沉降监测方案设计参考
建筑沉降监测方案

建筑沉降监测方案建筑沉降监测方案一、方案目的:建筑沉降是指建筑物地基沉降的过程,由于建筑物的存在,地基会受到压力的影响而产生位移和沉降。
为了保证建筑物的安全性和稳定性,需要进行沉降监测以及及时采取措施进行处理。
本方案旨在实施建筑沉降监测,从而确保建筑物的安全性。
二、监测内容:1. 建筑物的沉降和位移监测;2. 地基的沉降和位移监测;3. 建筑物和地基之间的变形监测;4. 地基水平移动的监测;5. 周边环境的观测,如地下水位、土壤状态等。
三、监测方法:1. 安装沉降点:在建筑物周围选择一定数量的沉降点,采用沉降盘或精确水平仪等设备进行监测;2. 安装测斜仪:在地基的关键位置,安装测斜仪进行斜度和位移的监测;3. 安装立柱:在建筑物的不同部位,安装立柱用来测量建筑物的位移和变形;4. 定期巡视:每隔一段时间,巡视建筑物和地基的情况,观测是否有明显的变化;5. 实时监测:采用传感器等设备进行实时监测,如振动传感器、应变计等,可以更加准确地监测建筑物的变化情况。
四、监测频率:1. 建设初期:每周进行一次监测;2. 建设中期:每月进行一次监测;3. 建设后期:根据实际情况,每季度或半年进行一次监测。
五、监测结果处理和评估:1. 监测数据的收集和整理;2. 数据分析和对比,查看沉降和位移的趋势和幅度;3. 判断是否存在异常变化,如超过预设范围的沉降或位移;4. 对异常变化进行评估,确定是否需要采取措施进行处理;5. 对监测结果进行记录和报告,及时向相关部门汇报。
六、监测责任:1. 建筑监理单位负责监测方案的制定和监测工作的执行;2. 监测单位负责监测设备的安装和监测数据的采集;3. 监理工程师负责监督监测工作的进行,对监测结果进行评估和处理。
七、监测报告及应急预案:1. 每次监测完成后,及时制作监测报告,并向相关部门汇报;2. 当监测结果出现异常变化时,立即制定应急预案,采取措施进行处理;3. 监测报告和应急预案应储存备查,以备后续需要。
内容详细基坑沉降监测方案

基坑沉降监测方案篇一:基坑沉降监测方案(2495字)一、监测意义:在基坑开挖期间,随着取土的深入,支护结构由于受到土压力和道路动载的作用,会产生比较明显的变形,如果超过一定范围,甚至会出现失稳情况,引起周围道路和建筑物的破坏。
因此,应配备高精度的施工监测队伍,及时提供变形数据,指导施工的顺利进行,保证施工的安全。
二、监测内容:几何变形监测部分:1)周围管线位移监测2)支护结构顶部水平位移3)支护桩桩体位移(倾斜)监测应力监测部分:4)支护桩桩体应力监测5)人字梁(3-3、4-4、4’-4’剖面)应力监测6)水平支撑5-5剖面轴力监测地下水位监测部分:7)水位监测三、监测实施方案:1)周围管线位移监测:在基坑北侧的蒸汽凝水管和蒸汽管上,每隔约12米布设一个监测点,进行水平位移和沉降(竖向位移)监测。
自基坑开挖时起,每隔1~2天监测一次,在挖土高峰期,若位移速率变化异常或位移量过大可适当加密周期,增加监测次数。
当大规模取土期过后且位移基本稳定,则监测周期可视位移速率的大小合理安排,直至主体施工至±0为止,监测约20次。
沉降监测采用二等精密水准测量,其基本思想为:在施工区域外建立基准点,基准点必须牢固稳定,基准点布设以三个点为宜,且构成一个基准网,通过对基准网的定期检测可得知各基准点的稳定情况,从而对不稳定的基准点剔除或进行修正。
每次监测时,通过精密水准测量将基准点的高程采用闭合水准测量引测到各监测点上,从而得到各监测点的绝对高程,根据监测点两次所测得高程之差即可得知监测点在这两次期间的沉降量。
监测过程中的限差要求、测量步骤、手簿记录和计算均按照国家二等水准测量规范的规定进行。
