管道设计资料-压力管道应力分析[汇编]

合集下载

压力管道应力分析的内容及特点

压力管道应力分析的内容及特点

压力管道应力分析的内容及特点摘要:压力管道应力分析是管道设计中最关键的工作之一。

管道设计应根据工业金属管道设计规范进行,进行管道设计应该从管道应力、管道材料和配管方面着手。

因为压力管道上存在复杂性的各种载荷,进行压力管道的应力分析的难度较大,导致阻碍管道设计工作,而且管道在运行和生产过程中的安全和质量关键是因为应力而存在的,因此找到管道应力分析的方法具有重要意义。

论述压力管道的应力特点和分布,能够提供给工程施工、管道选择和管道设计可靠的信息数据作参考,进而确保土建结构与管道连接的设备和管道自身的安全,保证了整个生产作业的安全,使压力管道提高使用价值。

关键词:应力;特点;压力;内容;管道前言:压力管道具有十分广泛的应用范围,而且在各个场所中的应用作用十分关键,压力管道关键作用是运输物质,在重要的大型建设工程中应用,如冶金工程、电力工程、天然气体、石油化工等,为满足一些需要进行供给或运输。

因为外界环境因素与整个管道系统均会很大程度的影响到压力管道应力,而且会受影响于流体的流动,这使应力分析增加了复杂度,应力分析压力管道应该结合实际的管道状况,尽量将接近实际、正确的分析结果准确模拟出来。

1应力分析压力管道的涵义在市政建设行业、化工行业、石油石化等产业普遍应用到管道,这些行业存在较高要求的工程安全指数与投资额,对压力管道进行应力分析应该对概念充分了解。

应力指的是管道构件应用在建设需要中承受的单位面积内力,其在荷载外力下形成的值较大,若是超出能够承受的材料极限强度,将造成管材失稳、破裂、变形等状况,关键在于因为外部热荷载与机械荷载导致的。

应力分析管道的状况下,能够确保良好的使用工艺装置而且保持其柔软性,精准的计算与分析热荷载与机械荷载后,获取设计管道的配件参数,计算变形与应力、应力与荷载,提供给管道配置合理的数据凭据,能够使管道产生的震动干扰减少,进而错开震源的震动频率,使管道的可靠性与安全性得到确保。

2应力分析压力管道的内容清楚了解分析的种类是应力分析压力管道的重要前提基础,按照不同种类应力的特点,应用针对性措施是压力管道减小应力,按照压力管道承受应力的作用方向、范围、强度大小,能够将压力管道上承受的应力分类成一、二次应力与峰值应力。

管道应力分析

管道应力分析

管道应力分析
管道应力分析是一种普遍存在的、涉及多项工程设计技术的实用工程方法。

它的目的是为了评估管道系统的机械特性,以满足运行应力以及其它设计要求。

管道应力分析基本上是指在设计、构造和维护水力管道或管道网时,确定压力、载荷以及应力的分布情况。

管道应力分析的原则包括:收集所需的数据,如管道的长度、材质、特性、尺寸、结构和附件;应用结构力学原理,考虑管道配置、材料和运行参数,利用有限元分析、数值分析和扩展Q-T分析等工具,计算出管道的应力和变形;根据计算的应力及其比例,结合管道材料的断裂极限,判断管道是否能够承受设计要求的应力。

管道应力分析可以有效地帮助相关工程人员有效地了解管道的物理行为,从而更好地了解管道的设计特征,可以更准确地估算管道的运行安全性,并且可以有效地与设计团队进行有效沟通,解决可能存在的管道应力问题。

