O 的长为半径画弧,两弧交于点A ,连接1O A ,2O A ,1O A 交1O 于点B ,过点B 作2O A 的平行线BC 交2O 于点C .(1)求证:BC 是2O 的切线;(2)若12r =,21r =,126O O =,求阴影部分的面积.【分析】(1)连接AP ,根据题目条件可证得12AO O 直角三角形,再利用平行可证得190O BC ∠=︒,则可证得结论;(2)根据所给数据可求得130BCO ∠=︒,然后再利用三角形面积公式及扇形面积公式计算即可.【解答】(1)证明:连接AP ,如图因为P 为12O O 的中点, 所以12PO PO PA ==,所以11PO A PAO ∠=∠,22PO A PAO ∠=∠, 所以1290PAO PAO ∠+∠=︒, 因为2BC AO ,所以121=90CBO O AO ∠=∠︒, 即1BC AO ⊥,且点B 在圆上,所以BC 是2O 的切线;(2)解:因为12r =,21r =,126O O =,所以11121123,32AO PO PA O O =+====,所以1APO 为等边三角形,所以160PO A ∠=︒,则130BCO ∠=︒,在1Rt BCO 中,12r =,则BC ,所以11216022S 223603BCO BPO SS ππ⨯=-=⨯⨯=阴影扇形 【点评】本题主要考查切线的证明及扇形面积的计算,能根据作图得出12AO O 是直角三角形,是解题的关键,注意切线证明的两种方法,在(2)中证得1APO 为等边三角形是解题的关键.25.(本小题满分11分)已知抛物线22232(0)y ax ax a a =--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点1(,)P m y ,2(3,)Q y 在抛物线上,若12y y <,求m 的取值范围.【分析】(1)直接利用对称轴公式求出即可;(2)利用a 表示出其顶点坐标,利用其在x 轴上可得到关于a 的方程,则可求得a 的值,即可求得其解析式;(3)分开口向上和向下,两种情况,利用离对称轴的远近比较大小,则可得到关于m 的不等式,则可求得答案.【解答】解:(1)因为22232(0)y ax ax a a =--+≠ 所以其对称轴为直线212ax a-=-=; (2)当1x =时,2223223y a a a a a =--+=--, 即抛物线的顶点坐标为(1,223a a --),当其顶点在x 轴上时,则有2230a a --=,解得1a =-或32a =, 当1a =-时,其解析式为221y x x =-+-;当32a =时,其解析式为233322y x x =-+;综上可知当抛物线的顶点在x 轴上时,求其解析式221y x x =-+-或233322y x x =-+; (3)当a >0时,抛物线开口向上,且对称轴为直线x =1, 因为设点1(,)P m y ,2(3,)Q y 在抛物线上,所以当12y y <,则有|1||31|m -<-,解得13m -<<; 当a <0时,抛物线开口向下,且对称轴为直线x =1, 所以当12y y <,则有|1||31|m ->-,解得1m <-或3m <;【点评】本题为二次函数的综合题目,主要考查二次函数的顶点坐标及函数值大小比较.在(2)中得出关于a 的方程是解题的关键,在(3)中注意分两种情况讨论.本题与以往所做的二次函数类型题目有所不同,注重数学思想方法的考查. 26.(本小题满分13分)如图,菱形ABCD 的连长为1,60ABC ∠=︒,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,G ,AE ,EF 的中点分别为M ,N .(1)求证:AF EF =; (2)求MN NG +的最小值;(3)当点E 在AB 上运动时,CEF ∠的大小是否变化?为什么?【分析】(1)连接CF ,利用线段垂直平分线的性质及菱形的对称性可证得结论;(2)当M 、G 、N 三点在一条线上时最小,此时MG 为ABE 的中位线,利用菱形的条件可求得其最小值;(3)由条件可知点C 、A 、E 三点共圆,连接CA ,则可求得2260120CFE CAE ∠=∠=⨯︒=︒,则可求得答案.【解答】(1)证明:连接CF,如图因为四边形ABCD为菱形,所以可得CF=AF,又因为FG垂直平分CE,所以可得CF=EF,所以AF EF=;(2)连接MG、AC,因为菱形ABCD的连长为1,60ABC∠=︒,所以ABC为等边三角形,可得AC=1,因为M、G分别为CE、AE的中点,所以1122 MG AC==,在MNG中,MN NG MG+≥,所以当M、N、G三点共线时,MN NG+有最小值,最小值为12;(3)不变化,其大小为当点30︒.方法一:利用外角的性质如图,连接AC、CF,延长AF交CG于点H,由(1)可知AF EF CF==,所以2,2CFH CAF EFH EAF∠=∠∠=∠,所以2260120CEF CAE∠=∠=⨯︒=︒,所以30CEF∠=︒,即当点E在AB上运动时,CEF∠的大小不变.方法二:利用C、A、E三点共圆如图,连接AC,CF,由(1)可知AF EF CF==,所以C、A、E三点在以点F为圆心的圆上,所以2260120CEF CAE∠=∠=⨯︒=︒,所以30CEF∠=︒,即当点E在AB上运动时,CEF∠的大小不变.