在基坑开挖前布设监测点并进行首次监测,挖土期每隔1~2天监测一次,若沉降速率变化异常或沉降量过大可适当加密周期,增加监测次数。
当大规模取土期过后且沉降基本稳定,则监测周期可视沉降速率的大小合理安排,直至主体施工至±0为止,监测约20次。
建筑沉降变形观测方案技术设计书三篇

建筑沉降变形观测方案技术设计书三篇篇一:建筑沉降变形观测方案技术设计书一、工程概况:***大学***校区教三楼位于校道南侧,东临山丘,南临图书馆,西临教四楼,北面三栋广场,钢筋混凝土结构,地面高六层;场地地形较平坦,地基为粘性土地基。
由**建筑综合设计研究院设计,**公司第三分公司施工,*****公司监理,工程竣工日期为二0XX 年六月。
二、编制依据1、《建筑变形测量规程》(JGJ/T8-20XX )2、《工程测量规范》(GB 50026--20XX )3、《国家一、二等水准测量规范》(GB12987-91)4、****大学***校区教三栋1:500平面图5、教三楼结构情况及周边环境实况三、沉降观测方案(一)沉降观测精度、时间、次数:(1)、观测精度本次采用二级观测精度。
沉降基准网观测采用一级水准测量,往返高差较差或高差闭合差应n 3.0±≤mm ,(n 为测站数),最大不超过n 5.0±≤mm ,沉降观测往返高差较差或高差闭合差应n 0.1±≤mm ,(n 为测站数),最大不超过n 5.1≤mm 。
观测点测站高差中误差:≤0.5mm ;观测的视线长度:≤50m;前后视视距差:≤1.0m;视距累积差≤3.0m;观测成果在限差内按观测距离或测站数分配闭合差计算高程。
观测时一定要爱护观测标志,尺子放在观测点上应用力轻,立尺一定要直,每次把尺子立在观测标志之前,都要把观测标志点和尺子擦干净,以防止观测标或尺底粘泥土而影响观测精度。
(2)观测时间、次数观测周期每月一次,每期观测时间三个小时,总共进行6期观测。
首次观测时间为20XX年12月7日。
首次观测时,应观测多次取其平均值,以提高初始值的可靠性。
(二)基准点和工作点的布设1、观测点的设置:按照设计院的要求,并根据沉降观测的有关规定,布置沉降观测点依据以下原则布设:(1)参照设计图纸;(2)建筑物的各拐角极大转角处;(3)高低层建筑物、纵横墙的交接处两侧;(4)建筑物沉降缝两侧、基础埋深相差悬殊处。
地铁工程沉降监测方案设计

地铁工程沉降监测方案设计一、引言地铁工程是城市交通建设中不可或缺的一部分,它对于城市交通的便利性和效率起着至关重要的作用。
然而,地铁工程的施工过程中可能会对地表造成一定的影响,其中包括地铁隧道的沉降问题。
为了确保地铁工程的施工过程中不会对周边建筑和地面交通造成影响,必须对地铁工程的沉降情况进行监测和控制。
因此,本文将设计一套完善的地铁工程沉降监测方案,以保障地铁工程施工的安全和稳定。
二、地铁工程沉降监测的目的地铁工程沉降监测的主要目的是为了及时发现地铁施工对地表造成的沉降情况,以及及时采取措施加以控制,从而保证周边建筑和地面交通的安全和稳定。
具体包括以下几个方面的内容:1. 及时发现地铁工程施工对地表造成的沉降情况,以及提前预警可能发生的地质灾害;2. 对地铁工程施工过程中的沉降情况进行监测和评估,保证施工的安全性和稳定性;3. 为相关部门提供科学的监测数据,以便有效的采取预防和应对措施。
三、地铁工程沉降监测的内容地铁工程的沉降监测内容主要包括:地铁施工前的地质勘探,地铁隧道的施工监测、隧道开挖后的沉降监测以及地铁运营期间的沉降监测。
1. 地铁施工前的地质勘探地铁施工前应对地铁隧道的周边地质情况进行细致的勘探,包括地下水位、土壤情况、地下岩层、地下管线等情况的调查和分析,为施工过程中的沉降监测提供必要的基础数据。
2. 地铁隧道的施工监测地铁隧道的施工监测主要包括隧道掘进工作、支护结构的施工、地面沉降的监测等内容。