不仅如此,管道应力分析还可以帮助企业识别出其管道系统的弱点,如可能存在的不足的断面和支撑,从而设计出有效的结构及其它补救措施,使管道系统能够达到规定的要求。

总之,管道应力分析对于提高管道设计质量、提高工程经济性和保障管道系统的安全性具有重要意义。

压力管道应力分析

压力管道应力分析

压力管道应力分析压力管道是工业生产和生活中常见的工程结构,广泛用于输送水、油、气等介质。

管道内部由于介质压力的作用而产生应力,这些应力的分析对于管道的设计和使用安全至关重要。

本文将从压力管道的应力计算方法、应力分布特点以及应力分析的影响因素等方面进行探讨。

压力管道的应力计算方法主要有两种,即薄壁理论和薄壁理论的改进方法。

薄壁理论是指在管道内径与壁厚比较大的情况下,将管道近似看作薄壁圆筒,应力集中在内径和外径处,通过简化计算得出管道内壁和外壁的应力分布。

该方法适用于绝大部分工程中的压力管道计算。

薄壁理论的改进方法包括厚壁筒薄壁环假设、都笑横断面假设等,通过考虑管道截面的几何形状以及内外径比等因素,提高了应力计算的准确性。

压力管道的应力分布特点主要有三个方面,即轴向应力、周向应力和切向应力。

轴向应力指的是管道轴线方向上的应力,主要由管道内压力和温度差引起。

周向应力指的是管道截面圆周方向上的应力,主要由内压力引起。

切向应力指的是管道截面切线方向上的应力,主要由内压力和薄壁理论简化计算引起。

在传统理论中,管道的轴向应力和周向应力一般为正值,而切向应力为零。

压力管道的应力分析受到多个因素的影响。

首先是管道的材料特性,包括材料的弹性模量、屈服强度、塑性延伸率等。

管道的材料特性直接决定了管道的耐压能力和变形能力。

其次是管道的几何形状,包括内径、外径、壁厚等。

几何形状的不同会导致管道内外径比和界面摩擦等因素的改变,进而影响应力分布。

再次是管道的工作条件,包括温度、压力等。

不同工作条件下管道内部介质的物理性质会发生变化,进而影响管道的应力分布。

最后是管道的固定和支撑方式。

固定和支撑方式的不同会引起管道的应力集中,影响管道的安全性。

为了保证压力管道的正常运行和安全性,需要进行应力分析以及补强设计。

应力分析主要通过有限元分析和解析方法进行。

有限元分析是一种常用的计算机辅助工程分析方法,通过将管道模型离散化为有限个单元,计算每个单元的应力和变形,进而得到整个管道应力分布的方法。

压力管道应力分析基础理论

压力管道应力分析基础理论
疲劳失效的研究最早由A.R.C. Markl et. al.在上世纪 40至50年代进行;
疲劳失效
温度的变化导致结构可能在冷热两个状态下产生屈 服变形;
疲劳失效
与垮塌性荷载不同的是,当材料发生屈服时,如果 应力峰值满足一定条件下,并不会立即发生非自限 性的失效,而是系统停止运行后,产生自限性的残 余应力。
强度理论
我们如何来评价失效?——通过强度理论 第一强度理论:最大主应力理论(Rankine) 第二强度理论:最大伸长线应变 第三强度理论:最大剪应力理论(Tresca) 第四强度理论:最大变形能理论(Von mises)
强度理论
第三强度理论: 第四强度理论:
S13
S 1 21 2 2 2 3 2 3 1 2
CAESAR II 管道应力分析理论
AECSOFT
前言
我们为什么要进行管道应力分析? 我们需要做什么? 我们如何模拟一个管道系统? 我们如何来分析计算的结果?
我们为什么要进行管道应力分析?
复杂管线中可能存在压力、重量、温度、风、海浪、土壤约 束以及地震、动设备的振动、阀门关闭、开启导致的水锤气 锤等外力载荷作用。载荷是管道产生应力问题的原因。
梁单元上纯弯曲的概念:
当梁发生纯弯曲时,各截面上的弯矩值唯一(整个 截面的弯矩由唯一值表示),且不存在剪力,截面 发生转动,梁轴线变为弧线,但转动后各截面仍为 平面。在这种假设下,应力S=M/Z.(胡克定律)
如果不使用纯弯曲假设,则上式不一定适用。
3D梁单元示例
这是一个简单的悬臂梁模型:当在自由端作用集中 载荷P之后,其挠度为:
应力计算式:
S 1 F A / X A m M / Z P / 4 t d S h
一次应力通常暗示了支架跨距是否满足要求;