方法三:利用四点共圆连接CF,如图,由(1)可知AF EF CF==,所以FCB FAE FEA∠=∠=∠,所以180FCB FEB∠+∠=︒所以点B、C、E、F四点共圆,所以1302CEF CBD ABC∠=∠=∠=︒方法四:利用E、G、F、M四点共圆,连接AC、FM、MG,如图,易得E、G、F、M四点共圆,因为MG∥AC,则可得60∠=∠=︒-︒=︒CEF FMG∠=∠=︒,则可求得906030CME CAB方法五:翻折BEF使点E落到BC上的E’,如图,设''E FEα∠=-︒∠=︒-,'260 CE F FEA FCEα∠=∠=∠=,则'1802CFEα所以''1802260120CFE CFE EFEαα∠=∠+∠=︒-+-︒=︒,所以30∠=︒CEF【点评】本题为四边形综合题,第(1)小题利用菱形的对称性及线段垂直平分线的性质易得结论,第(2)小题注意最值问题的解题思路容易得出,第(3)小题背景为邻边相等加平行+角平分线,可以不同的思路,关键是求得120CFE∠=︒,本题灵活性较强,注重考查学生的转化能力,在平时的学习中,需要让学生学会总结归纳.。
临沂市中考数学试卷及答案word版

临沂市中考数学试卷及答案word版绝密★启用前试卷类型:A20XX年临沂市初中学生学业考试试题数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.-3的相反数是(A)3.(B)-3.(C).3(D).32.根据世界贸易组织(W T O )秘书处初步统计数据,20XX年中国货物进出口总额为4 160 000 000 000美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以记为(A)4.16 1012美元.(C)0.416 1012美元.(B)4.16 1013美元.(D)416 1010美元.3.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为(A)40°.(B)60°.(C)80°.(D)100°.4.下列计算正确的是1Al12 l2 (第3题图)(A)a 2a 3a2.(C)(am)2 am 2.(B)(a2b)3 a6b3.(D)a3 a2 a6.5.不等式组-2≤x 1 1的解集,在数轴上表示正确的是-3 -2 -1-3 -2 -1(A)(B)-3 -2 -1-3 -2 -1(D)0 1(C)2a 1 ( 1)的结果是6.当a 2时,a 22a(A).2(C).(B).2(D).7.将一个n边形变成n+1边形,内角和将(A)减少180°.(C)增加180°.(B)增加90°.(D)增加360°.8.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500元购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是(A).x 20x(C).(B).xx 20(D).9.如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为(A)25°.(B)50°.(C)60°.(D)80°.10.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是(A).(B).3(C).2(D).311.一个几何体的三视图如图所示,这个几何体的侧面积为(A)2 cm2.(B)4 cm2.(C)8 cm2.(D)16 cm2.12.请你计算:(1 x)(1 x),(1 x)(1 x x2),(第9题图)主视图左视图俯视图(第11题图),猜想(1 x)(1 x x2 xn)的结果是(A)1 xn 1.(C)1 xn.(B)1 xn 1.(D)1 xn.13.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B,C之间的距离为(A)20海里.(B)(C)(D)30海里.北(第13题图)14.在平面直角坐标系中,函数y x2 2x(x≥0)的图象为C1,C1关于原点对称的图象为C2,则直线y a(a为常数)与C1,C2的交点共有(A)1个.(B)1个,或2个.(C)1个,或2个,或3个.(D)1个,或2个,或3个,或4个.第Ⅱ卷(非选择题共78分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共5小题,每小题3分,共15分)15.在实数范围内分解因式:x 6x 16.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:3则这5017.如图,在AC BC18三角形OAB过点D19.是互不相同....现的.如一组数1记为A={1,2,3定义:集合合称为集合A则A+B = .三、解答题(本大题共7小题,共63分)20.(本小题满分7分)21.(本小题满分7分)随着人民生活水平的提高,购买老年代步车的人越来越多.这些老年代步车却成为交通安全的一大隐患.