通过在施工现场设置合适的监测点,采用沉降仪、测距仪、全站仪等仪器对沉降情况进行实时监测,并进行数据分析和处理,及时发现可能存在的问题。
3. 隧道开挖后的沉降监测隧道开挖后,对周边建筑和地面情况进行沉降监测,确保地铁施工对周边环境造成的影响在可控范围内。
并在监测数据出现异常时,及时采取措施加以控制。
4. 地铁运营期间的沉降监测地铁工程施工完成后,要持续对地铁运营期间的沉降情况进行监测,确保地铁运营不会对周边建筑和地面交通产生不利影响。
桥梁沉降监测方案

桥梁沉降监测方案一、背景随着城市化进程的加速和基础设施建设的快速发展,桥梁作为城市交通网络的重要组成部分,承载着巨大的交通流量。
然而,由于桥梁的长期使用和自然环境的影响,桥梁的沉降问题逐渐凸显。
为了及时掌握桥梁的变形情况,保障行车安全,制定一套有效的桥梁沉降监测方案势在必行。
二、监测方案1. 监测方法选择桥梁沉降的监测方法多种多样,如测量沉降点的高程变化、使用位移传感器监测同一位置的位移变化等。
结合实际情况,本监测方案选择了以下监测方法:(1) 全站仪测量法:利用高精度的全站仪测量控制点的高程,再与沉降点进行对比,得出桥梁的沉降情况。
(2) GNSS定位技术:通过安装GNSS接收机,实时获取桥梁各控制点的三维位移信息,从而推断桥梁的沉降情况。
2.监测点布设为了全面了解桥梁的沉降情况,本监测方案将合理布设多个监测点,包括但不限于以下几个方面:(1) 桥梁主梁控制点:设置在主梁的两端和中央,用于监测桥梁整体的沉降情况。
(2) 支座沉降点:设置在桥墩的支座下方,用于监测支座的沉降情况。
(3) 梁段控制点:设置在桥梁的梁段上,用于监测桥梁各个梁段的沉降情况。
3.监测频率与周期为了准确掌握桥梁的沉降情况,本监测方案建议按照以下频率进行监测:(1) 每月监测:用于及时掌握桥梁的日常变化情况。
(2) 每季度监测:用于评估桥梁的长期运行状况。
(3) 每年监测:用于制定维护计划和进行长期变形监测。
4.监测记录与分析本监测方案建立专门的监测记录表格,及时记录每次监测的数据。
通过对监测数据的分析,可以查明桥梁的沉降情况及其变化趋势,并及时采取相应的维护措施。
三、应急处理遇到桥梁沉降超过预警值或出现异常情况时,应及时采取应急处理措施,以防止出现更大的安全隐患。
具体措施如下:1.立即采取交通管制措施,限制桥梁通行量,确保行车安全。
2.调派专业人员进行现场勘察,查明沉降原因。
3.根据沉降原因,制定相应的维修方案,并在维修过程中加强监测,确保修复效果。
建筑物沉降观测方案三篇

建筑物沉降观测方案三篇篇一:建筑物沉降观测方案一、编制依据1、《工程测量规范》GB50026-20XX2、《建筑变形测量规范》JGJ/T8-20XX3、《建筑地基基础设计规范》GB50007-20XX4、《高层建筑混凝土结构技术规程》JGJ3-20XX5、本工程施工图6、《建筑工程施工质量验收统一标准》GB50300-20XX二、工程概况工程名称:万州区第一人民医院门诊住院综合楼工程地址:万州周家坝建设单位:XX第一人民医院设计单位:XX艺术设计院有限公司勘察单位:XX公司监理单位:XX公司施工单位:XX集团有限公司本工程位于万州区周家坝街道流水村2-3组(心连心广场对面),万州区第一人民医院门诊住院综合楼总建筑面积为27924.52㎡,总建筑高度78.1m,地上19F,地下1F,框剪结构。
三、观测目的、原则及观测点布置3.1.观测目的工程建筑物从施工开始到竣工,以及建成运营后很长一段时间,沉降变形是不可避免的。
如果变形在一定的限度之内属正常现象,但一旦超过某一限度,就会危及建筑物的安全。