【管道应力分析】管道设计-3

【管道应力分析】管道设计-3

第四强度理论: e
1 2
[(
z )2
( z
r )2
( r
)2 ]25 [ ]
强度理论
第一强度理论(最大拉应力理论): 认为最大拉应力是引起破裂的主要原因
σ1 [σ]
第二强度理论(最大伸长线应变理论):
认为最大伸长线应变是引起破裂的主要原因
σ1 (σ2 σ3) [σ]
第三强度理论(最大剪应力理论): 认为最大剪应力是引起屈服的主要原因
4
确定管径方法:
(1)首先设定平均流速,按下式初算内径:
式中 Di——D管子i 内=径0(.m0)1;88 W0/vρ
W0——质量流量(kg/h); ν——平均流速(m/s); ρ——流体密度(kg/m3)。
(2)根据工程设计规定的管子系列调整为实际内径。 (3)复核实际平均流速。 (4)以实际的管子内径Di与平均流速v核算管道压力损失,
一次应力安全性判据是: [ ]L [ ]t
极限载荷法认为:在某结构截面上一旦发生屈服,该结 构便达到极限状态,不能再承受任何附加载荷,结构在极 限状态下承受的外载荷称之为极限载荷。这是一个防止结 构过度变形的准则。
一次弯曲应力和一次局部薄膜应力可以比一次总体薄膜 应力有较高的许用应力值。
设计温度下基本许用应力
σ1 σ3 [σ]
第四强度理论(形状改变比能理论): 认为形状改变比能是引起屈服的主要原因
R
σ3
1 2
[(σx
σy
)2
τ
2 xy
xC
1 2

x
σy )
R σ1
(xC , yC )
σ
1 2
[(σ1
σ2 )2

管道设计中关于管道应力的分析与考虑

管道设计中关于管道应力的分析与考虑

管道设计中关于管道应力的分析与考虑摘要:管道应力分析应该保证在设计的条件下有足够的柔性,为的是防止管道因为过度膨胀冷缩、管道自振或者是端点附加位移造成应力问题,在管道设计的时候,一部分管道要求必须进行管道应力分析和相关计算,同时还有一部分管道是不需要进行应力分析的,这种的管道分为两个部分,一种是根据实际的经验或者是已经成功的工程案例,在管道的设计中加上相应的弯管、膨胀节等环节来避免,所以就不需要进行管道应力分析,另一种就是管道的管径比较小,管道比较短,常温常压,不连接设备或者是不会产生振动,所以就不需要进行应力分析,文章就对管道的应力分析进行了详细的介绍说明。

关键词:管道设计应力分析柔性标准一、管道应力分析的主要内容管道应力分析主要分为两个部分,动力分析和静力分析:1、管道应力分析中的动力分析动力分析主要包括了六个方面,第一是管道自振频率的分析,为的是有效的防止管道系统的共振现象;第二是管道强迫振动相应的分析,目的是能够有效的控制管道的振动和应力;第三是往复压缩机(泵)气(液)柱的频率分析,通过对压缩机(泵)气(液)柱的频率的相关分析有效的防止气(液)柱的共振现象发生;第四是往复压缩机(泵)压力脉动的分析,起到控制压力脉动值的作用;第五是冲击荷载作用下的管道应力分析,可以防止管道振动和应力过大;第六是管道地震分析,为防止管道地震应力过大。

2、管道应力分析中的静力分析静力分析包括了六个方面的内容:第一是压力荷载以及持续荷载作用下的一次应力计算,为的是有效的防止塑性变形的破坏;第二是管道热胀冷缩和端点附加位移产生的位移荷载作用下的二次应力计算,通过二次应力分析计算防止疲劳破坏;第三是管道对设备产生的作用力的相应计算,能够防止作用力太大,有效的保证设备的正常运行;第四是对于管道的支吊架的受力分析计算,能够为支吊架的设计提供充足的依据;第五是为了有效的防止法兰的泄漏而对管道法兰进行的受力分析;第六是管系位移计算,防止管道碰撞和支吊点位移过大2、管道应力分析的目的对管道进行应力分析为的就是能够使管道以及管件内的应力不超过许可使用的管道应力值;为了能够使和管道系统相连接的设备的管道荷载保持在制造商或者是国际规定的许可使用范围内;保证和管道系统相连接的设备的管口局部管道应力在ASME Vlll允许的范围内;为了计算管道系统中支架以及约束的设计荷载;为了进行操作的工况碰撞检查而进行确定管道的位移;为了能够尽最大可能的优化管道系统的设计。

关于压力管道的应力分析

关于压力管道的应力分析

关于压力管道的应力分析【摘要】压力管道的应力问题在管道检验过程中都会涉及到的,由于压力管道应力的分析和计算过程都要求相对高的技术,这对于检验技术人员来说是很难完成的。

因此,本文着重对压力管道应力分析的内容、应力特征、应力分类以及校核准则进行了论述,以便于为分析人员提供了有效的理论依据。

【关键词】压力管道应力分析一次应力二次应力压力管道的应力影响着压力管道在安装后的安全使用,所以进行应力分析是很有必要的,压力管道应力分析的内容相对较多,主要体现在以下几个方面。

