第1节智能交通系统体系结构和内容

合集下载

智能交通系统的技术架构和应用

智能交通系统的技术架构和应用

智能交通系统的技术架构和应用智能交通系统是指通过计算机、通讯、控制、感知和信息处理等技术手段,对交通进行智能化的管理和控制,提高交通运输效率、方便人民出行等各方面,同时减少了交通管理的成本和资源的浪费。

智能交通系统主要包括交通管理、车辆控制、信息服务三个方面的技术架构和应用。

交通管理智能交通系统的第一个方面就是交通管理。

交通管理主要包括核心的交通控制系统、交通信息处理和交通信息传输三部分技术。

交通控制系统主要包括交通信号灯控制系统、交通诱导和交通监控等控制设备,在正常情况下控制信号灯亮灭、设备开关、路况信息显示等;另外一些特殊情况下,比如说应急救援任务,交通控制系统会协调各种资源、调度补充车辆,以便分流交通、提高行车效率。

信息处理方面,智能交通系统能够通过数据分析、智能预测等手段来帮助政府更好地制定交通运输政策、规划城市道路、调整交通流量。

交通信息的传输方面,主要是通过无线传输或有线传输的方式将各种交通信息传输到相关管理部门和用户的终端设备上进行显示和播放。

车辆控制智能交通系统的第二个方面是车辆控制。

车辆控制主要是通过车辆控制系统、车辆信息处理和行车信息传输三个方面的技术共同实现的。

车辆控制系统主要包括车辆导航、车辆安全监控、车务管理等子系统,通过GPS等导航技术,实现车辆精准导航和避免路线堵塞;同时,车辆安全监控系统也保障了车辆在行驶中的安全,监测车辆行驶、载重、距离等状态信息,及时警示或控制车辆的行驶。

车辆信息处理方面,主要通过车辆黑匣子、车辆诊断和车辆信息采集等技术手段来记录车辆信息、收集车辆数据,达到减少交通事故、改善车辆使用和维护等目的。

同时,车辆信息采集还可以帮助车主实现远程集中管理,辅助车辆保养、保险或购买其他相关服务。

行车信息传输方面,主要通过车联网等技术来实现车辆行驶数据的传输,使得交通管理部门能够实时感知车辆的位置、路况等信息,调配交通资源和制定交通调度计划等。

信息服务智能交通系统的第三个方面是信息服务。

智能交通系统概述

智能交通系统概述

智能交通系统概述智能交通系统(Intelligent Transportation System,ITS)是一种将信息和通信技术应用于交通管理、交通设备以及交通用户之间进行实时信息传输与交流的系统。

