九年级数学下学期第一次模拟试题

合集下载

九年级数学下册 (下)九年级数学第一次模拟试卷

九年级数学下册 (下)九年级数学第一次模拟试卷

2019--2019学年(下)九年级数学第一次模拟试卷满分:150 考试时间:120分钟一、填空题:(每题4分,共40分)1、函数函数12-+=x x y 中自变量x 的取值范围是 。

2、据广东统计信息网消息,广东省经济社会发展又好又快,开始转入科学发展轨道,实现了“十一五”的良好开局.初步核算,2019年全省生产总值25968.55亿元,用科学记数法表示这个数为 亿元(保留三个有效数字)。

3、将sin37°、cos44°、sin41°、cos46°的值按从小到大的顺序排列是 。

4、因式分解:x 3 - 6x 2y + 9xy 2 = 。

5、小明从前面的镜子里看到后面墙上挂钟的时间为2:30,则实际时间是 。

6、一条山路的坡角为30度,小张沿此山路从下往上走了100米,那么他上升的高度是 米。

7、抛物线y =2x 2+4x+5的对称轴是x= 。

8、圆柱的底面周长为2π,高为1,则圆柱侧面展开图的面积为 。

9、如图(1),圆O 的直径为10,弦AB=8,则点O 到AB 的距离OP 为 。

10、已知:21=2,22=4,283=,2,164=25=32,26=64,27=128,28=256,……;则22019的个位数是 。

二、选择题:(每题4分,共20分)11、已知a<b<0,则点A(a-b,b)在( )。

(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限12、一对酷爱运动的夫妇,让他们刚满周岁的孩子拼排3块分别写有“20”、“08”、“北京”的字块.假如小孩将字块横着正排,则该小孩能够排成“2019北京”或“北京2019”的概率是( )。

(A)16 (B)14 (C)13 (D)1213、已知两圆得半径分别为5cm 和4cm ,圆心距为7cm ,那么两圆的位置关系是 ( )。

(A )相交 (B )内切 (C )外切 (D )外离14、一条弦分圆为1∶5两部分,则这条弦所对的圆周角的度数为( )A .300B .1500C .300或1500D .不能确定15、如图(2)所示几何体的左视图...是( )O ABP 图1ABCD图(2)三、解答题:(共96分)16、(8分) 计算: 228126sin 451-⨯+-++ 17、(8分)解不等式:解不等式组⎪⎩⎪⎨⎧>+≤--x x x x 3523)1(2,并在数轴上表示出它的解集。

九年级下学期第一次模拟考试数学试卷(带解析)

九年级下学期第一次模拟考试数学试卷(带解析)

第1页,总9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………九年级下学期第一次模拟考试数学试卷(带解析)考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共15题),a ∥b ,∥1=130°,则∥2=()A .50°B .130°C .70°D .120°2. 有理数a 、b 在数轴上的对应的位置如图所示,则下列结论正确的是( )A .a +b >0B .a -b =0C .a +b <0D .a -b >03. 把不等式组的解集表示在数轴上,下列选项正确的是( ).A .B .C .D . 4. 小红制作了十张卡片,上面分别标有0~9这十个数字.从这十张卡片中随机抽取一张恰好能被3整除的概率是( ) A .B .C .D .答案第2页,总9页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………5.如图,已知AC ∥BD ,∥CAE =30°,∥DBE =45°,则∥AEB 等于( )A .30°B .45°C .60°D .75°6.一个几何体的三视图如图所示,则这个几何体是()A .B .C .D .7. 若,则( )A .-3B .-1C .3D .18. 如图,正方形ABCD 的边长为5,点E 是AB 上一点,点F 是AD 延长线上一点,且BE =DF .四边形AEGF 是矩形,则矩形AEGF 的面积y 与BE 的长x 之间的函数关系式为( )A .B .C .D .9. 如图,∥ODC 是由∥OAB 绕点O 顺时针旋转30°后得到的图形,若点D 恰好落在AB 上,且∥AOC 的度数为100°,则∥DOB 的度数是( )A .40°B .30°C .38°D .15°10. 如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a与b的数量关系为()第3页,总9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .a =bB .2a -b =1C .2a +b =-1D .2a +b =111. 如图,长方形ABCD 中,M 为CD 中点,分别以点B 、M 为圆心,以BC 长、MC 长为半径画弧,两弧相交于点P .若∥PMC =110°,则∥BPC 的度数为( )A .35°B .45°C .55°D .65°12. 一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m 与n 的关系是( )A .m=3,n=5B .m=n=4C .m+n=4D .m+n=813. 已知二次函数中,函数y 与自变量x 之间的部分对应值如下表所示,点A ,B在函数的图象上,当0<<1,2<<3时,与的大小关系正确的是( )x … 0 1 2 3 … y…-1232…A.B. C. D.14. 如图,某数学兴趣小组将边长为6的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得扇形DAB 的面积为( )A .12B .14C .16D .3615. 如图,放置的∥OAB 1,∥B 1A 1B 2,∥B 2A 2B 3,…都是边长为2的等边三角形,边AO 在Y 轴上,点B 1、B 2、B 3…都在直线上,则点A 2016的坐标为( )答案第4页,总9页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .(2016,2018) B .(2016,2016) C .(2016,2016) D .(2016,2018)第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共4题)1. -2的绝对值是_________.2. 已知P 1(1,y 1),P 2(2,y 2)是正比例函数y =x 的图象上的两点,则y 1____y 2(填“>”或“<”或“=”).3. 线段AB 的长为5,点A 在平面直角坐标系中的坐标为(3,﹣2),点B 的坐标为(3,x ),则点B 的坐标为_____.4. 如图,∥O 的半径是5,∥ABC 是∥O 的内接三角形,过圆心O ,分别作AB 、BC 、AC 的垂线,垂足分别为E 、F 、G ,连接EF ,若OG=3,则EF 为__.评卷人 得分二、解答题(共6题)5. (1)计算:2﹣1﹣tan60°+(π﹣2015)0+|﹣|;(2)解方程:x 2﹣1=2(x +1).6. 如图,在∥ABC 和∥DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ∥AB ,垂足为点F ,且AB=DE . (1)求证:BD =BC ;第5页,总9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)若BD =6cm ,求AC 的长.7. 为了解中考体育科目训练情况,某地从九年级学生中随机抽取了部分学生进行了一次考前体育科目测试,把测试结果分为四个等级:A 级:优秀; B 级:良好;C 级:及格;D 级:不及格,并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题: (1)请将两幅不完整的统计图补充完整; (2)如果该地参加中考的学生将有4500名,根据测试情况请你估计不及格的人数有多少? (3)从被抽测的学生中任选一名学生,则这名学生成绩是D 级的概率是多少?8. 如图,一次函数y =kx +b 的图象与反比例函数y =的图象相交于点A (-2,1),B (1,n ).(1)求此一次函数和反比例函数的解析式; (2)在平面直角坐标系的第二象限内边长为1的正方形EFDG 的边均平行于坐标轴,若点E 的坐标为(-a ,a ),当曲线y = (x <0)与此正方形的边有交点时,求a 的取值范围.9. 已知二次函数y 1=x 2+mx+n 的图象经过点P (﹣3,1),对称轴是经过(﹣1,0)且平行于y 轴的直线. (1)求m ,n的值.(2)如图,一次函数y 2=kx+b 的图象经过点P ,与x 轴相交于点A ,与二次函数的图象相交于另一点B ,点B在点P的右侧,PA :PB=1:5,求一次函数的表达式.答案第6页,总9页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)直接写出y 1>y 2时x 的取值范围.10. 如图,已知直线l 与∥O 相离,OA ∥l 于点A ,OA =5,OA 与∥O 相交于点P ,AB 与∥O 相切于点B , BP 的延长线交直线l 于点C . (1)试判断线段AB 与AC 的数量关系,并说明理由;(2)若PC =,求∥O 的半径和线段PB 的长;(3)若在∥O 上存在点Q ,使∥QAC 是以AC 为底边的等腰三角形,求∥O 的半径r 的取值范围.参数答案1.【答案】:answer_4895851.png 【解释】:parse_4895851.png 2.【答案】:answer_4895852.png 【解释】:parse_4895852.png 3.【答案】:answer_4895853.png第7页,总9页【解释】:parse_4895853.png 4.【答案】:answer_4895854.png 【解释】:parse_4895854.png 5.【答案】:answer_4895855.png 【解释】:parse_4895855.png 6.【答案】:answer_4895856.png 【解释】:parse_4895856.png 7.【答案】:answer_4895857.png 【解释】:parse_4895857.png 8.【答案】:answer_4895858.png 【解释】:parse_4895858.png 9.【答案】:answer_4895859.png 【解释】:parse_4895859.png 10.【答案】:answer_3868402.png 【解释】:parse_3868402.png 11.【答案】:answer_4895861.png 【解释】:parse_4895861.png 12.【答案】:answer_5238617.png 【解释】:parse_5238617.png 13.【答案】:answer_4895863.png 【解释】:parse_4895863.png 14.【答案】:answer_4895864.png 【解释】:parse_4895864.png答案第8页,总9页15.【答案】:answer_4895865.png 【解释】:parse_4895865.png 【答案】:answer_4895866.png 【解释】:parse_4895866.png 【答案】:answer_4895867.png 【解释】:parse_4895867.png 【答案】:answer_4895868.png 【解释】:parse_4895868.png 【答案】:answer_4895869.png 【解释】:parse_4895869.png 【答案】:answer_4895870.png 【解释】:parse_4895870.png 【答案】:answer_4895871.png 【解释】:parse_4895871.png 【答案】:answer_4895872.png 【解释】:parse_4895872.png 【答案】:第9页,总9页answer_4895873.png 【解释】:parse_4895873.png 【答案】:answer_4895874.png 【解释】:parse_4895874.png 【答案】:answer_4895875.png 【解释】:parse_4895875.png。

精品解析:2024学年重庆市第八中学校九年级下学期第一次模拟(学月)考试数学模拟试题(解析版)

精品解析:2024学年重庆市第八中学校九年级下学期第一次模拟(学月)考试数学模拟试题(解析版)