因此,在建筑物的施工和运营期间,都必须对建筑物进行安全监测,以便及时掌握变形情况,发现问题,采取措施,保证建筑物从施工开始到运营期间均安全有效。
3.2.观测原则1.参照设计图纸;2.建筑物的四角极大转角处;3.高低层建筑物、纵横墙的交接处两侧;4.建筑物沉降缝两侧、基础埋深相差悬殊处。
3.3.观测点布置观测点的布置:观测点设在房屋周边各大角,长边增设观测点,观测点数不少于6点。
为了便于观测,沉降观测点布置于通视好的墙上,以减小搬动仪器的次数而造成的误差叠加。
沉降观测点置于相对标高+0.700处,以便观测方便。
观测点采用20钢筋制作,采用后植筋锚固方式埋入结构柱内,为了保证观测点牢固性,埋入深度不小于100,外露部分长度为60,上端焊圆形铁球以便观测,并涂上防腐漆,如右图所示。
根据观测原则要求,共布置4个沉降观测点,具体点位见沉降观测点平面布置图(附图)。
(完整版)沉降监测方案参考

①对使用的全站仪、觇牌应在项目开始前和结束后进行检验,
尤其时照准部水准管及电子气泡补偿的检验与校
④在目标成像清晰稳定的条件下进行观测;⑤仪器温度
⑥应尽量避免受外界干扰影响观测精度,严格
3)支护结构水平位移监测
按空间后方交会法自动观测各点坐标。基准点与
测出各点的相对坐标,利用工作基点
米。监测距离为约130m。
监测点埋设及保护措施
10的形式埋设,并且应做好清晰标记,方便保存。
监测仪器、方法、数据处理及分析
同5.15.3围护桩顶部竖向位移监测。
使用全站仪监测。
A、B为地面上两点,自A点观测B点的竖
α1.2,S0为两点间水平距离,i1为A点仪器高,i2为B点觇标高,则A、
5) 《国家一、二等水准测量规范》GB/T12897-2006
6) 《建筑地基基础设计规范》GB50007-2011
监测内容及监测点布置
、支护结构水平位移、竖向位移:每个基坑布置4个观测点。水平位移速
3mm/天,累计最大40mm,竖向位移速率报警值3mm/天,累计最大
。
、周边地表竖向位移:分别距离基坑围护桩3m、5m布置地表监测点,每
监测频率及数据处理
基础数据的采集工作,开完前监测两次;在
1次,报警时每天测2~3次。
(日头通知)项目经理,并
6点前将《监测日报》整理好,并由资料员报监理、建设单位。
警戒值(mm) 控制值(mm) 危险值(mm)
30 40 50
30 40 50
30 40 50
1000 2000 3000
沉降、裂缝监测专项方案
监测目的及依据
建筑沉降监测施工组织设计方案

建筑沉降监测施工组织设计方案一、引言建筑沉降是指建筑物在使用过程中由于地基沉降引起的沉降现象。
为保障建筑物的稳定性和安全性,监测建筑沉降成为必要的手段之一。
本文将针对建筑沉降监测的施工组织设计方案进行详细阐述。
二、施工组织设计方案1.工程背景和目标本方案针对某高层建筑的沉降监测工程,旨在及时发现并评估建筑物的沉降情况,为相关工程提供科学依据,确保建筑物的安全使用。
2.监测设备和仪器选用在本工程中,我们将选用高精度的沉降测量仪器,包括激光测距仪、水准仪及GNSS测量系统等。
这些设备具有高精度、稳定性好以及数据自动化处理的优势,可有效提高监测工作的准确性和效率。
3.监测方案为确保监测工作的连续性和准确性,我们将采取以下措施:(1)设置监测点: 根据建筑物的结构和具体情况,在合适的位置设置监测点位,保证能够全面监测建筑物的沉降情况。
(2)监测频率: 根据工程要求,制定监测频率,一般为月度或季度监测,并在特殊情况下进行及时监测。
(3)数据采集: 使用先进的自动化测量仪器,实时采集监测数据,并进行数据处理和分析。
(4)数据分析与评估: 对采集到的数据进行专业的分析和评估,及时发现并判断建筑物的沉降情况,提供及时有效的应对措施。
4.人员安排和任务分工为确保监测工作的顺利进行,我们将组建专业的监测团队,包括监测工程师、技术人员和数据分析师等。