智能交通系统旨在通过各种技术手段提高交通系统的运行效率、安全性和环境友好性,为用户提供更便捷、更安全、更舒适的出行体验。

智能交通系统主要由四个组成部分组成:感知识别技术、信息通信技术、决策与控制技术以及交通管理支持技术。

感知识别技术包括各种传感器、摄像头、雷达等装置,用于获取交通流量、车辆状态等实时数据。

信息通信技术用于实时传输和共享这些数据,使得交通管理者和用户能够随时获取相关信息。

决策与控制技术利用这些数据和信息进行智能决策和控制,例如实时调整信号灯时间、提供导航路况等。

交通管理支持技术是指各种软件、数据库和分析工具,用于处理和管理交通数据,提供决策支持和综合分析。

智能交通系统的应用范围广泛,包括交通流量监测、信号控制优化、公共交通调度、路径规划与导航、交通安全管理等。

通过智能交通系统,交通管理者可以对交通流量进行实时监测,及时采取措施调整交通信号,以减少交通拥堵和交通事故。

智能交通系统还可以帮助公共交通运营者进行车辆调度和路径优化,增加公共交通的运输效率和舒适度,从而鼓励更多人选择公共交通。

另外,智能交通系统还可以为驾驶员提供实时的导航和路况信息,帮助他们更快、更安全地到达目的地。

智能交通系统不仅对交通管理和用户提供了诸多好处,也对社会和环境产生了积极影响。

首先,通过减少交通堵塞和排放,智能交通系统可以降低汽车尾气和噪音污染,改善城市居民的生态环境。

其次,智能交通系统可以减少交通事故的发生,并及时应对突发事件,提高道路安全性。

最后,智能交通系统可以为交通管理者提供大量的交通数据和综合分析工具,帮助他们更好地制定交通政策和规划,提高整个交通系统的运行效率和可持续性。

虽然智能交通系统的应用范围和技术手段不断扩大和发展,但也面临一些挑战。

第节 智能交通系统体系结构和内容

第节 智能交通系统体系结构和内容

第节智能交通系统体系结构和内容智能交通系统的概述智能交通系统(Intelligent Transportation Systems, ITS)是以科技手段为手段,为交通运输提供全方位、智能化、安全、高效、节能的服务和管理系统。

它是交通运输领域的一种基于信息技术的新型综合性智能化系统。

智能交通系统可以实现交通信息收集、分析、处理和交通决策,涵盖了道路交通、城市公共交通、港口交通、机场交通和铁路交通。

智能交通系统凭借先进的信息技术和现代交通管理理念,在交通领域中为建设智能城市提供强有力支撑,也是提高社会整体综合素质的必要手段。

智能交通系统的体系结构智能交通系统主要由三个部分组成:车辆通信系统、交通流控制系统和交通信息服务系统。

1.车辆通信系统车辆通信系统是指车辆之间进行通信的系统,它采用无线通信的方式,通过车辆之间互相通信,可以实现多车之间的集群控制和协同,提高交通系统的安全性、效率性和环保性。

车辆通信系统的技术基础是车辆间通信技术(Vehicle-to-Vehicle Communication, V2V)和车辆到基础设施之间的通信技术(Vehicle-to-Infrastructure Communication,V2I)。

车辆间通信技术利用无线电频段,通过车辆之间互相通信,实现车辆之间的无线信息交换和集群控制协同,形成了车辆间的交通信息网络;车辆到基础设施之间的通信技术利用基站和路边传感器等设施,将道路设施信息传递给车辆,也可以将车辆信息传递给交通管理中心,实现了交通信息的高效传输和共享。

2.交通流控制系统交通流控制系统是指通过智能化手段对交通流进行控制的系统,它可以通过控制信号灯、控制车辆速度等方式,实现交通流的合理分配,从而提高交通效率。

交通流控制系统一般包括智能信号灯控制系统、智能路网规划系统、智能车道和收费系统、智能停车系统等。

其中,智能信号灯控制系统利用交通信息、车辆通信信息等,自适应地调整信号灯的时间和相位,提高道路使用率和通行效率;智能路网规划系统可以通过交通数据分析和道路的拥堵情况,对路网进行动态调整和自适应地规划,实现快速、高效、舒适和安全的出行。

智能交通系统的技术架构与应用

智能交通系统的技术架构与应用

智能交通系统的技术架构与应用在当今快节奏的社会中,交通问题日益成为人们关注的焦点。

拥堵的道路、频繁的事故以及低效的运输系统不仅给我们的日常生活带来不便,也制约了经济的发展。

为了解决这些问题,智能交通系统应运而生。

智能交通系统是将先进的信息技术、数据通信传输技术、电子传感技术、控制技术及计算机技术等有效地集成运用于整个地面交通管理系统而建立的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合交通运输管理系统。