针对这种现象,某校数学兴趣小组在《老年代步车现象的调查报告》中就“你认为对老年代步车最有效的的管理措施”随机对某社区部分居民进行了问卷调查,其中调查问卷设置以下选项(只选一项):A:加强交通法规学习;B:实行牌照管理;C:加大交通违法处罚力度;D:纳入机动车管理;E:分时间分路段限行.调查数据的部分统计结果如下表:A B C D E(第21题图)(1)根据上述统计表中的数据可得m =_______,n =______,a =________;(2)在答题卡中,补全条形统计图;(3)该社区有居民2600人,根据上述调查结果,请你估计选择“D:纳入机动车管理”的居民约有多少人?管理措施sin6022.(本小题满分7分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE AC,垂足为E.B(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.23.(本小题满分9分)对一张矩形纸片ABCD进行折叠,具体操作如下:第一步:先对折,使AD与BC重合,得到折痕MN,展开;第二步:再一次折叠,使点A落在MN上的点MA(第22题图)N C图1 A'B'A 处,并使折痕经过点B,得到折痕BE,同时,得到线段BA ,EA ,展开,如图1;第三步:再沿EA 所在的直线折叠,点B落在AD上的点B处,得到折痕EF,同时得到线段B F,M 展开,如图2.(1)证明:ABE 30°;(2)证明:四边形BFB E为菱形.24.(本小题满分9分)D N F图2(第23题图)某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C. 甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲相遇?(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B 步行到景点C的速度至少为多少?(结果精确到0.1米/分钟)20 306090 t(分钟)甲乙(第24题图)25.(本小题满分11分)问题情境:如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分DAM.探究展示:(1)证明:AM AD MC;(2)AM DE BM是否成立?若成立,请给出证明;若不成立,请说明理由.拓展延伸:(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.26.(本小题满分13分)如图,在平面直角坐标系中,抛物线与x轴交于点A(-1,0)和点B(1,0),直线y 2x 1 与y轴交于点C,与抛物线交于点C,D.(1)求抛物线的解析式;(2)求点A到直线CD的距离;(3)平移抛物线,使抛物线的顶点P在直线CD上,抛物线与直线CD的另一个交点为Q,点G在y轴正半轴上,当以G,P,Q三点为顶点的三角形为等腰直角三角形时,求出所有符合条件的G点的坐标.B ADE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则所得直线与双曲线 y = k (x>0)的交点有 x
(A) 0 个. (B) 1 个. (C) 2 个. (D) 0 个,或 1 个,或 2 个.
第Ⅱ卷(非选择题 共 78 分)
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)
类似地,可以求得 sin15°的值是
.
20. (本小题满分 7 分)
3
计算:|—3|+ 3 tan30°— 12 —(2016—π)0
21. (本小题满分 7 分)
为了解某校九年级学生的身高情况,随机抽取了部分学生的身高进行调查,利用所得数据绘成如下统计图
表:
频数分布表
频数分布直方图
身高分组 x<155 155≤x<160 160≤x<165 165≤x<170 x≥170 总计
15.分解因式:x3—2x2+x=
.
16.计算: a 2 + 1 =
.
a −1 1− a
17.如图,在△ABC 中,点 D、E、F 分别在 AB、AC、BC 上,DE∥BC,EF//AB.若 AB=8,BD=3,BF=4,
则 FC 的长为
.
E A
A
G
D
D
E
B
C
F
第17题图OBCF第18题图
18.如图,将一张矩形纸片 ABCD 折叠,使两个顶点 A、C 重合,折痕为 FG,若 AB=4,BC=8,则△ABF
(A) 80°.
(B) 85°.
(C) 90°.
(D) 95°.
3.下列计算正确的是
(A) x3 − x2 = x . (B) x3 x2 = x6 .
(C). x3 x2 = x
(D). (x3)2 = x5
4.不等式组
3x
3 − x 3
2x +
≥2
4,
的解集,在数轴上表示正确的是
5.如图,一个空心圆柱体,其主视图正确的是
与⊙O 分别相交于点 D、C.若∠ACB=30°,AB= 3 ,则阴影部分面积是
(A) 3 . 2
(B) . 6
(C) 3 − . 26
(D) 3 − . 36
11.用大小相等的小正方形按一定规律拼成下列图形,则第 n 个图形
中小正方形的个数是
第1个图形
第2个图形
第3个图形
(A) 2n+1.