重庆八中2023—2024学年(下)九年级第一次模拟(学月)考试数学试题(全卷共三个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号 右侧正确答案所对应的方框涂黑.1. 的绝对值是( )A. 2024B. C. D. 【答案】A【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值是它的相反数,即可得出结果.【详解】解:的绝对值是2024.故选:A .2. 如图是由5个完全相同的小正方体堆成的物体,从正面看它得到的平面图形是( )A.B. C. D.【答案】A【解析】【分析】本题考查了从不同方向看简单组合体.根据从正面看得到的图形判断即可.【详解】解:该几何体从正面看到的平面图形是故选:A .3. 已知点在反比例函数的图象上,则m 的值是( )A. B. C. D. 4【答案】B【解析】2024-2024-1202412024-2024-()3,M m -12y x =6-4-36-【分析】本题考查了反比例函数图象上点的坐标特征,根据反比例函数图象上点的坐标特征进行解答判断即可.【详解】解:∵点在反比例函数的图象上,∴,∴.故选:B .4. 如图,已知与位似,位似中心为点,若的周长与的周长之比为,则是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了图象位似与相似的关系和性质,根据周长比知道相似比,从而得出位似比,掌握位似比和相似比的关系是解题的关键.【详解】解:的周长与的周长之比为故选:C .5. 若要调查下列问题,你认为适合采用全面调查的是( )A. 对全国中学生每天睡眠时长情况的调查B. 对某市中小学生周末手机使用时长的调查C. 对新都区居民知晓“一盔一带”交通法规情况的调查D. 对“神舟十七号”载人飞船发射前各零部件质量情况的调查【答案】D【解析】【分析】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调()3,M m -12y x=312m -=4m =-ABC DEF O ABC DEF 3:2:OA OD 9:43:53:25:2ABC DEF 3:2:3:2AC DF ∴=::3:2OA OD AC DF ∴==查,对于精确度要求高的调查,事关重大的调查往往选用普查.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A .对全国中学生每天睡眠时长情况的调查,适合抽样调查,故A 不符合题意;B .对某市中小学生周末手机使用时长的调查,适合抽样调查,故B 不符合题意;C .对新都区居民知晓“一盔一带”交通法规情况的调查,适宜采用抽样调查,故C 不符合题意;D .对“神舟十七号”载人飞船发射前各零部件质量情况的调查,适合全面调查,故D 符合题意.故选:D .6. “绿色电力.与你同行”,我国新能源汽车销售量逐年增加,据统计,年新能源汽车年销售量为万辆,预计年新能源汽车手销售量将达到万辆,设这两年新能源汽车销售量年平均增长率为x ,则所列方程正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了一元二次方程的应用.根据题意正确的列方程是解题的关键.由题意知,年新能源汽车手销售量将达到万辆,年新能源汽车手销售量将达到万辆,然后依据题意列方程即可.【详解】解:依题意得,,故选:A .7. 有机化学中“烷烧”的分子式如CH 4、C 2H 6、C 3H 8…可分别按下图对应展开,则C 100H m 中m 的值是( )A. 200B. 202C. 302D. 300【答案】B【解析】【分析】本题考查图形变化的规律,能根据所给图形发现字母“”和“”个数变化的规律是解题的关键.202269020241166()269011166x +=()211661690x -=()269069011166x ++=()116612690x -=2023()6901x +2024()26901x +()269011166x +=C H【详解】解:由所给图形可知,第1个图形中字母“”的个数为:1,字母“”的个数为:;第2个图形中字母“”的个数为:2,字母“”的个数为:;第3个图形中字母“”的个数为:3,字母“”的个数为:;,所以第个图形中字母“”的个数为,字母“”的个数为,当时,(个,即中的值是.故选:B .8. 如图,为的直径,C ,D 是上在直径异侧的两点,C 是弧的中点,连接,,交于点P ,若,则的度数为( )A. B. C. D. 【答案】A【解析】【分析】本题考查的是圆周角定理的应用,三角形的外角的性质的应用,先求解,再利用三角形的外角的性质可得答案.【详解】解:如图,连接,∵为直径,C 是弧的中点,∴,C H 4122=⨯+C H 6222=⨯+C H 8322=⨯+⋯n C n H (22)n +100n =2221002202n +=⨯+=)100m C H m 202AB O O AB AB AD CD CD AB 22BAD ∠=︒DPB ∠67︒44︒60︒66︒45D ∠=︒OC AB AB =90AOC ∠︒∴,∵,∴,故选A9. 如图,在正方形中,为对角线的中点,连接,为边上一点,于点,若,,则的长为( )A. B. C. 3 D. 【答案】D【解析】【分析】本题考查了全等三角形的性质与判定,正方形的性质,正切的定义;过点作交于点,证明,进而求得,得出,即可求解.【详解】解:如图所示,过点作交于点,∵为正方形对角线的中点,∴∴∵1245ADC AOC ∠=∠=︒22BAD ∠=︒67BPD BAD D ∠=∠+∠=︒ABCD O BD OC E AB CF DE ⊥F OF =5CF =AE 2O OG OF ⊥DE G ()ASA GOD FOC ≌DC AD ==tan tan ADE DCF ∠=∠AE FD AD DC=O OG OF ⊥DE G O ABCD BD 90,COD CD OD∠=︒=COF DOG∠=∠CF DE⊥∴又∵,∴∴∴,∴又∵∴∴∵∴∴故选:D .10. 对于式子,按照以下规则改变指定项的符号(仅限于正号与负号之间的变换):第一次操作改变偶数项前的符号,其余各项符号不变;第二次操作:在前一次操作的结果上只改变3的倍数项前的符号;第三次操作:在前一次操作的结果上只改变4的倍数项前的符号;第四次操作:在前一次操作的结果上只改变6的倍数项前的符号.下列说法:①第二次操作结束后,一共有51项的符号为正号;②第三次操作结束后,所有10的倍数项之和为;③第四次操作结束后,所有项的和为.其中正确的个数是( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题主要考查数字规律,通过倍数关系找到变量以及变量之间的关系,①通过每次操作后均可得到需要改变符号的项数,结合正负改变得数量关系求解即可;②找到10的倍数每次操作的倍数关系,确定其正负后即可求得和;③第一次操作后所有项的和为,第二次操作后根据改变项相邻两项和为,且最后一个改变项为,即可求得本次改变量以及与上一次操作后的关系,第三次操作后第一改变项为,且改变项项后相邻三项为的倍数,即可求得本次改变量以及与上一次操作后的关系,第四次操作90DCF FDA ADE∠=︒-∠=∠45ADE GDB ∠=︒-∠45FCD OCF∠=︒-∠GDO FCO∠=∠()ASA GOD FOC ≌OG OF ==GD FC =2GF =5CF =523FD GD GF =-=-=DC ===tan tan ADE DCF∠=∠AE FD AD DC=AD FD AE DC ⨯==23499100x x x x x x ++++⋯++170x 825x 50x -3x 99x -4x 12x后可得改变项相邻两项的改变量,即可求得本次改变量,以及与上一次操作后的关系.【详解】解:①第一次操作结束后,所有奇数项的符号为正号,偶数项的符号为负号,此时正负各50个;第二次操作结束后,100项中有33个3的倍数,则33个数要改变符号,且偶数为16个,奇数为17个.此时正号有个不改变符号,负号有个不改变符号,则正号有个不改变符号,负号有个,故①错误;②第三次操作结束后,10的倍数第一次均为负,第二次操作后只有30、60和90为正,第三次操作后为20、40、60、80和100改变符号,则,故②正确;③第一次操作后所有项的和为;第二次操作后33个项要改变符号,所有项的改变量为,此时所有项的和为;第三次操作时有25个数改变符号,所有项的改变量为,此时所有项的和为;第四次操作后16个数要改变符号,所有项的改变量为,此时所有项的和为,故③错误.故选:B .二.填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上11. =___________.【答案】【解析】【分析】本题考查了负指数幂和0指数幂,熟悉相关的知识是解题的关键;根据,即可求解.【详解】解:;故答案为:.12. 已知正n 边形的每一个内角都等于,则n 的值为______.【答案】10【解析】【分析】本题主要考查了多边形的内角和定理.根据多边形的内角和定理:求解即可.6x 501733-=501634-=331649+=341751+=102030405060708090100170x x x x x x x x x x x -+++---+++=50x -()216399102x x ⨯+-=-⎡⎤⎣⎦()50102152x x x -+-=-()24122436485062748698872x x ⨯+++++++++=152872720x x x -+=()26896x x ⨯⨯=72096816x x x +=0223π-+-54()10n n a a a-=≠()010a a =≠0221152311244π-+-=+=+=54144︒()2180n -︒【详解】解:由题意可得:,解得:,故答案为:10.13. 如图,函数和的图象交于点,则关于x 的不等式的解集为___________.【答案】##【解析】【分析】本题主要考查了一次函数与不等式之间的关系,根据函数图象找到函数的图象在函数的图象上方时,自变量的取值范围即可得到答案.【详解】解:由函数图象可知,当函数的图象在函数的图象上方时,自变量的取值范围为,∴关于x 的不等式的解集为,故答案为:.14. 有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是___________.【答案】【解析】【分析】本题考查概率公式,列出全部的情况,利用概率公式计算即可.【详解】解:全部的情况(诚,勤)、(诚,立)、(诚,诚)、(诚,达)、(勤,勤)、(勤,诚)、(勤,立)、(勤,达)、(立,诚)、(立,勤)、(立,立)、(立,达)、(达,诚)、(达,勤)、(达,立)、(达,达)共16种情况,其中第一二次卡片汉字相同的有(诚,诚)、(勤,勤)、(立,立)、(达,达)共4种情况,()2180144n n -︒=⨯︒10n =3y x =-y kx b =+()2A m -,3x kx b ->+<2x -2x->3y x =-y kx b =+3y x =-y kx b =+<2x -3x kx b ->+<2x -<2x -14故所求的概率为.故答案为:.15. 如图,在扇形中,点为半径的中点,以点为圆心,的长为半径作弧交于点.点为弧的中点,连接、.若,则阴影部分的面积为___________.【答案】【解析】【分析】本题考查扇形的面积,四边形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.【详解】解:如图,连接,,,交于.,,,,,,,,,,41164=14AOB 90AOB ∠=︒C OA O OC CD OB D EAB CE DE 4OA=4π-AB CD OE OE CD J OC AC = OD DB =//CD AB ∴ AE BE =OE AB ∴⊥CD OE ∴⊥2OC OD == CJ OJ ∴=90COD ∠=︒ CD ∴===,,故答案为:.16. 如图,中,是的角平分线,,垂足为,过作交于点,过作交于点,连接,已知,,则_____.【解析】【分析】由是的角平分线,得,根据平行线的性质可求,从而有,通过同角或等角的余角相等得出,即可证明,由相似三角形的性质得,再通过勾股定理即可求出的长.