一、智能交通系统的技术架构智能交通系统的技术架构可以大致分为感知层、传输层、处理层和应用层四个部分。

感知层是智能交通系统的数据来源,就像人的五官一样,负责收集各种交通信息。

这包括通过道路上的传感器、摄像头、车辆上的定位装置等设备,获取车辆的位置、速度、行驶方向、道路的路况、交通流量等数据。

例如,埋设在道路中的感应线圈可以检测车辆的通过,高清摄像头能够拍摄车辆的牌照和行驶状态,而车载的 GPS 则能实时反馈车辆的位置和行驶轨迹。

传输层则如同人体的神经,负责将感知层收集到的数据快速、准确地传输到处理层。

这需要依靠先进的通信技术,如 4G/5G 网络、卫星通信、蓝牙、Zigbee 等。

高速稳定的通信网络能够确保数据的实时传输,减少延迟和丢包,为交通系统的及时响应提供保障。

处理层是智能交通系统的大脑,对传输层传来的数据进行分析和处理。

这里运用到大数据技术、云计算、人工智能等手段,对海量的交通数据进行挖掘和分析,提取出有价值的信息,如预测交通流量、发现交通拥堵的原因、识别交通事故等。

通过复杂的算法和模型,处理层能够为决策提供依据,优化交通管理策略。

应用层是智能交通系统与用户直接交互的部分,将处理层的结果转化为具体的应用服务。

比如,为出行者提供实时的交通信息,包括路况、公交到站时间、最佳出行路线规划等;为交通管理部门提供交通控制策略,如调整信号灯时间、设置限行区域等;为物流企业提供优化的运输方案,降低运输成本,提高运输效率。

智能交通系统的架构设计

智能交通系统的架构设计

智能交通系统的架构设计智能交通系统是基于信息技术和物联网技术的一种智能化、安全化的交通管理系统,它将信息技术应用于交通领域,实现对交通流信息的实时监测、预测和管理。