(B) n2-1.
频数 5 a 15 14 6
百分比 10% 20% 30% b 12% 100%
(1)填空:a=
,b=
;
(2)补全频数分布直方图;
(3)该校九年级一共有 600 名学生,估计身高不低于 165cm 的学生大约有多少人?
22. (本小题满分 7 分) 一艘轮船位于灯塔 P 南偏西 60°方向,距离灯塔 20 海里的 A 处,它向东航行多少海里到达灯塔 P 南偏西
x … -5 -4 -3 -2 -1 0 … B
C
E
y…4
0 -2 -2 0
4…
下列说法正确的是
(A)抛物线的开口向下
2
(B) 当 x>—3 时,y 随 x 的增大而增大. (C) 二次函数的最小值是—2
(D) 抛物线的对称轴是 x=— 5 . 2
14.直线 y=—x+5 与双曲线 y = k (x>0)相交于 A、B 两点,与 x 轴 x
x + y = 30
x + y = 30
(C) 2x + 3y = 78 (D) 3x + 2 y = 78
9.某老师为了解学生周末学习情况,在所任班级中随机调查 了 10 名学生,绘成如图所示的条形统计图,则这 10 名学生 周末学习的平均时间是
(A) 4.
(B) 3.
(C) 2
(D) 1.
10.如图,AB 是⊙O 的切线,B 为切点,AC 经过点 O,
(C) 72°.
(D) 60°.
8.为了绿化校园,30 名学生共种 78 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵,设男生有 x 人,女生有 y 人,根据题意,所列方程组正确的是,
x + y = 78
x + y = 78
( A) 3x + 2 y = 30 (B) 2x + 3y = 30
(C) n2+2n.
(D) 5n-2.
12.如图,将等边△ABC 绕点 C 顺时针旋转 120°得到△EDC,连接 AD、BD,则下列结论:①AC=AD;②BD
⊥AC;③四边形 ACED 是菱形.其中正确的个数是
(A) 0 .
(B) 1 .
A
D
(C) 2 .
(D) 3 .
13. 二次函数 y=ax2+bx+c,自变量 x 与函数 y 的对应值如下表:
2016 年临沂市初中学生学业考试试题
一、选择题(本大题共 14 小题,每小题 3 分,共 42 分)在每小题所给出的四个选项中,只有一项是
符合题目要求的.
1.四个数—3、0、1、2,其中负数是
(A) —3.
(B) 0.
D
C
45°
1
(C) 1
(D) 2.
40°
A
B
2.如图,直线 AB∥CD,∠A = 40°,∠D = 45°,则∠1 等于
的面积为
.
19.一般地,当α、β为任意角时,sin(α+β)与 sin(α—β)的值可以用下面的公式求得:
sin(α+β)=sinαcosβ+cosαsinβ;sin(α—β)= sinαcosβ—cosαsinβ .
例如 sin90°=sin(60°+30°)= sin60°cos30°+cos60°sin30°= 3 3 + 1 1 =1 . 2 2 22
6.某校九年级一共有 1,2,3,4 四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到 1 班和 2 班的概率是
(A) 1 . 8
(B). 1 6
(C) 3 . 8
(D) 1 . 2
7. 一个正多边形内角和等于 540°,则这个正多边形的每一外角等于
1
(A) 108°.
(B) 90°.
A P
D
B
C
24. (本小题满分 9 分) 现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲乙 两家快递公司比较合适.甲公司表示:快递物品不超过 1 千克的,按每千克 22 元收费;超过 1 千克,超过 的部分按每千克 15 元收费.乙公司表示:按每千克 16 元收费,另加包装费 3 元.设小明快递物品 x 千克. (1)请分别写出甲乙两家快递公司快递该物品的费用 y(元)与 x(千克)之间的函数关系式; (2)小明应选择哪家快递公司更省钱?
45 方向上的 B 处(参考数据: 3 ≈1.732,结果精确到 0.1)?
北
P
东
45° 60°
A
B
4
23. (本小题满分 9 分) 如图,A、P、B、C 是圆上的四个点,∠APC=∠CPB=60°,AP、CB 的延长线相交于点 D. (1)求证:△ABC 是等边三角形;
(2)若∠PAC=90°,AB=2 3 ,求 PD 的长.