【详解】∵是的角平分线,∴,∵,∴,∴,∴,∵,,∴,∴,,∴,∴,∴,∴,∵,,12OCED S CD OE ∴=⋅⋅=四边形21444AOB OCED S S S ππ∴=-=⋅⋅-=-阴扇形四边形4π-ABC AD BAC ∠BD AD ⊥D D ∥D E A C AB E D DF DE ⊥AC F EF 4AB =3BD =EF =AD BAC ∠BAD CAD ∠=∠BAD EDA ∠=∠EA ED =BDE ADF ∠=∠ABD ADF ∽AB BD AD DF=EF AD BAC ∠BAD CAD ∠=∠DE AC ∥EDA CAD ∠=∠BAD EDA ∠=∠EA ED =BD AD ⊥DF DE ⊥90BDA AFD ∠=∠=︒90BAD ABD ∠+∠=︒90EDA EDB ∠+∠=︒EDB ABD ∠=∠EB ED =EB ED EA ==122DE AB ==90BDE ADE ∠+∠=︒90ADE ADF ∠+∠=︒∴,∴,∴∴,∴,∴,在中,由勾股定理得:,,∴在中,由勾股定理得:.【点睛】本题考查了角平分线定义,勾股定理, 平行线的性质,等腰三角形的判定与性质,相似三角形的判定与性质和同角或等角的余角相等,熟练掌握以上知识点的应用是解题的关键.17. 若关于x 的一元一次不等式组有且仅有6个整数解,且使关于y 的分式方程有整数解,则所有满足条件的整数a 的值之和是___________.【答案】20【解析】【分析】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键;不等式组整理后,根据已知解集确定出的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出的值,求出之和即可.【详解】解:原不等式组的解集为:;BDE ADF ∠=∠90FAD ADF ∠+∠=︒90AFD ∠=︒90ADB AFD ︒∠=∠=ABD ADF ∽AB BD AD DF=Rt △ABD AD ===3DF=DF =Rt DEF △EF ===()()211232352x x x a x ⎧+>+⎪⎨⎪+≤-+⎩82222ay y y y ++=--a a 6106x a x >-⎧⎪-⎨≤⎪⎩∵有且仅有6个整数解;∴;即:;∴整数为:;∵关于的分式方程;∴整理得:;∵有整数解且;∴满足条件的整数的值为:;∴所有满足条件的整数的值之和是;故答案为:.18. 对于任意一个四位数,若它的千位数字与百位数字的和比十位数字与个位数字的和大,则称这个四位数根为“差双数”,记为的各个数位上的数字之和.例如:,,是“差双数”, ;,, 不是“差双数”.若与都是“差双数”,且,则“差双数”是_____;已知M ,N 均为“差双数”,其中, ,,,,,,,,,是整数,已知能被整除,且为整数,则满足条件的所有的的值之和为___________.【答案】①. ②. 【解析】【分析】根据“差双数”的定义可得的值为,;根据,可得和的另一个关系,进而求得和的值,即可求得差双数”;判断出和的各个数位上的数字,根据它们都是“差双数”得的各个数位上的数字的关系,得到和并化简,根据能被6106x a x >-⎧⎪-⎨≤⎪⎩10016a -≤<410a <≤a 5,6,7,8,9,10y 82222ay y y y ++=--66y a =-82222ay y y y ++=--626a ≠-a 5,7,8a 2020m 2()F m m 1632m =()16322+-+= 1632∴()1632163212F =+++=6397m =()639772+-+=-≠ 6397∴541k 32st (F 541k )(F =32st )32st 200010010M abcd =+++N 1000300x b =++40(14d a -≤≤03b ≤≤09c ≤≤19d ≤≤19x ≤≤a b c d x )()()2F M F N +-6()()F N F M M 343212740k 21s t -=(F 541k )(F =32st )s t s t “32st M N ()F M ()F N ()()2F M F N +-6整除,且为整数,得到可能的各个数位上的数字,计算得到所有的,相加即可.【详解】解:与都是“差双数”,,即则为:.,均为“差双数”,其中, ,,,,,,,,,是整数,即,能被整除,即是整数,又是整数,,且为整数,是整数,或或.当时,为整数或;()()F N F M M 541k 32st ∴()()5412,321k s t +-+=+-+=∴2k =1s t -=(F 541k )(F =32st )∴54132k s t +++=+++7s t +=∴4,3s t ==32st 3432M N 200010010M a b c d =+++N 1000300x b =++40(14d a -≤≤03b ≤≤09c ≤≤19d ≤≤19x ≤≤a b c d x )∴()()22,33102a b c d x b d ⎡⎤+-+=+-+-=⎣⎦22,315a b c d x b d +--=++=()222F M c d ∴=++()282.F N d =- ()()2F M F N +-2153102c d c d d d =+++++-++--228c =+62282463c c ++=+()()282142221F N d d F M c d c d --==++++09c ≤≤ c 2282463c c ++=+1c ∴=4c =7c =1c =()()141412F N d d F M c d d--==+++2d ∴=6d =当时,为整数,不存在;当时,为整数,不存在;①,.,.,,,或,.或.②,.,.,,,..满足条件的所有的的值之和为:.故答案为:,.三、解答题:(本大题共8个小题,19题8分,20-26题每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1);(2).【答案】(1)(2)【解析】【分析】(1)先利用完全平方公式,单项式乘以多项式计算,然后合并同类项即可;(2)先通分,利用完全平方公式,平方差公式计算,然后进行除法运算即可.4c =()()141415F N d d F M c d d --==+++d 7c =()()141418F N d d F M c d d --==+++d 1c =2d =22a b c d +=++ 25a b ∴+=14a ≤≤ 03b ≤≤1a ∴=3b =2a =1b =2000100102312M a b c d ∴=+++=4112M =1c =6d =22a b c d +=++ 29a b ∴+=14a ≤≤ 03b ≤≤3a ∴=3b =2000100106316M a b c d ∴=+++=∴M 23124112631612740++=343212740()()22x y y y x ---219422a a a a -⎛⎫++÷ ⎪++⎝⎭2x 33a a +-【小问1详解】解:;【小问2详解】解:.【点睛】本题考查了完全平方公式,平方差公式,单项式乘以多项式,分式的化简.熟练掌握完全平方公式,平方差公式,单项式乘以多项式,分式的化简是解题的关键.20. 如图,在中,, 平分,F 是的中点,连接, 是的一个外角.(1)用尺规完成以下基本作图:作的角平分线,交的延长线于点G ,连接.(保留作图痕迹,不写作法)(2)在(1)问所作的图形中,求证:四边形是矩形.证明:∵平分,平分∴ , ① .∴∵是等腰三角形顶角的角平分线∴(“三线合一”)∴ ②.()()22x y y y x ---22222x xy y y xy=-+-+2x =219422a a a a -⎛⎫++÷ ⎪++⎝⎭()()()()4213322a a a a a a ++++-=÷++()()()232233a a a a a ++=⋅++-33a a +=-ABC AC BC =CE BCA ∠AC EF ACD ∠ABC ACD ∠CG EF AG AECG CE ACB ∠CG ACD∠12ACE ACB ∠=∠()1902ECG ACE ACG ACB ACD ∠=∠+∠=∠+∠︒=CE 90AEC ∠=︒∴∴ ③ .∴在和中∴∴ ④ .∴四边形是平行四边形(有一组对边平行且相等的四边形是平行四边形)∴∴四边形是矩形( ⑤ )【答案】(1)见详解;(2);;;;有一个角是直角的平行四边形是矩形【解析】【分析】本题考查作图-基本作图,平行四边形的判定和性质,矩形的判定,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题;(1)根据题意作图即可;(2)先证明四边形是平行四边形,再根据有一个角是直角的平行四边形是矩形即可.【小问1详解】解:如图即为所求:【小问2详解】证明:∵平分,平分;∴ ,;∴;∵是等腰三角形顶角的角平分线;∴(“三线合一”);AE CG∥AFE △CFG △AFE CFG AF CFEAF GCF ∠=∠⎧⎪=⎨⎪∠=∠⎩()AFE CFG ASA ≌AECG 90ECG ∠=︒AECG 12ACG ACD ∠∠=180AEC ECG ∠+∠=︒EAF GCF ∠=∠AE CG =AECG CE ACB ∠CG ACD ∠12ACE ACB ∠=∠12ACG ACD ∠=∠()1902ECG ACE ACG ACB ACD ∠=∠+∠=∠+∠=︒CE 90AEC ∠=︒∴;∴;∴;∴在和中;;∴;∴;∴四边形是平行四边形(有一组对边平行且相等的四边形是平行四边形);∴;∴四边形是矩形(有一个角是直角的平行四边形是矩形);故答案为:;;;;有一个角是直角的平行四边形是矩形.21. 为了提高学生课外海量阅读,某中学开展了一系列课外阅读活动,组织七,八两个年级全体学生进行课外阅读知识竞赛,学校从七,八两个年级中各随机抽取a 名同学的竞赛成绩,并对他们的竞赛成绩进行收集、整理、分析,过程如下:(调查数据用x 表示,共分为四个等级:A 等:,B 等,C 等:,D 等:,其中A 等级为优秀,单位:分)收集数据:七年级抽取的C 等学生人数是A 等学生人数的3倍;八年级抽取的B 等学生成绩为:81,83,88,85,82,89,88,86,88抽取七,八年级学生竞赛成绩的平均数、中位数、众数、优秀人数如下表所示:七年级八年级平均数8585中位数86b 众数8688优秀人c 5180AEC ECG ∠+∠= AE CG ∥EAF GCF ∠=∠AFE △CFG △AFE CFG AF CFEAF GCF ∠=∠⎧⎪=⎨⎪∠=∠⎩()AFE CFG ASA ≌AE CG =AECG 90ECG ∠=︒AECG 12ACG ACD ∠∠=180AEC ECG ∠∠+= EAF GCF ∠=∠AE CG =90100x ≤≤8090x ≤<7080x ≤<6070x ≤<数(1)根据以上信息,解答下列问题:以上数据中: _______, _______, _______,并补全条形统计图:(2)根据以上数据,你认为该校七,八年级中哪个年级学生竞赛成绩更好?并说明理由(说明一条理由即可);(3)若该校七,八年级共有1600人,估计两个年级学生的竞赛成绩被评为优秀的总人数是多少?【答案】(1)20;87;2(2)八年级;理由:七年级学生知识竞赛成绩的中位数86小于八年级学生知识竞赛成绩的中位数87 (3)280人【解析】【分析】(1)用八年级的的人数除以它对应的所占的百分比,求出的值,再将数值排序,运用中位数的定义,得出的值,运用七年级的总人数减去的人数,再结合七年级抽取的C 等学生人数是A 等学生人数的3倍,列方程计算即可作答.(2)在平均数相同的基础上,比较中位数,易得七年级学生知识竞赛成绩的中位数86小于八年级学生知识竞赛成绩的中位数87,即可作答.(3)用1600乘以优秀占比,即可作答.【小问1详解】解:依题意,(人)结合扇形图,八年级各个等级的占比情况,得A 等级人数为,B 等级的人数为9人∴中位数在B 等级内,且排序后为81,82,83,85,86,88, 88,88,89,则;∵七年级抽取的C 等学生人数是A 等学生人数的3倍;设A 等学生人数为,则C等学生人数为=a b =c =B a b B D ,945%20a =÷=90205360︒⨯=︒()8688287b =+÷=x 3x则解得∴补全条形统计图如下:【小问2详解】解:八年级;理由:平均数都相等,但七年级学生知识竞赛成绩的中位数86小于八年级学生知识竞赛成绩的中位数87;【小问3详解】解:(人)【点睛】本题考查了条形统计图与扇形统计图的综合,画条形统计图,样本估计总体、中位数,运用中位数作决策等内容,难度适中,是常考题,正确掌握中位数的定义是解题的关键.22. 大地回春,春暖花开,正是植树好时节,市政决定完成鹿山公园的植树计划.市政有甲、乙两个植树工程队,原计划甲工程队每天比乙工程队多植树10棵,且甲工程队植树600棵和乙工程队植树360棵所用的天数相等.(1)求甲、乙两工程队原计划每天各植树多少棵?