变形监测第三章 变形监测方案设计

合集下载

桥梁工程变形监测方案

桥梁工程变形监测方案

桥梁工程变形监测方案一、引言桥梁是现代城市重要的交通基础设施,其结构的稳定性和安全性对于保障交通运输的顺利进行起着至关重要的作用。

然而,桥梁在长期使用过程中,由于自身的疲劳、老化以及外部荷载的作用,往往会引起一定程度的变形,严重的甚至导致桥梁结构失稳和倒塌。

因此,为了及时发现和解决桥梁中存在的变形问题,必须进行有效的变形监测。

二、变形监测技术目前,桥梁变形监测主要采用以下几种技术:激光测距仪监测技术、红外线测温技术、GPS技术、网络监测技术和传感器监测技术。

1.激光测距仪监测技术:该技术通过激光测距仪对桥梁各个部位进行扫描,并根据扫描数据计算出相应部位的变形情况。

这种技术的优点是测量精度高,可以实时监测桥梁的变形情况,缺点是设备成本较高。

2.红外线测温技术:该技术利用红外线测温仪对桥梁结构进行扫描,通过测量不同部位的温度差异来判断桥梁的变形情况。

这种技术的优点是设备成本较低,操作简单,适用范围广,缺点是测量精度相对较低。

3.GPS技术:该技术通过GPS接收器对桥梁的位置进行定位,并通过多次测量来判断桥梁结构的变形情况。

这种技术的优点是测量范围广,可以在大范围内进行监测,缺点是精度相对较差。

4.网络监测技术:该技术通过在桥梁结构上设置传感器,实时监测桥梁各个部位的变形情况,并将监测数据通过网络传输到监测中心进行分析。

这种技术的优点是实时监测能力强,缺点是设备成本较高。

5.传感器监测技术:该技术通过在桥梁结构上设置传感器来实时监测桥梁的变形情况。

传感器可以根据需要选择不同类型,如应变传感器、挠度传感器等。

这种技术的优点是监测范围广,精度高,缺点是设备成本较高。

根据以上介绍的变形监测技术,可以综合使用多种技术来监测桥梁的变形情况,以提高监测的准确度和实时性。

具体的监测方案如下:1.在桥梁结构的不同部位设置合适的监测仪器,如激光测距仪、红外线测温仪、GPS接收器和传感器。

2.选择合适的监测时间间隔,对桥梁进行定期或不定期的监测,以及时发现和解决桥梁的变形问题。

道路桥梁工程变形监测方案

道路桥梁工程变形监测方案

道路桥梁工程变形监测方案1.引言道路桥梁工程在使用过程中会受到车辆荷载、自然灾害等因素的影响,从而导致结构的变形和损坏。

因此,对道路桥梁工程的变形进行监测是非常必要的,可以及时发现结构问题,并采取相应的维护和修复措施,以保障工程的安全和稳定性。

本文将针对道路桥梁工程变形监测的方案进行详细介绍和分析。

2. 变形监测技术及方法2.1 常用的监测技术(1)位移监测技术利用GPS、全站仪、测斜仪等设备,对桥梁结构的水平和垂直位移进行实时监测,以判断结构是否存在变形。