2 压力管道应力分析的特征压力管道在应力分析过程中还不够严谨,其中还存在着一些缺陷,其主要原因是因为压力管道应力由历史根源所造成的校核准则存在不足,但压力管道应力分析有着自身的特点,主要体现在以下几个方面:(1)在压力管道的应力分析之中,没有考虑管道的薄膜应力和局部弯曲应力,从而导致一次应力中没有对一次总体薄膜应力、一次局部薄膜应力和一次弯曲应力进行细分;在一次应力校核准则中往往忽视了对一次弯曲应力和一次局部薄膜应力进行校核,而只对一次总体薄膜应力进行了校核。

(2)计算一次应力主要是为了避免管道在安装的时候承受不住压力而塌下来。

计算二次应力是为了防止管道在发生热变形之后是否会出现问题,通过二次应力计算管道是否发生偏移、移位,并防止并排管道所产生的相互影响。

(3)二次应力校核具有着自身的操作方式,最主要是针对其结构的安定性,只需满足结构安定性条件,就可以避免压力管道产生低周疲劳。

(4)一次应力校核主要是校核压力管道的纵向应力,其最主要的特点是不遵循剪应力理论,二次应力校核虽然遵循的是最大剪应力,但其计算应力过程中不会计算管道轴向立,只考虑管道弯矩和扭矩的作用。

3 压力管道的应力分类及校核准则压力管道与压力容器有所不同,对于不同的管道根据管道自身的特点都有着不同的校核准则,由于压力管道的应力分析主要侧重于对管系整体的分析,而压力容器的应力分析主要是对局部进行详细的分析,两者在应力分类的方法和校核准则上都存在着较大的差异。

压力管道应力分析的内容及特点

压力管道应力分析的内容及特点

压力管道应力分析的内容及特点关键词:压力管道;应力分析;内容特点引言:如今工业中对于压力管道的需求量在不断增加,并且如今大量的工业运输以及承载都需要用到工业管道来作为支撑。

这类管道的应用同样能够为整体工业作业提供重要的保障和保护,同时还能够提升整体工程的有效性和安全性。

但是压力管道想要良好进行工作就必须对其进行外界温度、压力以及湿度等一系列因素的考验,只有通过这些考验以及能够承受住足够压力的管道才能够投入到实际使用中。

一、管道应力分析(一)一次应力在管道应力进行分析的过程中,一次应力通常指的是一些外界因素所带来的负荷以及负载,其中包括了管道所承受的重力、内压以及风载等一系列因素产生的剪应力以及正应力。

这两种应力通常会因为其自身的特点以及特性导致了容易与外加负载形成平衡关系,但是达成了平衡关系之后外加应力并不会取消或者停止,反而还会继续增加,若是外加应力逐渐增加并且达到了一个很大的值之后就会超过材料自身所拥有的屈服极限,管道就容易受到影响从而造成了破坏,管道总体也就随之出现了破坏。

相关工作人员应当能够对一次应力进行良好的控制,在进行管道设计时就应当提前给应力留出足够的预留空间,通过这样的方式来帮助整体管道不会出现过度塑性而造成的破坏或者失效。

同时,一次应力的校核也应当结合具体的弹性分析以及极限分析等一系列要求进行处理,通过处理之后才能够准确地对一次应力进行计算,从而将其进行控制。

如图1所示。

图1一次应力受力变形曲线(二)二次应力二次应力相比较于一次应力来说会更加直接,这类应力通常都是来自于对应的热胀冷缩或者其他位移受到约束而造成的剪应力和正应力,其自身具备一个无法和外力之间构成平衡关系的特点,因此其自身也就具备了非常明显的自限性特征[1]。