各成员将分工合作,共同完成监测任务。
5.安全措施建筑沉降监测工作需要在建筑物周围进行操作,为确保人员和设备的安全,我们将制定以下安全措施:(1)严格执行相关安全规范和操作规程。
(2)提供必要的安全防护装备和设施。
(3)进行安全培训和教育,提高人员的安全意识。
三、总结建筑沉降监测施工组织设计是建筑工程中至关重要的环节,本方案通过对监测设备的选用、监测方案的制定、人员安排的合理分工以及安全措施的制定,确保了监测工作的连续性、准确性和安全性,为工程提供了可靠的数据和科学的依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用5.15 沉降、裂缝监测专项方案5.15.1 监测目的及依据 监测目的: 为及时了解基坑开挖产生的土体水平位移,保证基坑、周边道路及建筑物的安全,指导基坑、开挖施工,必须进行有效监测。
现场监测的结果用于信息化反馈优化设计,使设计达到优质安全、经济合理、施工快捷的目的。
通过监测数据可判断前一步施工工艺和施工参数是否符合预期要求,以确定和优化下一步的施工参数,做到动态设计、信息化施工。
通过监测收集数据,为类似工程设计、施工及相关规程的制定积累经验。
监测依据: (1) 本项目设计图纸; (2) 《建筑基坑工程监测技术规》(GB 50497-2009) (3) 《建筑变形测量规》JGJ8-2007 (4) 《工程测量规》GB50026-2007 (5) 《国家一、二等水准测量规》GB/T12897-2006 (6) 《建筑地基基础设计规》GB50007-20115.15.2 监测容及监测点布置 1、支护结构水平位移、竖向位移:每个基坑布置 4 个观测点。
水平位移速率报警值 3mm/天,累计最大 40mm,竖向位移速率报警值 3mm/天,累计最大 30mm。
文档实用2、周边地表竖向位移:分别距离基坑围护桩 3m、5m 布置地表监测点,每 个基坑 8 个测点。
地表沉降报警值 50mm。
高速路面、地表裂缝:在顶管沿线地表布置 9 个沉降监测点,间距 13m;当 原有裂缝增大或出现新裂缝时,及时增设监测点。
每一条裂缝的测点至少设 2 组, 测点设置在裂缝的最宽处及裂缝末端。
地表裂缝报警值宽度达 10mm。
文档实用5.15.3 监测方法(1)高程基准网 基准点布设:在远离基坑施工影响区域以外(大于 4 倍基坑深度)的稳固建 筑物上布设基准点。
共布设 3 个。
工作基点的布设以方便沉降监测,且相对稳定 为原则,埋设方式同基准点。
可随施工进度的推进和施工现场通视情况临时增设。
保护措施:为防止基准点破坏,基准点埋设在不同建筑物上,共布设 3 个。
如果某个基准点被破坏,在附近稳定建筑物上立即补埋。
高程系统:独立高程系,假定 A 点起算高程为 5.000m。
技术要求:由基准点与工作基点组成基本控制网,构成闭合或附合水准路线。
每 1 月检测 1 次,稳定后每 2 个月检测 1 次,基准点稳定标准为每次测量平差后 高程之差小于±1.0mm。
当发现数据异常时立即复测。
高程基准网按表 1 所示的 技术要求进行观测。
表 1 高程基准网测量主要技术要求序号 1 2 3 4 5 6 7项目 测站高差中误差 往返较差及环线闭合差 检测已测高差较差视线长度 前后视的距离较差 任一测站前后视距差累计 视线离地面最低高度限差 0.5 毫米±1.0 n 毫米(n 为测站数) ±1.5 n 毫米(n 为测站数)50 米 2米 3米 0.3 米使用仪器:观测使用 DS05 级水准仪, DINI03 电子水准仪及配套铟瓦条码 水准尺。
观测前和使用过程中仪器及标尺定期送国家计量单位检定认可,确保仪 器设备处于受控状态;测量过程中按规定期进行 i 角检测,保证 i 角≤±15″。