(2)应变监测技术利用应变片、应变计等设备,对桥梁结构的应变进行监测,从而判断结构是否存在应力集中或裂缝的情况。

(3)振动监测技术利用加速度计、振动传感器等设备,对桥梁结构的振动情况进行监测,以判断结构的稳定性和安全性。

(4)声波监测技术利用声波传感器和声波分析仪,对桥梁结构的声波传播情况进行监测,以判断结构内部是否存在裂缝或空洞。

2.2 监测方法(1)现场监测定期派专业人员到桥梁现场,利用各种监测设备进行实时监测,并及时记录监测数据和情况。

(2)远程监测利用网络、卫星通信等技术,将监测设备连接至远程监测中心,实现对桥梁结构的远程实时监测和数据传输。

3. 变形监测方案3.1 监测目标根据桥梁结构的特点和使用环境,确定监测的主要目标和重点部位,包括主塔、主梁、支座、桥面和桥墩等结构元素。

3.2 监测方案(1)位移监测方案采用GPS、全站仪、激光测距仪等设备,对桥梁结构的水平和垂直位移进行实时监测,主要监测桥面变形情况和主梁的竖向变形情况。

(2)应变监测方案采用应变片和应变计等设备,对主梁、桥梁支座等关键部位进行应变监测,以判断结构是否存在应力集中或裂缝的情况。

(3)振动监测方案采用加速度计、振动传感器等设备,对桥梁结构的振动情况进行监测,以判断结构的稳定性和安全性。

(4)声波监测方案采用声波传感器和声波分析仪,对桥梁结构的声波传播情况进行监测,以判断结构内部是否存在裂缝或空洞。

变形监测设计方案

变形监测设计方案

变形监测设计方案变形监测设计方案一、设计思路:变形监测是指对土木工程结构中的变形进行实时监测和分析,以预测结构的变形趋势、预警结构的变形异常,并提供科学依据为结构的维护管理和安全性评估提供技术支持。

本设计方案将选用全站仪和振动传感器作为变形监测设备,通过将全站仪固定在监测点上,实时测量监测点的坐标变化,通过振动传感器测量结构的振动情况,进而实现对结构变形的监测。

二、设备选择:1.全站仪:全站仪是土木工程测量中常用的一种测量仪器,具有高精度、高稳定性和自动化程度高的特点。

全站仪可以实时测量监测点的三维坐标变化,并能生成三维图像,方便对结构的变形进行分析和评估。

2.振动传感器:振动传感器是测量结构振动情况的一种传感器,可以实时监测结构的振动频率、振动幅度等参数。

通过振动传感器可以判断结构的变形情况,以及结构是否存在异常振动情况。

三、监测点选取:监测点的选取应根据具体工程的结构形态和变形特点进行综合考虑,一般选择工程的关键部位和容易发生变形的区域为监测点。

监测点应包括主体结构和次要结构的监测点,以便全面监测结构的变形情况。

四、监测程序:1.安装全站仪和振动传感器。

2.对监测点进行初始坐标测量,并记录下来作为基准。

3.开启全站仪和振动传感器,开始实时监测结构的变形和振动情况。

4.对监测数据进行定期整理和分析,生成结构变形和振动的曲线和图像。

5.根据监测结果,判断结构变形和振动是否正常,如发现异常情况,及时进行修复和调整。

五、监测结果处理和评估:通过对监测数据的整理和分析,可以得出结构变形和振动的趋势,并与工程设计要求进行对比,评估结构的变形和振动是否满足设计要求。

根据评估结果,可以及时采取措施进行修复和调整,确保结构的安全和稳定。

六、安全措施:1.在安装和调试监测设备时,要注意操作规范,避免人为损坏设备。

2.设备选用符合国家标准的产品,并进行定期维护和检修,确保设备的正常工作。

3.定期对监测设备进行校准和检测,保证监测数据的准确性和可靠性。

第三章变形监测方案设计

第三章变形监测方案设计
b.在监测仪器选择方面,不要片面追求高、精、尖、多、全。监测仪器一 般应满足精度、可靠度、牢固可靠三项要求,统筹考虑安排。
c.测点的布设不宜过多,但要保证观测质量。一般情况下,主要测点的布 设应能控制结构的最大应力(应变)和最大挠度(或位移)。
d.各个不同的监测方案,需要进行方案的比较和验证工作,使监测工作做 到技术上有保证,经济上可行,实施时安全,数据上可靠,特别要强调 的是应避免“唯武器论”,单方面追求高精度、自动化、多参数,脱离工 程实际需要的监测方案。
15天。
第三章变形监测方案设计
土木工程与建筑学院
3.4 监测部位和测点布置的确定
变形部位和测点布置原则:
1.在满足监测目的前提下,测点数量和布置必须是充分的、足够的; 同时测点宜少不宜多,不能盲目设置测点。
2.测点的位置必须具有代表性,以便于分析和计算。主要测点的布设 应能反映结构的最大应力(应变)和最大挠度(或位移)。
3~5
-
3 邻近建(构)筑物 最大沉 10~60 -
-
-