智能交通系统是未来交通管理的主流趋势,它有助于提高交通效率、减少交通事故、降低能源消耗和环境污染。

本文将探讨智能交通系统的架构设计。

一、智能交通系统的整体架构智能交通系统的整体架构主要由三个部分组成:车辆端、道路端和管理端。

车辆端主要包括车载设备、车载通信、车载传感器和车载计算机等组成,它能够通过网络与道路端和管理端进行数据交换和通信。

道路端主要包括道路设备、路侧通信、路侧传感器和路侧计算机等组成,它能够实时收集道路上的交通数据并将其传输到管理端进行处理。

管理端主要由交通管理中心、数据分析中心和服务终端等组成,它能够对交通数据进行实时监测、分析和预测,并提供交通服务和管理。

二、车辆端的架构设计车辆端是智能交通系统中最基础的部分,它是车辆和智能交通系统之间的桥梁,能够将车辆的信息传输到道路端和管理端。

为了实现这一目标,车辆端需要采用一系列的技术手段,包括车载设备、车载通信、车载传感器和车载计算机等组成。

车载设备是智能交通系统的核心部件之一,它能够实现车辆信息的采集、处理和传输。

具体而言,车载设备包括GPS导航系统、行车记录仪、车载安全系统、智能手机应用程序等,它们能够实现车辆位置、速度、方向、行驶路线等信息的采集和发送。

车载通信是车辆与智能交通系统之间的信息交流和互动方式,它能够实现车辆和道路端、管理端之间的通信和数据交换。

目前,车载通信主要有基于卫星通信、蜂窝网络通信和车际通信等多种形式,其中车际通信是当前比较热门的通信方式。

车载传感器是智能交通系统中实现车辆状态监测和故障诊断的关键技术,它能够实时检测车辆的工作状态、安全性能、驾驶环境等信息,为司机提供准确的驾驶指导和安全保障。

车载计算机是实现车辆智能化的逻辑处理核心,它能够快速处理车辆数据、优化车辆控制、提供驾驶辅助服务。

智能交通系统PPT课件

智能交通系统PPT课件
车路协同等前沿技术的研究和应用。
国外应用现状
智能交通系统在发达国家的应用已经相当成熟。例如,美国、日本、欧洲等国家和地区 已经建成了覆盖全国的智能交通系统网络,实现了交通信息的实时共享和协同管理。同 时,这些国家和地区还在积极推进智能交通系统与新能源汽车、共享经济等新兴产业的
融合发展。
02
CATALOGUE
通过5G/6G网络,实现对交通状况的实时监控和管理,提高交通运行 效率。
05
CATALOGUE
政策法规与标准规范
国家层面政策法规解读
1 2 3
《交通强国建设纲要》
提出加强智能交通基础设施建设,推动大数据、 互联网、人工智能等新技术与交通行业深度融合 。
《智能汽车创新发展战略》
明确智能汽车发展的战略意义、指导思想、基本 原则和发展目标,提出构建协同开放的智能汽车 技术创新体系。
基于历史数据和实时信息,运 用机器学习算法预测交通拥堵
情况。
交通信号控制优化
根据交通流实时情况,对交通 信号控制进行优化,提高道路
通行效率。
路径规划导航
为驾驶员提供实时路径规划和 导航服务,避开拥堵路段。
高速公路安全驾驶辅助
车辆状态监测
实时监测车辆速度、方向、加 速度等状态信息。
道路环境感知
通过车载传感器感知道路环境 ,如车道线、前方障碍物等。
智能交通系统 PPT课件
目录
• 智能交通系统概述 • 关键技术支撑 • 典型应用场景 • 创新发展趋势 • 政策法规与标准规范 • 挑战与机遇并存
01
CATALOGUE
智能交通系统概述
定义与发展历程
定义
智能交通系统(Intelligent Transportation System, ITS)是指将先进的信息技术、电子通信技术、自动控制技 术、计算机技术等有效地集成运用于整个交通运输管理体系,从而建立起一种在大范围内、全方位发挥作用的, 实时、准确、高效的综合运输和管理系统。

智能交通系统网络结构

智能交通系统网络结构

智能交通系统网络结构一、我市公安交通指挥系统总体框架城市智能交通管理系统由多个子系统组成,主要包括视频监控系统、电子警察系统、110/122接处警系统、车辆运营管理系统、路口控制系统、公共交通系统、GPS系统、交通诱导系统等。

各个子系统的信息需求复杂多样,但有一些信息是可以共享的,通过共用信息平台可以使这部分信息增值,而且整个智能交通管理系统的信息通过共用信息平台的统一存储、组织、处理,能够更有效地保证数据间关系的正确性、可理解性和避免数据冗余,提高系统中信息的利用率和传输速度。

对整个系统而言,应充分发挥子系统的作用,并做到无缝集成。

具有的主要功能:1、快速接、处警能力;2、对全市公安交通信息进行采集、处理、整合、存储管理和分析能力;3、有线无线通信网络完善,为交通管理指挥、信息采集处理和发布提供快速有效的通信保障;4、调度全市公安交通管理警力能力;5、可与市公安局指挥系统、消防指挥系统和其他信息系统进行信息交换,实现应急联动;6、全面监控道路交通状况,实现交通电视监视和交通信号协调控制;7、对辖区内重要公路上的行驶车辆进行自动监测记录,为交通事故逃逸、盗抢车辆案件取证以及纠正超速等交通违章行为提供依据;8、交通管理决策支持能力。

系统图二、以GIS作为共用信息平台GIS(地理信息系统)作为一种综合处理和分析空间数据的技术系统,能够有效地对地球空间数据进行采集、存储、检索、建模、分析和输出。

它的独特之处就在于能够把地理位置和相关属性信息有机地结合起来。

众所周知,交通信息与地理位置密切相关,利用GIS技术构筑智能交通管理系统的共用信息平台,不但能够使交通信息在空间上直观明了地显示出来,并能为这些信息的深层次挖掘和后续信息服务及辅助决策提供空间属性上的支持。

信息是智能交通管理系统中重要的基本元素,也是联接各个子系统的纽带。

通常把交通信息划分为两类:静态交通信息和动态交通信息。

静态交通信息是指包括道路信息、交通附属设施信息、停车场信息、车辆管理信息等随时间变化较小的信息,它又可以分为基础数据(如道路路网数据等)和历史数据(如车辆违章历史数据等);动态信息主要指各类实时采集到的交通信息,如交通流量信息、视频监控信息、公交车位置信息等。