技术措施:为保证精度,在本工程基准网测量中,强调采取以下措施: (1)水准观测在标尺分划成像清晰而稳定时进行。
(2)水准测量的观测顺序为:后—前—前—后文档实用(3)同一测站上观测时,严格按表 1 相关要求控制前后视距差,不得 两次调焦。
(2)平面基准网 基准点布设:在远离基坑施工影响区域以外(大于 3 倍基坑深度)的稳固建 筑物上布设基准点。
共布设 4 个。
采用强制对中螺栓在基坑周边较高建(构)筑 物顶部固定棱镜或贴片棱镜作为标志,如图 3 所示。
保护措施:基准点安装在楼顶不易破坏的地方。
坐标系统:采用独立坐标系。
为方便计算,独立坐标系坐标轴与设计轴线大 致平行。
技术要求:基准点与测站点构成基本控制网,以空间后方交汇的方法进行控制测量,开始时每月检测 1 次,稳定后每 2 个月检测 1 次,稳定标准为每次测量平差后坐标之差小于±3.0mm。
具体技术要求如表 2 所示。
表 2 平面基准网主要技术要求序号 1 2 3 4 5 6 7 8项目 坐标中误差 水平角观测测回数 测角中误差 测边相对中误差 每边测回数 距离一测回读数较差 距离单程各测回较差 气象数据测定的最小读数指标或限差 1.0 毫米 6 1.0 秒≤1/100000 往返各 4 测回1.0 毫米 1.5 毫米 温度 0.2 摄氏度,气压 50 帕使用仪器: TS15A 全站仪以及配套棱镜。
技术措施: ①对使用的全站仪、觇牌应在项目开始前和结束后进行检验,项目进行中也应定期进行检验,尤其时照准部水准管及电子气泡补偿的检验与校正;②观测应做到三固定,即固定人员、固定仪器、固定测站;③仪器、觇牌应安置稳固严格对中整平;④在目标成像清晰稳定的条件下进行观测;⑤仪器温度与外界温度一致时才能开始观测;⑥应尽量避免受外界干扰影响观测精度,严格按精度要求控制各项限差。
(3)支护结构水平位移监测 采用测量机器人自由设站,按空间后方交会法自动观测各点坐标。
基准点与文档实用通视围的监测点在同一测站进行观测,测出各点的相对坐标,利用工作基点相对 坐标与其真值进行坐标转换,统一监测点与基准点坐标系。
根据各期坐标值与初 始值比较,计算出监测点向基坑侧的变形量。
观测中应注意以下事项:①对使用的全站仪、棱镜应在项目开始前和结束后 进行检验,项目进行中也应定期进行检验,尤其是照准部水准管及电子气泡补偿 的检验与校正;②观测宜做到三固定,即固定人员、固定仪器、固定测站;③仪 器应安置稳固严格整平;④在目标成像清晰稳定的条件下进行观测;⑤仪器温度 与外界温度一致时才能开始观测;⑥应尽量避免受外界干扰影响观测精度,严格 按精度要求控制各项限差。
水平位移监测的技术要求如表 3 所示。
表 3 水平位移监测主要技术要求序号 1 2 3项目 水平角观测测回数坐标中误差 每边测回数指标或限差 21.0mm 2数据处理及分析观测和记录采用全站仪置程序及 CF 卡、SD 卡自动完成,在观测过程中自 动完成各项限差指标控制,观测完成后将数据传输至计算机,求得各监测点坐标平均值。
通过各期变形观测点二维平面坐标值,计算投影至垂直于基坑方向的矢量位移,并计算各期阶段变形量、阶段变形速率、累计变形量等数据。
并结合工况编制各测点水平位移监测报表。
(4)支护结构竖向位移监测采用几何水准法。
以基准点为起算点,观测过程中的主要技术要求见表 4。
表 4 竖向位移监测网主要技术要求序号 1 2 3 4 5项目 测站高差中误差 往返较差及环线闭合差 检测已测高差较差视线长度 前后视的距离较差限差 ±0.5 毫米±1.0 n 毫米(n 为测站数) ±1.5 n 毫米(n 为测站数)50 米 2.0 米文档实用6任一测站前后视距差累计7视线离地面最低高度3米 0.3 米观测采用闭合水准路线时可以只观测单程,采用附合水准路线形式必须进行往返观测,取两次观测高差中数进行平差。