差异沉 降
2/10 0.1H/10 00 00
注:1. H-为建(构)筑物承重结构高度。 2. 第3项累计值取最大沉降和差 异沉降两者的小值
第三章变形监测方案设计
土木工程与建筑学院
§3.7 变形网设计
变形监测控制网的原则:
1.变形监测网应为独立控制网。 2.变形监测控制点埋设的位置最好能选在沉降影响范围之外,
3.4 监测部位和测点布置的确定
2. 工作基点 • 现场设置可以直接观测变形点并且相对稳定的测量控制点即工作基点。 • 工作基点宜采用带有强制归心装置的观测墩,垂直位移监测工作基点可
采用钢管标。 • 对通视条件较好的小型工作,可不设工作基点。 • 在基准点上直接观测变形观测点。工作基点要求观测期间保持点位稳定,

变形监测方案设计书范文

变形监测方案设计书范文

变形监测方案设计书范文尊敬的领导:根据您的要求,我为您撰写了该变形监测方案设计书,以下是说明和具体设计方案:一、方案说明本方案主要针对某高速公路进行改造和加固工程,全长约5公里。

由于路基土壤松软,陡坡沟壑较多,以及高速公路日常车流运输量较大,会对该路段进行3年的变形监测,以确保路基稳定安全。

二、监测方法和工具该路段的变形监测工作主要通过以下两种方法实现:1.基准测量法:将测量标志点进行预先设置,安装测量器具,通过GPS、电子测绘和其他现场测量设备,记录路基不同部位的各项数据,包括:高差、位移和倾斜度等。

这些数据可作为该路段变形情况的重要参考依据。

2.视频监测法:在路段的关键部位安装摄像机,通过采集视频影像和图像处理技术,得到关于路面变形和路肩滑坡等安全问题的预警信息,以及对监测数据的可靠性和可视性方面的要求。

三、监测设置方案1.设置50个监测标志点,在路基的关键部位分别进行测量和监测,如在隧道出口、高山陡坡、涵洞口、桥梁和路面陡峭沟壑等地区。

2.在路面上设置单向车道以减少车流量。

3.在关键部位安装摄像机,在具体部位设置了反光镜,在棱镜的作用下,使监测方向发生变化,并可保证在视频影像上的观察条件。

4.在隧道出口、涵洞口、桥梁和路面陡峭沟壑等地区安装高灵敏度地震计,以及高峰位防护器材和滑坡预警器等。

5.进行GPS定位测量和摄像机动态监测,记录精度、可靠性和监测器具的性能并进行定期检查。

四、监测方案的实施时间节点1.监测前:进行路面清理、摄像机安装和标志点设置等工作,并对监测器具进行初步测试和调整。

2.监测期间:对每个监测标志点进行定期巡视、监测数据记录和存储,根据监测数据和视频影像预警,及时分析和处理路面变形和滑坡等情况。

3.监测后:考虑到实际情况,对监测器材进行仔细检查,总结监测数据和现场情况,形成完整报告,并提出在未来改造工程中的建议。

方案实施的成本约为600万元。

但该方案可保证监测效果的可信度和稳定性,避免了建设工期较长和运行风险的情况,在提高工程质量、保障公路通行和交通安全方面均具有重要意义。

变形监测方案设计

变形监测方案设计

变形监测方案设计摘要:变形监测方案设计是工程领域中重要的一项任务,通过对结构体变形的及时、准确监测,可以发现结构体存在的问题,并采取相应的措施进行维修和加固,从而保障工程的安全性和稳定性。

本文将介绍变形监测方案设计的基本原则、目标、方法和应用场景,旨在帮助工程师和研究人员更好地理解和应用变形监测技术。

第一章引言1.1 背景随着建筑和基础设施领域的不断发展,工程结构体的变形监测变得越来越重要。

结构体的变形可能由于多种原因引起,包括荷载变化、材料老化、地震活动等。

及时监测结构体的变形,可以在早期发现可能存在的安全隐患,避免潜在灾害的发生。

1.2 目的本文的目的是设计一个可行的变形监测方案,以提供工程师和研究人员在工程项目中使用变形监测技术的指导。

第二章变形监测方案设计的基本原则2.1 安全性任何工程监测方案的首要原则都是保障监测人员和使用者的安全。

因此,在选择监测技术和设备时,需要确保其符合国家标准,具有良好的安全性能。

2.2 准确性变形监测的目的是获取结构体的真实变形情况。

因此,监测方案的设计需要考虑如何减小或消除误差,并确保监测数据的准确可靠。

2.3 实用性变形监测方案的设计应该考虑实际的监测需求,并选择适当的监测技术和设备。

同时,方案设计应简洁明了,易于操作和维护。

第三章变形监测方案设计的方法3.1 选择合适的监测技术根据被监测结构体的性质和监测目的,可以选择不同的监测技术,包括全站仪监测、位移传感器监测、应变传感器监测等。