基本来说材料自身会因为材料以及质量从而具备对应的屈服值,若是二次应力导致了管道的荷载超过了这种屈服极限值之后就容易对管道局部造成变形一类的影响。

这时候相关人员应当对应力重新进行分布和规划,让材料应变能够达到自均衡的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压力管道应力分析部分
第一章任务与职责
1.管道柔性设计的任务
压力管道柔性设计的任务是使整个管道系统具有足够的柔性 ,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况;
1)因应力过大或金属疲劳而引起管道破坏;
2)管道接头处泄漏;
3)管道的推力或力矩过大 , 而使与管道连接的设备产生过大的应力或变形 ,影响设备正常运行;
4)管道的推力或力矩过大引起管道支架破坏;
2.压力管道柔性设计常用标准和规范
1) GB 50316-2000《工业金属管道设计规范》
2) SH/T 3041-2002《石油化工管道柔性设计规范》
3) SH 3039-2003《石油化工非埋地管道抗震设计通则》
4) SH 3059-2001《石油化工管道设计器材选用通则》
5) SH 3073-95《石油化工企业管道支吊架设计规范》
6) JB/T 8130.1-1999《恒力弹簧支吊架》
7) JB/T 8130.2-1999《可变弹簧支吊架》
8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》
9) HG/T 20645-1998《化工装置管道机械设计规定》
10)GB 150-1998《钢制压力容器》
3.专业职责
1) 应力分析(静力分析动力分析)
2) 对重要管线的壁厚进行计算
3) 对动设备管口受力进行校核计算
4) 特殊管架设计
4.工作程序
1) 工程规定
2) 管道的基本情况
3) 用固定点将复杂管系划分为简单管系 ,尽量利用自然补偿
4) 用目测法判断管道是否进行柔性设计
5) L型 U型管系可采用图表法进行应力分析
6) 立体管系可采用公式法进行应力分析
7) 宜采用计算机分析方法进行柔性设计的管道
8) 采用CAESAR II 进行应力分析
9) 调整设备布置和管道布置
10)设置、调整支吊架
11)设置、调整补偿器
12)评定管道应力
13)评定设备接口受力
14)编制设计文件
15)施工现场技术服务
5.工程规定
1) 适用范围
2) 概述
3) 设计采用的标准、规范及版本
4) 温度、压力等计算条件的确定
5) 分析中需要考虑的荷载及计算方法
6) 应用的计算软件
7) 需要进行详细应力分析的管道类别
8) 管道应力的安全评定条件
9) 机器设备的允许受力条件(或遵循的标准)
10)防止法兰泄漏的条件
11)膨胀节、弹簧等特殊元件的选用要求
12)业主的特殊要求
13)计算中的专门问题(如摩擦力、冷紧等的处理方法)
14)不同专业间的接口关系
15)环境设计荷载
16)其它要求
第二章压力管道柔性设计
1.管道的基础条件
包括:介质温度压力管径壁厚材质荷载端点位移等。

2.管道的计算温度确定
管道的计算温度应根据工艺设计条件及下列要求确定:
1) 对于无隔热层管道:介质温度低于65℃时 , 取介质温度为计算温度;介质温度等于或高于65℃时 , 取介质温度的95%为计算温度;
2) 对于有外隔热层管道 , 除另有计算或经验数据外 , 应取介质温度为计算温度;
3) 对于夹套管道应取内管或套管介质温度的较高者作为计算温度;
4) 对于外伴热管道应根据具体条件确定计算温度;
5) 对于衬里管道应根据计算或经验数据确定计算温度;
6) 对于安全泄压管道 , 应取排放时可能出现的最高或最低温度作为计算温度;
7) 进行管道柔性设计时 ,不仅应考虑正常操作条件下的温度 ,还应考虑开车、停车、除焦、再生及蒸汽吹扫等工况。

3.管道安装温度宜取20℃(除另有规定外)。

4.管道计算压力应取计算温度下对应的操作压力。

5.管道钢材参数按《石油化工管道柔性设计规范》SH/T3041-2002执行
1) 钢材平均线膨胀系数可参照附录A选取。

2) 钢材弹性模量可参照附录B选取。

3) 计算二次应力范围时 ,管材的弹性模量应取安装温度下钢材的弹性模量。

6.管道壁厚计算
1) 内压金属直管的壁厚
根据SH 3059-2001《石油化工管道设计器材选用通则》确定:
当S0< Do /6时 , 直管的计算壁厚为:
S0 = P D0/(2[σ]tΦ+2PY)
直管的选用壁厚为: S = S0 + C
式中 S0―― 直管的计算壁厚 , mm;
P――设计压力 , MPa;
D0――直管外径 , mm;
[σ]t―― 设计温度下直管材料的许用应力 , MPa;
Φ――焊缝系数 , 对无缝钢管 , Φ=1;
S――包括附加裕量在内的直管壁厚 , mm;
C―― 直管壁厚的附加裕量 , mm;
Y――温度修正系数 , 按下表选取。

温度修整系数表
当S0≥D0/6或P/[σ]t > 0.385时 ,直管壁厚应根据断裂理论、疲劳、热应力及材料特性等因素综合考虑确定。

2)对于外压直管的壁厚。

相关文档
最新文档