(2)风和日丽,甲、乙两个工程队工作效率也得到提升,甲工程队实际每天比原计划多植树20%,乙工程队每天比原计划多植树40%.因其他公园有不少树木需要补植,甲工程队需要中途离开去执行补植任务.已知在鹿山公园的植树任务中,乙工程队植树天数刚好是甲工程队植树天数的2倍,且鹿山公园的植树任务不少于1080棵,则甲工程队至少在鹿山公园植树多少天可以完成任务?【答案】(1)甲工程队原计划每天植树25棵,乙工程队原计划每天植树15棵(2)15天【解析】【分析】本题考查了解分式方程的应用,一元一次不等式的应用,找到数量关系列出方程与不等式是关83420x x +++=2x =2c =52716001600280202040+⨯=⨯=+键.(1)设乙工程队每天植树棵,则甲工程队每天植树棵,根据时间相等列出分式方程,求解即可,注意检验;(2)设甲工程队植树天可以完成任务,则乙工程队天,根据:植树任务不少于棵,列出不等式并解之即可.【小问1详解】解:设乙工程队每天植树棵,则甲工程队每天植树棵;由题意可得:;解得:;经检验,是原方程的解,且符合题意;则;答:甲工程队原计划每天植树棵,乙工程队原计划每天植树棵;【小问2详解】设甲工程队植树天可以完成任务,则乙工程队天;由题意得:;解得:;答:甲工程队至少在鹿山公园植树天可以完成任务.23. 如图,在中,,, ,点为的中点,于点,点从点出发沿折线运动(含、两点),当动点在上运动时,速度为每秒个单位,当动点在上运动时,速度变为每秒个单位,到达点停止运动,设点的运动时间为秒,线段的长度记为(1)请直接写出关于的函数表达式,并注明自变量的取值范围;x ()10x +m 2m 1080x ()10x +60036010x x=+15x =15x =1025x +=2515m 2m ()()120251401521080m m +⨯++⨯⨯≥%%15m ≥15ABC 6AB =10AC =90ABC ∠=︒D AC PM AB ⊥M P A A D B →→A B P AD 54P DB 58B P x PM 1y 1y x x(2)若函数,在给定的平面直角坐标系中分别画出函数和的图象,并写出该函数的一条性质;(3)结合函数图象,请直接估计时的取值范围.(保留一位小数,误差不超过)【答案】(1) (2)详见解析性质:当时,随的增大而增大(3)或【解析】【分析】本题考查了勾股定理,动点函数图象,利用图象法求函数自变量取值范围.利用分类讨论思想解决问题是解题的关键.(1)分两种情况,即在上还是上,利用勾股定理求得的长,即可解答;(2)根据描点法画出图象即可,再根据图象写出的一条性质;(3)根据图象得到的解析式,根据题意列方程即可解答.【小问1详解】解:当在上运动时,,,,,在中,,,即,当在上运动时,,,,,()260y x x=>1y 2y 1y 12y y <x 0.2()()104164122x x y x x ⎧≤≤⎪=⎨-+<≤⎪⎩04x ≤≤y x 0 2.5x <<11.012x <≤AD DB PM P AD 54AP x =152AD AC ==5054x ∴≤≤04x ∴≤≤Rt ABC 8BC ==8sin 10BC MP A AC AP ∴===MP x ∴=()104y x x =≤≤P BD ()548PD x =-()515554828PB x x =--=-()50458x <-≤ 412x ∴<≤,,,即,;【小问2详解】如图,性质:当时,随的增大而增大【小问3详解】,的函数图像在图像的下面,则根据图像即可得到或.24. 如图,车站A 在车站B 的正西方向,它们之间的距离为100千米,修理厂C 在车站B 的正东方向.现有一辆客车从车站B 出发,沿北偏东方向行驶到达D 处,已知D 在A 的北偏东方向,D 在C 的北偏西方向.(1)求车站B 到目的地D 的距离(结果保留根号)(2)客车在D 处准备返回时发生了故障,司机在D 处拨打了救援电话并在原地等待,一辆救援车从修理厂C 出发以35千米每小时的速度沿方向前往救援,同时一辆应急车从车站A 以60千米每小时的速度沿方向前往接送滞留乘客,请通过计算说明救援车能否在应急车到达之前赶到D 处.(参考数据:MBP A ∠∠ =sin MP BC MBP BP AC ∴∠==162MP x ∴-=()1164122y x x =-<≤()()104164122x x y x x ⎧≤≤⎪∴=⎨-+<≤⎪⎩04x ≤≤y x 12y y < 1y ∴2y 0 2.5x <<11.012x <≤45︒60︒30︒CD AD)【答案】(1)千米(2)能【解析】【分析】本题考查了解直角三角形的应用-方向角问题:(1)过点D 作于点E ,得出,,设千米,则千米,在中,千米,根据列方程求出,从而可求出;(2)分别求出的长,再求出应急车和救援车从出发地到目的地行驶时间,再进行比较即可得出答案【小问1详解】解:过点D 作于点E ,如图,则由题意知,∴是等腰直角三角形,∴设千米,则千米,在中,,∴,∵,∴,解得:,2.45≈≈≈+DE AC ⊥BE DE=BD =BE DE x ==BD =Rt ADE△AE =AE AB BE =+50x =+BD ,AD CD DE AC ⊥90,DEB ∠=︒60,ADE Ð=°904545,DBE ∠=︒-︒=︒DBE,,DE BE BD ==BE DE x ==BD =Rt ADE△tan tan 60AE ADE DE ∠==︒=AE ==AB BE AE +=100+x=50x =∴千米,即车站B 到目的地D 的距离为千米;【小问2详解】解:根据题意得,又∴千米,又∵∴千米,救援车所用时间为:(时);应急车所用时间为:(时)∵,∴救援车能在应急车到达之前赶到D 处.25. 如图1,二次函数的图象与轴相交于、两点,其中点的坐标为,与轴交于点,对称轴为直线.(1)求该二次函数的解析式;(2)是该二次函数图象上位于第一象限上的一动点,连接交于点,连接,,.若和的面积分别为、,请求出的最大值及取得最大值时点的坐标;)(50BD ==+=+30,CDE Ð=°cosDE EDC CD ∠==()50100CD ⎛==+= ⎝30,DAE ∠=︒()()2250100AD DE ==⨯+=+10035 4.5⎛÷≈ ⎝()10060 4.55÷≈4.5 4.55<()20y ax bx c a =++≠x A B B ()6,0y ()0,4C 2x =P PA BC E BP CP AC PBC PAC △1S 2S 12S S +P(3)如图2,将抛物线沿射线,为新抛物线上一点,作直线,当点到直线的距离是点到直线的距离的倍时,直接写出点的横坐标.【答案】(1) (2); (3【解析】【分析】本题考查二次函数的综合应用,涉及待定系数法,二次函数图像上点坐标的特征,相似三角形等知识,解题的关键是用含字母的式子表示相关点坐标和相关线段的长度.(1)直接将点坐标带入即可求解;(2)过作轴平行线交直线于,过作轴平行线交直线于,设出点坐标,进而求出、长度,用其表达,即可求解;(3)利用相似三角形性质即可求解.【小问1详解】解:抛物线过点,,对称轴,,解得,抛物线的解析式为;【小问2详解】由(1)知,,,,设直线为,,y BC y 'Q y 'BQ C BQ A BQ 3Q 214433y x x =-++50375,3P ⎛⎫ ⎪⎝⎭P y BC N P x AC M P PN PM 12S S + ()20y ax bx c a =++≠()6,0B ()0,4C 2x =3660422a b c c b a ⎧⎪++=⎪∴=⎨⎪⎪-=⎩13434a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩∴214433y x x =-++214433y x x =-++()2,0A -()6,0B ()0,4C AC 11y k x b =+111204k b b -+=⎧∴⎨=⎩,,设直线为,,,,设,如图1,过作轴平行线交直线于,过作轴平行线交直线于,,,,,,,,1124k b =⎧∴⎨=⎩24y x ∴=+BC 22y k x b =+222604k b b +=⎧∴⎨=⎩22234k b ⎧=-⎪∴⎨⎪=⎩243y x ∴=-+214,40633P n n n n ⎛⎫-++<< ⎪⎝⎭P y BC N P x AC M 2,43N n n ⎛⎫∴-+ ⎪⎝⎭221214,46333M n n n n ⎛⎫-+-++ ⎪⎝⎭2212116363PM n n n n n ⎛⎫∴=--+=+ ⎪⎝⎭2214214423333PN n n n n n -+++--+==()2122PAC PAM PCM C A S S S PM y y PM S ∴=-=⨯-== ()1132PBC cpn PNB B C S S S PN x x PN S ∴=+=⨯-== 22121223633S S PM PN n n n n ∴+++-+==,当时有最大值,此时,;【小问3详解】设平移到点,则轴于,如图2则,,,,即将抛物线向左平移个单位,向上平移个单位,又,则新抛物线顶点为,新抛物线为,如图3作于,于,直线交直线于,()2250533n =--+∴5n =12S S +503214252074433333n n -++-++==75,3P ⎛⎫∴ ⎪⎝⎭B B 'BB '=B K x '⊥K //CO B K 'BB K BCO '∴ ∽BB BK B K BC BO CO ''∴==64BK B K '==3BK ∴=2B K '=32()()222141116444233333y x x x x x =-++=--+=--+221,3⎛⎫- ⎪⎝⎭()2122133y x =-++AM BQ ⊥M CN BQ ⊥N BQ AC G,,,分类讨论:当在线段上,过点作轴于点,,,,,,,,,设直线为,,解得,,联立,,,,//AM CN ∴AMG CNG ∴ ∽3CG CN AC AN∴==G AC G GL x ⊥L //GL CO ∴AGL ACD ∴ ∽CG GL AL AC OC AO ∴==144GL AL OA∴==1GT ∴=12AL =13222OL ∴-==3,12G ⎛⎫∴- ⎪⎝⎭BG 33y k x b =+333331260k b k b ⎧-+=⎪∴⎨⎪+=⎩3321545k b ⎧=-⎪⎪⎨⎪=⎪⎩24155y x ∴-+=212733y x x --+=21224033155x x +--7+=258930x x +-=64186019240∆+>==当在线段的延长线上时,如图4过点作轴于,,,,,,,,,,设直线为,,解得,,联立,,,,,G CA G GL x ⊥L //GL OC ∴AGL ACO ∴ ∽AG GL AL AC OC AO∴==13AG GC =12GA AC ∴=12GL AL OC AO ∴==2GL ∴=1AL =()3,2G ∴--BQ 44y k x b =+44446032k b k b +=⎧∴⎨-+=-⎩442943k b ⎧=⎪⎪⎨⎪=-⎪⎩2493y x ∴-=212733y x x --+=21242703339x x x ∴+--+=236631220x x x +--+=238750x x +-=6447539640∆+⨯⨯>==综上.26. 已知是等腰直角三角形,,为平面内一点.(1)如图1,当点在的中点时,连接,将绕点逆时针旋转,得到,若,求的周长;(2)如图2,当点在外部时,、分别是、的中点,连接、、,将绕点逆时针旋转得到,连接、、,若,请探究、、之间的数量关系并给出证明;(3)如图3,当在内部时,连接,将绕点逆时针旋转,得到,若经过中点,连接、,为的中点,连接并延长交于点,当最大时,请直接写出的值.【答案】(1)(2)(3【解析】【分析】本题是几何变换综合题,考查了旋转性质,全等三角形的判定与性质,相似三角形的性质与判定,等腰直角三角形的性质,勾股定理,三角形的中位线的性质与判定,熟练掌握等腰直角三角形的性质及旋转的性质是解题的关键.(1)作中点,连接,是的中位线,可得,得到,由旋转的性质可得,,进而得到,,最后由勾股定理得即可求解;Q ABC AB AC =D D AB CD CD D 90︒ED 4AB =ADE V D ABC E F AB BC EF DE DF DE E 90︒EG CG DG FG FDG FGE ∠∠=FD FG CG D ABC AD AD D 90︒ED ED BC F AE CE G CE GF AB H AG ΔΔACG AHGS S 2++FD CG =+BC M DM DM ABC DM AB ⊥BD AD DM ==EDA CDM ≌2AD BD DM ===4AC =。