在选择监测技术时需要考虑技术的可行性和适用性。

3.2 确定监测点布置监测点的布置应根据结构体的特点和监测目的进行。

通常,监测点需要均匀分布在结构体的关键位置,以便捕捉结构体可能发生的变形情况。

3.3 设计数据采集和处理系统数据采集和处理系统是变形监测方案中的重要组成部分。

根据监测技术和监测点的多少,可以选择适当的数据采集设备和软件,并设计合适的数据处理算法,以提取有用的监测信息。

模板工程变形监测方案

模板工程变形监测方案

模板工程变形监测方案一、前言模板工程变形监测是为了在模板工程施工过程中及时监测工程变形情况,发现问题及时处理,保障工程质量和安全。

本方案制定的目的是为了规范和统一模板工程变形监测的工作流程和标准,确保监测数据的准确性和可靠性,为工程的安全施工和质量管控提供技术支持。

二、监测对象模板工程变形监测主要监测以下对象:1. 构建物体的墙体变形2. 结构的竖向变位与非均匀沉降3. 地基的沉降变形4. 隧道地下结构变形5. 钢构件的位移与变形6. 其他需要进行变形监测的工程对象三、监测方法1. 高程测量法采用水准仪、全站仪等测量仪器进行高程测量,对于构建物体的竖向变位与非均匀沉降进行监测。

2. 测斜法采用测斜仪器对构建物体的墙体变形进行监测,通过固定的测斜仪和测斜数据采集系统,实时监测结构物的变形情况。

3. 地下水位监测法采用水位测量仪进行地下水位的监测,对地基的沉降变形进行监测。

4. 水平位移监测法采用位移传感器和水准仪进行钢构件的位移与变形监测,通过实时数据采集系统对监测数据进行采集和处理。

四、监测设备1. 全站仪2. 水准仪3. 测斜仪4. 位移传感器5. 数据采集系统6. 相关辅助设备五、监测流程1. 确定监测点位:根据工程需求和设计要求,确定监测点位的位置和布置方式。

2. 安装监测设备:根据监测点位,安装相应的监测设备,保证设备的稳定性和准确性。

3. 联机监测:监测设备联机监测,实时采集监测数据,并进行数据的存储和处理。

4. 定期巡检:定期对监测设备进行巡检和维护,确保监测设备的正常运行。

5. 监测报告:根据监测数据,定期编制监测报告,并根据需要进行数据分析和处理。

六、质量控制1. 监测设备的选择要求:根据监测对象和监测要求,选择适合的监测设备,确保其准确性和稳定性。

2. 设备安装要求:监测设备的安装要符合相关规范和标准,保证设备的准确性和可靠性。

3. 监测数据的质量要求:监测数据要求准确、可靠,对异常数据要进行处理和分析。

公路工程变形监测方案

公路工程变形监测方案

公路工程变形监测方案1. 背景介绍公路工程是现代交通运输体系中至关重要的一部分,其建设和维护对于社会经济的发展和人民生活的改善都具有重要意义。

然而,由于公路工程受到地质、气候等自然因素的影响,以及车辆、人流等外部因素的作用,公路工程在使用过程中往往会出现一些变形问题,如路面起砂、裂缝、坑洼等,严重影响了道路的通行安全和舒适性。