智能交通系统概述与总结

智能交通系统概述与总结
数据可视化
将处理后的交通数据以图表、图像等形式展示, 便于理解和决策。
控制与执行技术
交通信号控制
根据实时交通情况对交通信号进行配时调整,优化交通流 。
车辆控制
通过车载控制系统对车辆进行加速、减速、转向等操作, 实现自动驾驶或半自动驾驶。
紧急事件处理
在发生交通事故或紧急事件时,通过智能交通系统快速响 应和处理,减少损失和影响。
高停车效率。
高速公路安全监控与应急响应
实时路况监测
利用传感器、摄像头等设备,实时监测高速公路路况,及时发现并 处理交通事故、拥堵等异常情况。
应急车道管理
通过智能监控和应急响应系统,确保应急车道畅通无阻,为救援车 辆提供快速通道。
跨部门协同处置
实现高速交警、路政、救援等部门的信息共享和协同处置,提高应急 响应效率。
发展历程
智能交通系统的发展经历了多个阶段,从早期的交通信号控制、电子收费等单一技术应用,到后来的集成化、网 络化、智能化发展,形成了包括交通信息服务、交通安全管理、公共交通管理等多个子系统的综合交通管理系统 。
核心技术及应用领域
核心技术
智能交通系统的核心技术包括通信技术、传感器技术 、控制技术、计算机技术等。其中,通信技术是实现 交通信息实时传输的关键,传感器技术是获取交通运 行状态的基础,控制技术是实现交通流优化调度的手 段,计算机技术则是整个系统的支撑平台。
应用领域
智能交通系统的应用领域广泛,包括城市交通管理、高 速公路管理、公共交通管理、物流运输管理等。在城市 交通管理中,智能交通系统可以实现交通信号控制、交 通拥堵疏导、停车管理等功能;在高速公路管理中,可 以实现路况监测、车辆识别、超速抓拍等功能;在公共 交通管理中,可以实现公交调度、出租车管理、共享单 车管理等功能;在物流运输管理中,可以实现车辆定位 、货物追踪、智能配送等功能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可用的
系统的“基础”是系统的基础组成框 架。它不令包括组成系统笔硬件设施 如何去实现其功能,也包括系统的软 件部分。
系统
当一个系统有几十年的期望寿命时, 选择的基础必须是“稳定的”。或者至少 是不需要有重大改变的,ITS的开发周期 一般较长,是以分步扩展和升级为特征 的。在每一个实施阶段,都有新的技术 可以利用,有新的的应用领域被开拓, 因而有改变现在系统的必要性。