九年级数学下学期第一次中考模拟数学试卷及答案解析

九年级数学下学期第一次中考模拟数学试卷及答案解析

九年级数学下学期第一次中考模拟数学试卷(带答案解析)一、选择题1、如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB=20°,则∠AOD 等于( )A .160°B .150°C .140°D .120°2、下列几何体的主视图既是中心对称图形又是轴对称图形的是( )。

A .B .C .D .3、在数轴上表示不等式x ﹣1<0的解集,正确的是() A . B .C .D .4、一个圆锥的底面半径是5cm ,其侧面展开图是圆心角是150°的扇形,则圆锥的母线长为( ) A .9cm B .12cm C .15cm D .18cm5、甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.6环,方差分别是S 甲2=0.45,S 乙2=0.50,S 丙2=0.55,S 丁2=0.60,则射击成绩最稳定的是( )A .甲B .乙C .丙D .丁6、如果点A (x 1,y 1)和点B (x 2,y 2)是直线y=kx ﹣b 上的两点,且当x 1<x 2时,y 1<y 2,那么函数y=的图象位于( )象限。

A .一、四B .二、四C .三、四D .一、三 7、某天的最高气温是11℃,最低气温是﹣1℃,则这一天的最高气温与最低气温的差是( )A .2℃B .﹣2℃C .12℃D .﹣12℃ 8、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC 相似的是( )A .B .C .D .9、如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为x=-1,且过点(-3,0).下列说法:①abc <0;②2a-b=0;③4a+2b+c <0;④3a+c=0;则其中说法正确的是( )。

A .①② B .②③ C .①②④ D .②③④10、如图,在平行四边形ABCD 中,E 是CD 上的一点,DE :EC=2:3,连接AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF :S △EBF :S △ABF =() A .2:5:25 B .4:9:25 C .2:3:5 D .4:10:25二、填空题11、已知,如图,∠MON=45°,OA 1=1,作正方形A 1B 1C 1A 2,周长记作C 1;再作第二个正方形A 2B 2C 2A 3,周长记作C 2;继续作第三个正方形A 3B 3C 3A 4,周长记作C 3;点A 1、A 2、A 3、A 4…在射线ON 上,点B 1、B 2、B 3、B 4…在射线OM 上,…依此类推,则第n 个正方形的周长C n = 。

2023年贵州省遵义市第十二中学九年级下学期第一次模拟数学试题(含答案解析)

2023年贵州省遵义市第十二中学九年级下学期第一次模拟数学试题(含答案解析)