观测注意事项:①对使用的电子水准仪、条码水准尺应在项目开始前和结束后进行检验,项目进行中也应定期进行检验。
当观测成果异常,经分析与仪器有关时,应及时对仪器进行检验与校正;②观测宜做到三固定,即固定人员、固定仪器、固定测站;③观测前应正确设定记录文件的存贮位置、方式,对电子水准仪的各项控制限差参数进行检查设定,确保附合观测要求;④应在标尺分划线成像稳定的条件下进行观测;⑤仪器温度与外界温度一致时才能开始观测;⑥数字水准仪应避免望远镜直对太阳,避免视线被遮挡,仪器应在生产厂家规定的围工作,震动源造成的震动消失后,才能启动测量键,当地面震动较大时,应随时增加重复测量次数;⑦由往测转向返测时,两标尺应互换位置,并应重新整置仪器;⑧完成闭合或附合路线时,应注意电子记录的闭合或附合差情况,确认合格后方可完成测量工作,否则应查找原因直至返工重测合格。
数据处理及分析每次观测结束后,核对和复查观测结果,验算各项限差,确认全部符合规定要求后,对观测数据进行平差计算,得到本次高程值,通过高程值计算阶段沉降量、阶段变形速率、累计沉降量等,并结合工况编制各测点沉降监测报表。
5.15.4 监测频率及数据处理土方开挖前做好监测点的布置,基础数据的采集工作,开完前监测两次;在基坑开挖期间每天至少监测 1 次,报警时每天测 2~3 次。
由我项目部测量人员将每次监测的结果及时通知(日头通知)项目经理,并在当天下午 6 点前将《监测日报》整理好,并由资料员报监理、建设单位。
相应监测警戒值如下:警戒值控制值危险值观测项目(mm) (mm) (mm)文档实用管线基坑支护结构顶部水平位移 管线基坑支护结构顶部沉降 管线基坑支护结构测斜 管线基坑地下水位 周围民用建筑物沉降30 30 30 1000 1040 40 40 2000 1550 50 50 3000 205.15.5 沉降观测及预防措施为防止顶管施工给荣乌高速路造成沉降影响,采用泥水平衡顶管工艺,使出 土和顶进所造成的土压力为 0,从而避免道路的沉降及隆起。
为掌握道路路面变 化,沿顶进轴线每 5 米设一观测点,顶进中及完成后三个月定期观测。
顶进中每 2 小时观测一次,完工后每 5 天观测一次。
做好详细记录,提供给顶进操作及补 强作业,严格控制荣乌高速路的沉降量≤10mm。
5.15.6 路面监测方案1.监测点布设 本项目高速道路、地表监测点布设 9 个监测点;地表沉降测点布设根据周边 道路情况以及围护结构自身监测点布置情况综合考虑,地表监测点布点间距约 13 米。
监测距离为约 130m。
2.监测点埋设及保护措施 使用道钉布设监测点,用红色油漆标识,为防止测点受碾压影响,监测点采 用如图 10 的形式埋设,并且应做好清晰标记,方便保存。
3.监测仪器、方法、数据处理及分析 第一套监测方法:同 5.15.3 围护桩顶部竖向位移监测。
第二套监测方法: 使用全站仪监测。
三角高程测量的基本原理如图,A、B 为地面上两点,自 A 点观测 B 点的竖 直角为α1.2,S0 为两点间水平距离,i1 为 A 点仪器高,i2 为 B 点觇标高,则 A、 B 两点间高差为:文档实用h1.2=S0tga1.2+i1-i2上式是假设地球表面为一平面,观测视线为直线条件推导出来的。
为了提高三角高程测量的精度,通常采取对向观测竖直角,推求两点间高差, 以减弱大气垂直折光的影响。
三角高程测量的方法 如图一所示,设 A,B 为地面上高度不同的两点。
已知 A 点高程 HA,只要 知道 A 点对 B 点的高差 HAB 即可由 HB=HA+HAB 得到 B 点的高程 HB。