因此,对公路工程的变形进行有效监测和预警,是保障道路安全和延长其使用寿命的重要措施。

2. 变形监测的目的和意义公路工程变形监测的目的是及时发现和记录公路工程的变形情况,为工程的维护和修建提供科学依据。

通过对公路工程变形的监测,可以及时采取预防和修复措施,避免变形问题加剧,从而保障道路的使用安全和舒适性。

同时,变形监测还可以为公路工程的设计、改建和维护提供重要的数据支持,为公路工程的规划和管理提供科学依据。

3. 变形监测的方法和技术公路工程的变形监测主要采用现场调查和监测技术相结合的方法。

其中,现场调查主要是通过巡视、检测工具和仪器等手段对公路工程进行实地观测和检测,主要包括路面平整度、水平和垂直偏差、裂缝和坑洼等变形情况。

而监测技术主要包括遥感技术、地面监测技术和无人机监测技术等,这些技术可以对公路工程的变形情况进行全方位的、实时的监测和记录。

在遥感技术方面,可以通过卫星影像和航空影像对公路工程的变形进行监测,这种方法可以实现对大范围区域的监测,且成本较低。

在地面监测技术方面,可以使用3S技术(即遥感、地理信息系统和全球定位系统)对公路工程进行变形监测,这种方法可以实现对特定区域和目标的精细化监测。

而无人机监测技术则是一种新兴的监测方法,通过无人机搭载遥感设备对公路工程进行变形监测,可以实现对地形、地貌、变形等情况的高分辨率监测,具有灵活性强、成本低、实时性好等优点。