2023年贵州省遵义市第十二中学九年级下学期第一次模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在1、-1、3、-2这四个数中,互为相反数的是()A .1与-1B .1与-2C .3与-2D .-1与-22.如图,水平的讲台上放置的圆柱形笔筒和长方体粉笔盒,其俯视图是()A .B .C .D .3.据遵义时文化旅游局发布称:今年春节长假期间,遵义市累计实现旅游收入约为16.3亿元,数据16.3亿元用科学记数法表示为()A .100.16310⨯B .101.6310⨯C .91.6310⨯D .81.6310⨯4.下列二次根式是最简二次根式的是()ABC D 5.如图,在ABC 中,AB AC =,30A ∠=︒,直线a b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若1145∠=︒,则2∠的度数是()6.如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:AC AB =ADC △与ABC 的面积比是()A .B .1:2C .1:3D .1:47.下列说法正确的是()A .任意掷一枚质地均匀的硬币8次,一定有4次正面向上B .天气预报说“明天的降雨概率为60%”,表明明天有60%的时间在降雨C .“彩票中奖的概率是1100”表示买100张彩票一定会有一张中奖D .“篮球队员在罚球线上投篮一次,没有投中”为随机事件8.对于反比例函数2023y x=-.下列说法不正确的是()A .图象分布在二,四象限内B .图象经过点()1,2023-C .当0x >时,y 随x 的增大而增大D .若点()()1122,,,A x y B x y 都在函数的图象上,且12x x <时,则12y y <9.如图1和图2,已知点P 是O 上一点,用直尺和圆规过点P 作一条直线,使它与O 相切于点P .以下是甲、乙两人的作法:甲:如图1,连接OP ,以点P 为圆心,OP 长为半径画弧交O 于点A ,连接并延长OA ,再在射线OA 上截取线段AB ,使AB OP =,作直线PB ,则直线PB 即为所求;乙:如图2,作直径PA ,在O 上取一点B (异于点P ,A ),连接AB 和BP ,过点P 作BPC ∠,使BPC A ∠=∠,则直线PC 即为所求.对于甲、乙两人的作法,下列判断正确的是()A .甲、乙两人的作法都正确B .甲、乙两人的作法都错误C .甲的作法正确,乙的作法错误D .甲的作法错误,乙的作法正确10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则EF 的长为()A .9B .C .D .311.我校《足球》社团有30名成员,下表是社团成员的年龄分布统计表,对于不同的x ,下列关于年龄的统计量不会发生改变的是()年龄(单位:岁)1112131415频数(单位:名)512x11x-2A .平均数、中位数B .平均数、方差C .众数、中位数D .众数、方差12.若二次函数223y ax ax a =-+-(a 是不为0的常数)的图象与x 轴交于A 、B 两点.下列结论:①0a >;②当1x >-时,y 随x 的增大而增大;③无论a 取任何不为0的数,该函数的图象必经过定点()1,3-;④若线段AB 上有且只有5个横坐标为整数的点,则a 的取值范围是1334a <<.其中正确的结论是()A .①②③B .②④C .①③D .①③④二、填空题13.分解因式233x x -=_______14.0π,3.2这五个数中,随机抽取一个,则抽到无理数的概率是______.15.如图,将边长为6cm 的正方形纸片ABCD ,剪去图中阴影部分的四个全等的直角三角形,再沿图中虚线折起,可以得到一个长方体盒子(A ,B ,C ,D 正好重合于上底面一点,且AE BF =)若所到的长方体盒子的表面积为211cm ,则线段AE =___________.16.如图,已知ABC 为等边三角形,6AB =,将边AB 绕点A 顺时针旋转a (0120a ︒<<︒)得到线段AD ,连接CD ,CD 与AB 交于点G ,BAD ∠的平分线交CD 于点E ,点F 为CD 上一点,且DF 2CF =.则AEC ∠=___________°三、解答题17.(1(2013tan 60π2-⎛⎫+--+︒ ⎪⎝⎭.(2)先化简,再求值:2214411a a a a a -+⎛⎫-÷⎪--⎝⎭,其中1a =-.18.今年5月,从全国旅游景区质量等级评审会上传来喜讯,我市“风冈茶海之心”、赤水佛光岩”、“仁怀中国酒文化城”三个景区加入国家“4A”级景区.至此,全市“4A”级景区已达13个.某旅游公司为了了解我市“4A”级景区的知名度情况,特对部分市民进行现场采访,根据市民对13个景区名字的回答情况,按答数多少分为熟悉(A ),基本了解(B )、略有知晓(C )、知之甚少(D )四类进行统计,绘制了一下两幅统计图(不完整),请根据图中信息解答以下各题:(1)本次调查活动的样本容量是;(2)调查中属于“基本了解”的市民有人;(3)补全条形统计图;(4)“略有知晓”类占扇形统计图的圆心角是多少度?“知之甚少”类市民占被调查人数的百分比是多少?19.如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=kx(k≠0)的图象与AD边交于E(﹣4,12),F(m,2)两点.(1)求k,m的值;(2)写出函数y=kx图象在菱形ABCD内x的取值范围.20.在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A,B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3600元,则增加购买A型口罩的数量最多是多少个?21.如图,在ABCDY中,E为CD边的中点,连接BE并延长,交AD的延长线于点F,延长ED至点G,使DG DE,分别连接AE,AG,FG.(1)求证:BCE FDE ≅△△;(2)当BF 平分ABC ∠时,四边形AEFG 是什么特殊四边形?请说明理由.22.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角60β=︒,求树高AB (结果保留根号).23.如图,AB 为O 的直径,P 是BA 延长线上一点,PC 切O 于点C ,CG 是O 的弦,CG AB ⊥,垂足为D .(1)求证:PCA ABC ∠=∠;(2)过点A 作AE PC ∥,交O 于点E ,交CD 于点F ,连接BE .若3sin 5P ∠=,5CF =,求BE 的长.24.如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.图2(1)直接写出b ,c 的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?25.(1)【问题发现】如图1所示,ABC 和ADE V 均为正三角形,B 、D 、E 三点共线.猜想线段BD 、CE 之间的数量关系为______;BEC ∠=______︒;(2)【类比探究】如图2所示,ABC 和ADE V 均为等腰直角三角形,90ACB AED ∠=∠=︒,AC BC =,AE DE =,B 、D 、E 三点共线,线段BE 、AC 交于点F .此时,线段BD 、CE 之间的数量关系是什么?请写出证明过程并求出BEC ∠的度数;(3)【拓展延伸】如图3所示,在ABC 中,90BAC ∠=︒,30B ∠=︒,8BC =,DE 为ABC 的中位线,将ADE V 绕点A 顺时针方向旋转,当DE 所在直线经过点B 时,请直接写出CE 的长.参考答案:1.A【详解】根据只有符号不同的两个数互为相反可得:1与﹣1互为相反数,故选A .2.D【分析】图中圆柱的俯视图是圆,长方体的俯视图是长方形,据此选出即可.【详解】解:图中正立摆放的圆柱的俯视图是圆,长方体的俯视图是长方形,故选:D .【点睛】本题考查三视图,掌握常见几何体的三视图是解题的关键,注意培养空间想象能力.3.C【分析】先将“亿”表示成8110⨯,再进行整理即可得到答案.【详解】解:16.3亿用科学记数法表示为8916.310 1.6310⨯=⨯,故选:C .【点睛】本题考查科学记数法表示数,注意写成10n a ⨯时,110a ≤<,另外在表示大数时,注意“百、万、千万、亿”的表示.4.B【分析】若根号下没有小数、分数、能够开方的因数,就是最简二次根式,据此逐项判断即可.=A 选项不是最简二次根式;=C 选项不是最简二次根式;D 选项不是最简二次根式;故选:B .【点睛】本题考查最简二次根式的定义,若根号下没有小数、分数、能够开方的因数,就是最简二次根式.5.C【分析】根据三角形外角的性质得到1115AED A ∠=∠-∠=︒,利用两直线平行,同位角相等可得2AED ACB ∠∠∠=+,根据等腰三角形的性质得到180752AACB ︒-∠∠==︒,代入即可求解.【详解】解: 1145∠=︒,30A ∠=︒,∴1115AED A ∠=∠-∠=︒,AB AC =,30A ∠=︒,∴180752AACB ︒-∠∠==︒, a b ,∴2AED ACB ∠∠∠=+,即115275︒=∠+︒,解得240∠=︒,故选:C .【点睛】本题考查三角形外角的性质、平行线的性质、等腰三角形的性质,熟练运用上述性质是解题的关键.6.B【分析】根据两角对应相等,两三角形相似,可得ABC ∽ACD ,再根据面积比等于相似比的平方即可求解.【详解】解: B ACD ∠=∠,A ∠为公共角,ABC ∴∽ACD ,:AC AB =212ACD ABC S S ∴== ,故选:B .【点睛】本题考查相似三角形的判定与性质,应用“两角对应相等的两个三角形相似”时,往往有一个角是作为公共角出现的,是题目的隐含信息.另外需要注意面积比等于相似比的平方.7.D【分析】根据概率的意义逐项分析判定即可.【详解】解:A .任意掷一枚质地均匀的硬币,正面朝上的概率为二分之一,是随机事件,因此投掷8次,不一定是4次正面朝上,该项说法错误;B .天气预报说“明天的降雨概率为60%”,是随机事件,说明降雨的可能性,而非降雨时间,该项说法错误;C .“彩票中奖的概率是1100”,并不代表买100张彩票一定会有一张中奖,该项说法错误;D .“篮球队员在罚球线上投篮一次,没有投中”为随机事件,说法正确;故选:D .【点睛】本题考查概率的意义,概率只是表示某事件发生的可能性,当试验次数足够多时,事件出现的频率越接近概率.8.D【分析】根据反比例函数的性质,逐一进行判断即可.【详解】解:∵2023y x=-,20230k =-<,∴图象过二,四象限,在每一个象限内,y 随x 的增大而增大,当1x =时,2023y =-,∴图象经过点()1,2023-,A 、选项正确,不符合题意;B 、选项正确,不符合题意;C 、选项正确,不符合题意;D 、当120x x <<时,12y y >;选项错误,符合题意;故选D .【点睛】本题考查反比例函数的性质.熟练掌握反比例函数的性质,是解题的关键.9.A【分析】对于甲,先证明AOP 是等边三角形,60OPA OAP ∠=∠=︒,再根据等边对等角和三角形外角的性质证明30APB ABP ∠=∠=︒,进一步证明90∠=︒OPB ,即可判断甲;对于乙根据直径所对的圆周角是直角结合直角三角形两锐角互余得到90APB PAB ︒∠+∠=,再由BPC BAP ∠=∠,可知90∠=︒OPB ,由此即可判断乙.【详解】解:如图1中,连接PA .∵AP PO AO ==,∴AOP 是等边三角形,∴60OPA OAP ∠=∠=︒,∵AB OP AP ==,∴APB ABP ∠=∠,∵OAP APB ABP ∠=∠+∠,∴30APB ABP ∠=∠=︒,∴90∠=︒OPB ,即OP PB ⊥,∴PB 是O 的切线,故甲正确;如图2所示,∵AP 是直径,∴90ABP ∠=︒,∴90APB PAB ︒∠+∠=,∵BPC BAP ∠=∠,∴90APB BPC ∠+∠=︒,∴90∠=︒OPB ,即OP PB ⊥,∴PB 是O 的切线,故乙正确;故选:A .【点睛】本题主要考查了切线的判定,等边三角形的性质与判定,三角形外角的性质,直径所对的圆周角是直角,直角三角形两锐角互余等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.10.C【分析】首先根据已知条件易得,中间小正方形的边长为:a -b ;接下来根据8ab =,大正方形的面积为25求出小正方形的边长,然后根据勾股定理求解即可.【详解】解:由题意可知:中间小正方形的边长为:a -b ,∵每一个直角三角形的面积为:12ab =12×8=4,从图形中可得,大正方形的面积是4个直角三角形的面积与中间小正方形的面积之和,∴214()252ab a b ⨯+-=,∴2()25169a b -=-=,∴a -b =3,∴EF =.故选:C .【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理.直角三角形两条直角边的平方和等于斜边的平方.11.C【分析】根据表格数据可知总人数是30,从小到大排列后,中位数为第15和第16个数的平均数,在表格中找到都是12岁;再结合人数不能是负数,得到年龄13岁和年龄14岁的人都不会超过11岁,得到众数不变.【详解】解:根据表格数据,可知总人数为51211230x x +++-+=,从小到大排列后,中位数为第15和第16个数的平均数,都是12岁,故中位数是12不会随x 的不同而变化;因为人数不能是负数,所以年龄13岁和年龄14岁的人都不会超过11,所以众数是12也不会随x 的不同而变化;故选:C .【点睛】本题考查众数、中位数、方差和平均数,理解这些统计量的定义,根据题目条件进行运算.12.C【分析】根据0∆>求出a 的范围即可判断①;求出对称轴即可判断②;把函数表达式整理成为2(1)3y a x =--,即可判断③,根据2145<-<x x ,21()x x >,利用根与系数的关系即可求出的a 的范围,从而可以判断④.【详解】解: 二次函数223y ax ax a =-+-(a 是不为0的常数)的图象与x 轴交于A ,B 两点,2(2)4(3)0a a a ∴∆=--⨯->,整理得:120a >,0a ∴>,故①正确;2122b a x a a-=-=-= ,∴函数关于1x =对称,0a > ,开口向上,∴当1x >时,y 随x 的增大而增大;故②错误;2(21)3y a x x =-+- ,2(1)3y a x =--当1x =时,=3y -,则恒过定点()1,3-,故③正确;若线段AB 上有且只有5个横坐标为整数的点,根据二次函数的对称轴是1x =,则2145<-<x x ,21()x x >,21x x -=即:46≤<,解得:1334a <≤,故④错误,故选:C .