统第
体一
机系 节 结 械

业构
出 版 社
和 内

PART ONE
系统体系结构开发在ITS的地位
对于ITS的总体和设计来说,最重要的任务就是ITS 的系统体系结构开发。
从1994年第一届至1999年第六届ITS世界大佬,“系 统 体 系 结 构 ” 均 是 大 会 研 讨 一 个 重 要 内 容 。 美 国 19941995年ITS优先项目中排第一位的是系统体系结构开发。 日本于1998年在5 个省厅的联合支持下,开始其系统体 系结构的研究与实践。
开发途径问题
(1)研究开发的组织形式基本是独 立的实体,缺乏政府部门或更高层次 的直接指导。(2)研究开发的项目 一般由稳中有降组织或团队自己确立, 团体之间缺乏统一的目标,其联系十 分松散。(3)研究计划与方法由各 组织团体独立确定,团体之间缺乏统 一的目标,其联系十分松散。
自下而上模式
优 点
进行具体开发时,第一,进行用户需求
诚 分 析 ; 第 二 , 集 资 甘 特 图 小 心 眼 的 功 能 、
信息、通信和物理体系结构。在开发过 程中,开发队伍应和垢各有关方面经常 地交流和研讨,这样才能使开发的系统 体系结构得到社会广泛理解和支持。
开发途径问题
(1)研究构台组织开工由政府有关 部门决定,并确定管理方式及政策 条件。(2)研究开发的项目一般条 件 由该政府部门申请并确立,并分 解为若干子项目交给各组织去完成。 (3)整个研究开发计划由该部门统 一制定,由各组织参与,组织间是 竞争与协作的关系。
在于其研究开发的工作是由各团体独立进
行的,它们掌握的信息比较全面,决策及
时,灵活性比较大,这样有利于在不断变
化的环境中开展研究,由于其范围比较小,
因此效益比较明显,这样资金问题相对解
决,而且高一层次的部门没有太大的财政
压力。
开发队伍的组织问题
ITS通常是跨部门,跨行业、跨地区的大规模工程项目, 它的体系结构的感叹帮我我国一点由政府、企业、研 究机械和院校的多部门领导者、管理者、多企业经营 者、设计者、多学科专家学者联合组成。
智能交通系统体系结构开发的方法
ITS实际上也是复杂的信息 系统,因为,信息系统的分析 方法便 可以作为ITS的系统结 构开发方法。最常用的是面向 结构的分析方法和面向对象的 分析方法。
面向结构的分析方法
面对结构的分析方法是从用户对系 统功能的需求出发,使其结构化、 模块化,自上向下对信息系统进行 分析。常用的工具有数据流程图、 数据字典等。
信息 体系 结构
建立信息体系结构的目的是识别系 统中广泛使用的数据和信息的内容 和性质,常常用一个公共的数据来 表达系统信息体系结构。系统体系 结构对于需要在各部分进行信息交 换的系统显得尤为重要。
功能 体系 结构
建立功能体系结构是为了回答系统能 够做什么的问题,它将参考模型分解、 细化, 并发展为一个系统,用功能模 块以及各处理模块之间的逻辑数据交 换来描述其结构。功能体系结构是独 立于特定的硬亻和软件技术的,这使 得功能体系结构在技术的进步过程中 始终是一个稳定的结构。
系统体系结构
对于系统体系结构,多数 学者认同的定义为:“一个体系 结构是一个有用的和可用的系 统的稳定基础”。
它是由相互作用和相互依赖的若干 组成部分结合而成的、具有特定功能 的有机整体。每个 组成部分有其自身 的功能,而系统的功能 不是等 于而是 大于各组成部分功能的简单和。ITS是 许多子系统的有机集成,如果只是简 地把各子系统结合起来,可能会导致 一个无效的系统。
自上而下模式
优 点
由政府部门指导,统一规划,这样使得各
研究子项目具有较强的统一性和性。ITS是
综合性很强、规模极为庞大的复杂系统,
其子系统数目极多,要使这些子系统动作
时行为相互协调、目标统一,就需要在研
究的开始阶段,进行统一的规划,使得各
子系统一开始就是相互协调的,有利于实
现ITS所要达到的总体目标。
数据通信
体系 结构
数据通信体系结构是一个通信协议的 集合,这协议通过不同的网络拓扑结 构提供对各种应用的透明通信。一个 ITS往往要考虑固定设备间、移动设备 间、固定设备与移动间的通信,还要 考虑公有网络与私有网络之间的连接, 所以其数据通信体系结构是很复杂的。
物理 体系 结构
建立系统物理体系结构是为了回答系 统准备怎么做的问题。物理体系结构 将功能、信息和数据通信体系结构投 影到一个物理基础设施集合上,它通 过所选择的通用结构中的独立组件以 及它之间的接口来描述系统,为下一 步系统的工程实现绘制框架蓝图。
系统的
它是指预定功能都具备的功能,系 统的子系统都能完成其功能,各子系 统能够按其功能 能彼此很好的协调, 使得整体功能可以达到最优化。
有用的
是指在实际 中可以按预定目标运 行的系统。“有用的”不一定是“可用的”。 可用性要求系统除了具备各种功能处, 还要有可维护性、柔性、可扩充性、 有效性和安全可靠性等性能。
稳定
系统体系结构开发的目的 是给出系统的一个稳定的 基础,即给出系统的组成 部分和它们的功能、各部 分的关系,为进一步的系 统设计和产品开发提供所 必需的框架和重要指南。
智能交通系统体系结构开发的内容
1
2
3
4
5































参考 模型
参考模型的重要性在于它提供一个 系统所包含的主要部分的整体框架, 一般可以用一个水平的或竖直的层 次结构图来描述。
面向对象的分析方法
面对对象的分析方法是从用户需求 邮发,将系统的基本要素看成是许 多对象,每个对象包含它的数据和 操作,共享的对象构成对象烦对对 象、对象类及其关系进行分析。面 向对象 的分析方法比面向结构的分 析方法赴更要困难 一些, 但易于以 后的修改放扩充。
系 统 体 系 结 构 开 发 步 骤
相关文档
最新文档