4. 变形监测的指标和标准公路工程的变形监测需要依据一定的指标和标准进行,主要包括变形程度、变形形态、变形速率、变形区域等指标和标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2
不应超过其变形允许值分量的1/20(分量值按 变形允许值的1/ 采用,下同)。
3
不应超过其变形允许值分量的1/10。
4
不应超过其变形允许值分量的1/6。
5
科研列各项观 测中误差乘以1/5~1/2系数后采用。
博观而约取,厚积而薄发!
变形测量的精度等级确定原则
对一个实际工程,变形测量的精度等级应先根据各类建 (构)筑物的变形允许值按规定进行估算,然后按以下原则 确定: (1)当仅给定单一变形允许值时,应按所估算的观测点 精度选择相应的精度等级; (2)当给定多个同类型变形允许值时,应分别估算观测 点精度,并应根据其中最高精度选择相应的精度等级; (3)当估算出的观测点精度低于三级精度的要求时,宜 采用三级精度; (4)对于未规定或难以规定变形允许值的观测项目,可 根据设计、施工的原则要求,参考同类或类似项目的经验, 对照相关表格,选取适宜的精度等级。
博观而约取,厚积而薄发!
最终沉降量之观测中误差的要求
序号 观测项目或观测目的 观测中误差的要求 ①对于一般精度要求的工程,可按低、中、 高压缩性地基土的类别,分别选±0.5mm、 ±1.0mm、±2.5mm;②对于特高精度要求 的工程可按地基条件,结合经验与分析具体 确定。
1
绝对沉降(如沉降量、平均沉降量等)
≤3.0 mm
中等精度要求的建筑物和科研项目变形观测;重要建筑物 主体倾斜观测、场地滑坡观测 低精度要求的建筑物变形观测;一般建筑物主体倾斜观测 、场地滑坡观测
三级
≤1.50 mm
≤10.0 mm
注:① 观测点测站高差中误差,系指几何水准测量测站高差中误差或静力水准测量观 测相邻观测点相对高差中误差; ② 观测点坐标中误差,系指观测点相对测站点(如工作基点等)的坐标中误差、 坐标差中误差以及等价的观测点相对基准线的偏差值中误差、建筑物(或构件)相对底 部定点的水平位移分量中误差。
博观而约取,厚积而薄发!
精密水准测量监测仪器
•不同类型的建筑物,其垂直位移监测的精度要求不尽相同。 同一种建筑物在不同的施工阶段,如公路基础和路面施工阶 段,其垂直位移监测的精度要求也不相同; •针对具体的监测工程,应当使用满足精度要求的水准仪, 采用正确的测量方法; •对特级、一级垂直位移监测,应使用DSZ05或DS05型水准 仪配和因瓦合金标尺; •对二级垂直位移监测,应使用DS1或DS05型水准仪和因瓦 合金标尺; •对三级垂直位移监测,应使用DS3水准仪和区格式木质标尺 或DS1型水准仪和因瓦合金标尺。
博观而约取,厚积而薄发!
水准仪i角误差检验
博观而约取,厚积而薄发!
监测方法与技术要求
•采用精密水准测量方法进行垂直位移监测时,从
工作基点开始经过若干监测点,形成一个或多个
闭合或附合路线,其中以闭合路线为佳,特别困
难的监测点可以采用支水准路线往返测量。 •整个监测期间,最好能固定监测仪器和监测人员, 固定监测路线和测站,固定监测周期和相应时段。
第三章
变形监测方案的设计
博观而约取,厚积而薄发!
水平位移观测的内容
•建筑物水平位移观测包括位于特殊性土地区的 建筑物地基基础水平位移观测、受高层建筑基
础施工影响的建筑物及工程设施水平位移观测
以及挡土墙、大面积堆载等工程中所需的地基
土深层侧向位移观测等,应测定在规定平面位
置上随时间变化的位移量和位移速度。
博观而约取,厚积而薄发!
•为了减少i角误差的影响,水准测量规范对前后视 距差和前后视距累积差都有明确的规定,测量中应 遵照执行。 •严格控制前后视距差和前后视距累积差,也可有 效地减弱磁场和大气垂直折光的影响。 •水准测量规范对观测程序有明确的要求,往测时, 奇数站的观测顺序为 “后前前后”;偶数站的观测 顺序为 “前后后前”。返测时,奇、偶数站的观测 顺序与往测偶、奇数站相同。 •标尺的每米真长偏差应在测前进行检验,当超过 一定误差时应进行相应改正。
4
5
科研项目变形量的观测
博观而约取,厚积而薄发!
最终位移量之观测中误差的要求
序号 观测项目或观测目的 绝对位移(如建筑物基础水平位移、滑坡 位移等) (1)相对位移(如基础的位移差、转动挠 曲等) (2)局部地基位移(如受基础施工影响的 位移、挡土设施位移等) 建筑物整体性变形(如建筑物的顶部水平 位移、全高垂直度偏差、工程设施水平轴 线偏差等) 结构段变形(如高层建筑层间相对位移、 竖直构件的挠度、垂直偏差等) 观测中误差的要求 通常难以给定位移允许值,可直接由表5-1选 取精度等级。
变形监测的精度
变形监测精度和周期取决于变形体测量的目
的和变形体变形的原因。
如何确定变形体监测的精度,国内外学者说法 不一。
主要还是采用1971年国际测量工作联合会 (FIG)第十三届会议上工程测量组提出:“如 果观测目的是为了使变形值不超过某一允许的数 值而确保建筑物的安全,则观测的中误差应小于 允许变形值的1/10至1/20;如果观测的目的是为 了研究变形的过程,则其中误差应比这个数小得 多。 博观而约取,厚积而薄发!
建筑变形测量的等级及其精度要求
变形测量等 级 沉降观测 观测点测站 高差中误差 位移观测
适 用 范 围
观测点 坐标中误差 特高精度要求的特种精密工程和重要科研项目变形观测
特级
≤ 0.05 mm
≤0.3 mm
一级
≤0.15 mm
≤1.0 mm
高精度要求的大型建筑物和科研项目变形观测
二级
≤0.50 mm
2
(1)相对沉降(如沉降差、基础倾斜 、局部倾斜等) (2)局部地基沉降(如基坑回弹、地 基土分层沉降)以及膨胀土地基变形 建筑物整体性变形(如工程设施的整体 垂直挠曲等) 结构段变形(如平置构件挠度等)
不应超过其变形允许值的1/20。
3
不应超过允许垂直偏差的1/10。 不应超过变形允许值的1/6。 可视所需提高观测精度的程度,将上列各项 观测中误差乘以1/5~1/2系数后采用。
博观而约取,厚积而薄发!
仪器的检验
•无论使用何种仪器,开始工作前,应该按照测量 规范要求对仪器进行检验; •水准仪的i角误差是最重要的检验项目。 •精密水准测量前,还应按规范要求对水准标尺进 行检验,其中标尺的每米真长偏差是最重要的检 验项目,一般送专门的检定部门进行检验。
博观而约取,厚积而薄发!
相关文档
最新文档