【点睛】本题考查了二次函数的基本性质,根与系数的基本关系,解题的关键是熟练掌握二次函数的基本性质.13.3x (x -1)【分析】原式提取公因式即可得到结果.【详解】解:233x x -=3x (x -1);故答案为:3x (x -1).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.25【分析】利用简单的概率公式计算即可.【详解】∵一共有5π共2种等可能性,∴抽到无理数的概率是25.故答案为:25.【点睛】本题考查了简单的概率公式求概率,熟练掌握公式是解题的关键.15.6【分析】根据题意可知A ,B ,C ,D 正好重合于上底面一点时,角上4个小三角形的斜边作为上底面的边,由此得到上底面的边长,利用勾股定理即可求解.【详解】解:若所到的长方体盒子的表面积为211cm ,则每个面的面积为211cm 6,A ,B ,C ,D 正好重合于上底面一点时,角上4个小三角形的斜边作为上底面的边,则21126AE =,解得6AE =,.【点睛】本题考查勾股定理的应用,两条直角边的平方和等于斜边的平方.本题中识别出角上4个小三角形的斜边作为上底面的边是解题的关键,注意不要漏掉单位.16.60【分析】先根据旋转的性质和等边三角形得AD AB AC ==,60BAC ∠=︒,再结合等腰三角形的性质和角平分线的定义,即可得到AEC ∠的度数.【详解】解: 将边AB 绕点A 顺时针旋转a (0120a ︒<<︒)得到线段AD ,ABC 为等边三角形,AD AB AC ∴==,60BAC ∠=︒,ADC ACD ∠∠∴=,AE 平分BAD ∠,DAE BAE ∠∠∴=,AEC ADC DAE ∠∠∠=+ ,AEC ACD BAE ∠∠∠∴=+,在ACE 中,180AEC ACD BAE BAC ∠∠∠∠+++=︒,60AEC ∠∴=︒,故答案为:60.【点睛】本题考查等腰三角形的判定与性质、三角形外角的性质、三角形内角和定理,综合性较强,能够识别图中有助于解题的角是解决本题的关键.17.(1)5;(2)2a a -,13【分析】(1)分别将二次根式化简、负整数指数幂、特殊角三角函数值、零指数幂计算出来,即可求解;(2)将括号内的分式相减,并把括号外面分式的分子、分母进行因式分解,将除法转化为乘法,约分即可求解.【详解】解:(1(2013tan 60π2-⎛⎫--+︒ ⎪⎝⎭41=+-+5=;(2)2214411a a a a a -+⎛⎫-÷ ⎪--⎝⎭()()221111a a a a a ---=÷--()()21212a a a a a --=⋅--2a a =-,当1a =-时,原式11123-==--.【点睛】本题考查分式的混合运算,掌握法则的同时,要认真计算,不可操之过急.在计算时,能整理的要先进行整理,可以约分的部分自然就显现出来了.18.(1)1500;(2)45;(3)补图见解析;(4)“略有知晓”类占扇形统计图的圆心角是144°,“知之甚少”类市民占被调查人数的百分比是22%.【分析】(1)用熟悉(A )的人数除以所占的百分比,计算即可得解;(2)先求出略有知晓(C )的人数,然后列式计算即可得解;(3)根据(2)的计算补全图形统计图即可;(4)用“略有知晓”C 所占的百分比乘以360°计算即可,再根据知之甚少(D )的人数列式计算即可求出所占的百分比.【详解】(1)120÷8%=1500;(2)略有知晓(C )的人数为:1500×40%=600人,“基本了解”(B )的人数为:1500-120-600-330=1500-1050=450人;(3)补全统计图如图所示;(4)“略有知晓”类占扇形统计图的圆心角是:360°×40%=144°“知之甚少”类市民占被调查人数的百分比是:3301500×100%=22%.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(1)k=-2,m=-1(2)﹣4<x <﹣1或1<x <4【分析】(1)利用待定系数法即可解决问题;(2)根据函数图象,写出反比例函数的图象在菱形内部的自变量的取值范围即可;【详解】解:(1)∵点E (﹣4,12)在y =k x 上,∴k =﹣2,∴反比例函数的解析式为y =﹣2x.∵F (m ,2)在y =2x -上,∴m =﹣1.(2)函数y =k x图象在菱形ABCD 内x 的取值范围为:﹣4<x <﹣1或1<x <4.【点睛】本题考查了反比例函数图象上点的特征、菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(1)A 型口罩单价为4元/个,B 型口罩单价为2.5元/个(2)增加购买A 型口罩的数量最多是400个【分析】(1)设A 型口罩单价为x 元/个,则B 型口罩单价为()1.5x -元/个,根据用8000元购买A 型口罩的数量与用5000元购买B 型口罩的数量相同可得关于x 的分式方程,解方程并检验后即得结果;(2)设增加购买A 型口罩的数量是m 个,根据m 个A 型口罩的费用与2m 个B 型口罩的费用之和不超过3600元可得关于m 的不等式,求出不等式的解集后结合实际情况即得结果.【详解】(1)设A 型口罩单价为x 元/个,则B 型口罩单价为()1.5x -元/个,根据题意,得:800050001.5x x =-,解方程,得4x =,经检验:4x =是原方程的根,且符合题意,∴ 1.54 1.5 2.5x -=-=(元),答:A 型口罩单价为4元/个,B 型口罩单价为2.5元/个;(2)设增加购买A 型口罩的数量是m 个,则增加购买B 型口罩数量是2m 个,根据题意,得:2.5243600m m ⨯+≤,解不等式,得:400m ≤,∴m 的最大值为400,答:增加购买A 型口罩的数量最多是400个.【点睛】本题考查了分式方程和不等式的应用,属于常考题型,正确理解题意、找准相等与不等关系是解题的关键.21.(1)见解析;(2)矩形,见解析【分析】(1)利用平行四边形的性质证明DFE CBE ∠=∠,利用中点的性质证明DE CE =,结合对顶角相等,从而可得结论;(2)先证明,AD DF =结合,GD DE =证明四边形AEFG 是平行四边形,再利用等腰三角形的性质证明,AE BF ⊥从而可得结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴//AD BC ,∴DFE CBE∠=∠又∵E 为CD 边的中点,∴DE CE=∵FED BEC ∠=∠,DFE CBE ∠=∠,DE CE =,∴BCE FDE≅△△(2)答:四边形AEFG 是矩形,理由如下:∵四边形ABCD 是平行四边形,∴AD BC =,∵FDE BCE ≅△△,∴BC FD =,FE EB =,∴FD AD=,∵GD DE=,∴四边形AEFG是平行四边形.∵BF平分ABC∠,∴CBF ABF∠=∠.又∵AFB FBC∠=∠,∴ABF AFB∠=∠,∴AB AF=又∵FE EB=,∴AE FE⊥,∴90AEF∠=︒,∴AEFGY是矩形【点睛】本题考查的是三角形全等的判定与性质,平行四边形的性质与判定,矩形的判定,等腰三角形的判定与性质,掌握“有一个角是直角的平行四边形是矩形”是证题的关键. 22.【分析】如下图,过点C作CF⊥AB于点F,设AB长为x,则易得AF=x-4,在Rt△ACF 中利用∠α的正切函数可由AF把CF表达出来,在Rt△ABE中,利用∠β的正切函数可由AB把BE表达出来,这样结合BD=CF,DE=BD-BE即可列出关于x的方程,解方程求得x 的值即可得到AB的长.【详解】解:如图,过点C作CF⊥AB,垂足为F,设AB=x,则AF=x-4,∵在Rt△ACF中,tan∠α=AF CF,∴CF=4tan30x-︒=BD,同理,Rt △ABE 中,BE =tan60x ︒,∵BD -BE =DE ,∴4tan30x -︒-tan60x ︒=3,解得x答:树高AB 为(.【点睛】作出如图所示的辅助线,利用三角函数把CF 和BE 分别用含x 的式子表达出来是解答本题的关键.23.(1)证明见解析(2)12【分析】(1)连接半径OC ,根据切线的性质得:OC PC ⊥,由圆周角定理得:90ACB ∠=︒,所以PCA OCB ∠=∠,再由同圆的半径相等可得:∠=∠OCB ABC ,从而得结论;(2)先证明CAF ACF ∠=∠,则5AF CF ==,根据3sin sin 5P FAD ∠=∠=,可得4=AD ,3FD =,得8CD CF FD =+=,设OC r =,4OD r =-,根据勾股定理列方程可得r 的值,再由三角函数sin BE EAB AB∠=,可得BE 的长.【详解】(1)(1)连接OC ,交AE 于H ,PC 是O 的切线,∴⊥OC PC ,90PCO ∴∠=︒,90PCA ACO ∴∠+∠=︒,AB 是O 的直径,90ACB ∴∠=︒,90ACO OCB ∴∠+∠=︒,PCA OCB ∴∠=∠,OC OB =Q ,OCB ABC ∴∠=∠,PCA ABC ∴∠=∠;(2)∵AE PC ∥,CAF PCA ∴∠=∠,AB CG ⊥ ,∴ AC AG =,ACF ABC ∴∠=∠,ABC PCA ∠=∠ ,CAF ACF ∴∠=∠,5AF CF ∴==,∵AE PC ∥,P FAD ∴∠=∠,3sin sin 5P FAD ∴∠=∠=,在Rt AFD △中,sin FD FAD AF ∠=,5AF =,3FD ∴=,∴4=AD ,8CD CF FD ∴=+=,在Rt OCD △中,设OC r =,4OD r =-,()22248r r =-+,10r ∴=,220AB r ∴==,AB 是直径,90AEB ∴∠=︒,在Rt AEB 中,sin BE EAB AB∠=,20AB =,12BE ∴=.【点睛】本题考查了切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,连接OC 构造直角三角形是解题的关键.24.(1)76b =,1c =;(2)7324米;(3)352【分析】(1)根据题意,可直接写出点A 点B 坐标,代入216y x bx c =-++,求出b 、c 即可;(2)根据(1)中函数解析式直接求顶点坐标即可;(3根据2173716624y x x =-++=,先求得大棚内可以搭建支架的土地的宽,再求得需搭建支架的面积,最后根据每平方米需要4根竹竿计算即可.【详解】解:(1)由题意知点A 坐标为(0)1,,点B 坐标为(6)2,,将A 、B 坐标代入216y x bx c =-++得:21=12666c b c ⎧⎪⎨=-⨯++⎪⎩解得:761b c ⎧=⎪⎨⎪=⎩,故76b =,1c =;(2)由221717731666224y x x x ⎛⎫=-++=--+ ⎪⎝⎭,可得当72x =时,y 有最大值7324,即大棚最高处到地面的距离为7324米;(3)由2173716624y x x =-++=,解得112x =,2132x =,又因为06x ≤≤,可知大棚内可以搭建支架的土地的宽为111622-=(米),又大棚的长为16米,故需要搭建支架部分的土地面积为1116882⨯=(平方米)共需要884352⨯=(根)竹竿.【点睛】本题主要考查根据待定系数法求函数解析式,根据函数解析式求顶点坐标,以及根据函数值确定自变量取值范围,掌握此题的关键是熟练掌握二次函数图像的性质.25.(1)BD CE =,60;(2)BD =,BEC ∠的度数为45︒,过程见解析;(3【分析】(1)证()SAS ABD ACE △≌△,得BD CE =,=BDA CEA ∠∠,进而判断出60BEC ∠=︒即可;(2)证BAD CAE ∽,得135ADB AEC ∠=∠=︒,BD AB AD CE AC AE ==,则45BEC AEC AED ∠=∠-∠=︒,再求出BD AB CE AC==(3)分两种情况,根据相似三角形的判定与性质结合勾股定理分别求出CE 的长即可.【详解】解:(1)∵ABC 和ADE V 均为正三角形,∴AB AC =,AD AE =,60BAC DAE ∠=∠=︒,60ADE AED ∠=∠=︒,∴BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABD ACE △≌△,∴BD CE =,=BDA CEA ∠∠,∵点B ,D ,E 在同一直线上,∴180120ADB ADE ∠=︒-∠=︒,∴120AEC ∠=︒,∴1206060BEC AEC AED ∠=∠-∠=︒-︒=︒,综上所述,线段BD 、CE 之间的数量关系为BD CE =,60BEC ∠=︒,故答案为:BD CE =,60.(2)∵ABC 和ADE V 均为等腰直角三角形,90ACB AED ∠=∠=︒,∴45BAC ABC ADE DAE ∠=∠=∠=∠=︒,∴BAD CAE ∠=∠,135ADB ∠=︒,∵Rt ABC △和Rt ADE △中,sin AC ABC AB ∠=,sin AE ADE AD ∠=,sin 452=°,∴AC AE AB AD =,∴AB AC AD AE =,又∵BAD CAE ∠=∠,∴BAD CAE ∽,∴135ADB AEC ∠=∠=︒,BD AB AD CE AC AE==,∴45BEC AEC AED ∠=∠-∠=︒,∵2AC AE AB AD ==,∴AB AC =∴BD AB CE AC==∴BD ;BD 、CE 之间的数量关系是BD =,BEC ∠的度数为45︒;(3)分两种情况:①如图4,∵90BAC ∠=︒,30B ∠=︒,8BC =,∴142AC BC ==,∴AB =,∵DE 为ABC 的中位线,∴142DE BC ==,DE BC ∥,122AE AC ==,12AD AB ==∴30ADE ABC ∠=∠=︒,12AD AE AB AC ==,由旋转的性质得:BAD CAE ∠=∠,∴BAD CAE ∽,∴BD AB CE AC =180150ADB AEC ADE ∠=∠=︒-∠=︒,∵9060AED ADE ∠=︒-∠=︒,∴90BEC AEC AED ∠=∠-∠=︒,设CE x =,则BD =,4BE BD DE =+=+,在Rt BCE 中,由勾股定理得:)22248x ++=,解得:x =x =,∴CE =②如图5,同①可得,BAD CAE ∽,∴4BD AB CE AC ==ACE ABD ∠=∠,∴90CBE BCE ABD ABC BCE ACE ABC BCE ACB ABC ∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒,∴90BEC ∠=︒,设CE x =,则BD =,4BE BD DE =-=-,在Rt BCE 中,由勾股定理得:)22248x +-=,解得:x =或x =,∴CE =综上所述,CE 【点睛】本题考查几何变换综合题,考查了旋转变换的性质、全等三角形的判定和性质、相似三角形的判定和性质、等边三角形的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

九年级数学下学期第一次模拟考试试题

九年级数学下学期第一次模拟考试试题

考数学下学期第一次模拟考试试题一、 选择题(每题3分,共24分) 1.下列运算正确的是( )A. B. C. D.2.与15+最接近的整数是( ) A.4B.3C.2D.1 3.在平面直角坐标系中,点(4,-3)关于原点对称的点是( )A.(-4,-3) B .(-4,3) C .(4,-3) D .(4,3) 4.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是( ) A .80元B .90元C .100元D .110元5.已知关于x 的方程0142=++-c x x 有两个相等的实数根,则常数C 的值为( ) A .-1B .0C .1D .36.△ABC 在网格中的位置如图(每个小正方体边长为1),AD ⊥BC 于D ,下列选项中错误..的是( ) A .sin α=cos α B .tanC =2C .sin β=cos βD .tan α=1第6题图第7题图第8题图7如图是某几何体的三视图,其侧面积为( ) A .6B .π4C .π6D .π128.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D,连接AD .若∠B=40°,∠C =36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24°二、 填空题(每题3分,共24分)9.分解因式:=+-2422a a ___________________.10.要使二次根式3x 有意义,则x 的取值范围是____________.45x x x ⋅=632x x x ÷=2233x x -=()32626x x =322主视图左视图俯视图a111.实数a在数轴上的位置如图,则3a-=____________.12.将抛物线22y x=向上平移2个单位,再向右平移3个单位后,得到的抛物线的表达式为_______________________.13.关于x的一元二次方程(m-1)x2+6x+m2-m=0的一个根x=0,则m的值是___________________.14.如图,是由四个直角边分别是3和4的全等的直角三角形拼成的“赵爽弦图”,小亮随机往大正方形区域内投针一次,则针扎在阴影部分的概率是___________________.15. 如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=40°,则∠E=________度.第14题图第15题图第16题图16.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴上,OD=2OA=6, AD:AB=3:1,则点C的坐标是___________________.三、解答题(本题共有6小题,各小题6分,共36分)17.( 6分)解不等式组()⎪⎩⎪⎨⎧+<+≤--1312613xxxx18.(6分)解分式方程:2344222+=-+-xxxx19.(6分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上)(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.20.(6分)阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.组别时间(小时)频数(人数)频率A 0≤t≤0.5 9 0.18B 0.5≤t≤1 a 0.3C 1≤t≤1.5 12 0.24D 1.5≤t≤2 10 bE 2≤t≤2.5 4 0.08合计 1请根据图表中的信息,解答下列问题:(1)表中的a= ,b= ,中位数落在组,将频数分布直方图补全;(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.21.( 6分)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC 上的点F处,过点F作FG∥CD,交AE于点G,连接DG.求证:四边形DEFG为菱形.22. ( 6分)“五一”期间,文具店老板购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1014B型15 22(2)要使销售文具所获利润不少于500元,那么老板最多能购进A型文具多少只?四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.(8分)已知在△ABC中,AB =AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED = EC;(2)若CD =3,EC =2,求AB的长.24.(8分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=mx的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OMP的面积等于2,求点P的坐标.25.(10分)小亮将笔记本电脑水平放置在桌子上,显示屏OA 与底板OB 所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架BCO '后,电脑转到B O ′A ′位置(如图3),侧面示意图为图4.已知OA=OB=28cm ,O ′C ⊥OB 于点C ,O ′C=14cm.(参考数据:41412.≈,73213.≈,23625.≈) (1)求∠CBO'的度数.(2)显示屏的顶部A '比原来升高了多少cm ?(结果精确到0.1cm )(3)如图4,垫入散热架后,要使显示屏O ′A ′与水平线的夹角仍保持120°,则显示屏O ′A ′应绕点O '按顺时针方向旋转多少度?(不写过程,只写结果.........)26. (10分)在矩形ABCD中,AB=3,AD=4,动点P从点B出发,以每秒1个单位的速度,沿BA向点A移动;同时点Q从点C出发,以每秒2个单位的速度,沿CB向点B移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤2),解答下列问题:(1)当x为何值时,PQ⊥DQ;(2)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最小值?并求出最小值.银川唐徕回中2017~2018学年度第二学期第一次模拟考试初三数学试卷答案及评分标准四、选择题(每题3分,共24分)ABBCDCCC二、填空题(每题3分,共24分)9. 2(a-1) 210. x≥3 a 12. y= 2(x-3)2+213. m=0 14.0.04 15. 20° 16.(2,7)三、解答题(本题共有6小题,各小题6分,共36分)17.解①式得x≤2.5 ……………………2'解②式得x>-2……………………4'∴不等式组的解集是-2< x≤2.5 ……………………6'18.解: 2(x+2)+(-4x)=3(x-2)x=2 ……………………4'检验:将x=2代入4-x2中得4-4=0 x=2是原方程的增根……………………5'∴原方程无解……………………6'19.图略(1) 2' (2) 2' (3)(2')20.(1)a=15(直方图补全此空得分),b=0.2,中位数落在C组……………………3'(2)2000×0.18=360人……………………4'(3)图略……………………6'21.证法一:∵FG∥CD ∴∠DEG=∠EGF ……………………1'由折叠可知:∠DEG=∠GEF EF=DE ……………………3'∴∠EGF=∠GEF ∴GF=EF ∴GF=DE∴四边形GFED是平行四边形……………………5'又∵EF=GF ∴□GFED是菱形……………………6'证法二:由折叠可知:GF=GD FE=DE∠DEG=∠GEF ……………………3'又∵FG∥CD ∴∠DEG=∠EGF ……………………4'∴∠EGF=∠GEF ∴GF=EF ……………………5'∴GF= FE=ED=DG ∴四边形GFED是菱形……………………6'22.(1)解:设A型文具进货x只,则B型文具进货(100-x)只,根据题意得:10x+15(100-x)=1350 解得x=30 100-x=70(只)答:A型文具进货30只,则B型文具进货70只。

九年级数学下学期第一次模拟考试试题 试题

九年级数学下学期第一次模拟考试试题 试题

教育学院附属中学2021届九年级数学下学期第一次模拟考试试题制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题〔本大题一一共有8小题,每一小题3分,一共24分〕 1. 3-的倒数是A .3B .-3C .13- D .132. 南海资源丰富,其面积约为350万平方千米,相当于我国渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为A .0.35×108B .3.5×107C .3.5×106D .35×1053. 以下函数中,自变量的取值范围是3x >的是A .3y x =-B .13y x =- C .y =D .y =4.为调查某班学生每天使用零花钱的情况,张华随机调查了20名同学,结果如下表:那么这20名同学每天使用的零花钱的众数和中位数分别是A .3,3B .3,3.5C .3.5,3.5D .3.5,35. 以下四个几何体中,主视图与其它三个不同的是6.如图,直线a ∥b ,EF ⊥CD 于点F ,∠2=25°,那么∠1的度数是 A .115° B .125° CD .155°7.假设A (x 1,y 1)、B (x 2,y 2)是一次函数2y ax x =+-图像上的不同的两点,记m =(x 1―x 2)( y 1―y 2),那么当m <0时,a 的取值范围是A .a <0B .a >0C .a <―1D .a >―18.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE 、CF 交于点G ,半径BE 、CD 交于点H ,且点C 是弧AB 的中点,假设扇形的半A B C Da bCD EF 1 2 〔第6题〕 C(第8题)径为2,那么图中阴影局部的面积等于A .2π-4B .2π-2C .π+4D .π-1二、填空题〔本大题一一共有10小题,每一小题3分,一共30分.不需写出解答过程,请把答案直接填写上在答题卡相应位置.......上〕 9. 分解因式:39a a -= ▲ . 10. 反比例函数ky x=的图象经过点〔1,6〕和〔m ,-3〕,那么m = ▲ . 11. 请给出一元二次方程24x x -+ ▲ =0的一个常数项,使这个方程有两个不相等的实数根〔填在横线上,填一个答案即可〕.12. 口袋内装有一些除颜色外完全一样的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 ▲ .13.如图,二次函数y =ax 2+bx +c 的图象经过点(-1,0)、(3,0)和(0,2),当x =2时,y 的值是 ▲ .14. 如图,AB =AC ,DE 垂直平分AB 分别交AB 、AC 于D 、E 两点,假设∠A =40.(第14题)AE D CB〔第13题〕〔第18题〕〔第16题〕B15.正多边形的一个内角的度数恰好等于它的相邻外角的度数的3倍,那么这个多边形的边数为 ▲ .16.如图,⊙O 的半径是4,△ABC 是⊙O 的内接三角形,过圆心O 分别作AB 、BC 、AC 的垂线,垂足为E 、F 、G ,连接EF .假设OG ﹦1,那么EF = ▲ .172(3)0x +-=,那么x = ▲ .18. 如图,一束光线从点O 射出,照在经过A 〔1,0〕、B 〔0,1〕的镜面上的点C ,经AB 反射后,又照到竖立在y 轴位置的镜面上的D 点,最后经y 轴再反射的光线恰好经过点A ,那么点C 的坐标为 ▲ .三、解答题〔本大题一一共有10小题,一共96分.请在答题卡指定区域.......内答题,解答时应写出必要的文字说明、证明过程或者演算步骤〕 19.〔此题满分是8分〕〔10212cos30()12--+--〔2〕解不等式: 122123x x -+-≥.20.〔此题满分是8分〕先化简再求值: 232(1)121x x x x x ---÷--+,其中x 是方程22x x =的根.21.〔此题满分是8分〕据报道,历经一年半的调查研究,PM .各种调查显示,机动车成为PM 2.5的最大来源,一辆车一天行驶20千米,那么这辆车每天至少就要向大气里排放0.035千克污染物.以下是相关的统计图表:〔1〕请根据所给信息补全扇形统计图;〔2〕请你根据“2021年全年空气质量等级天数统计表〞计算该年度重度污染和严重污染出现的频率一共是多少?〔准确到0.01〕〔3〕小明是社区环保志愿者,他和同学们调查了本社区的100辆机动车,理解到其中每天出行超过20千米的有40辆.2021年机动车保有量已打破520万辆,请你通过计算,估计2021年一天中出行超过20千米的机动车至少要向大气里排放多少千克污染物?22.〔此题满分是8分〕为了备战初三物理、化学实验操作考试,某校对初三学生进展了模拟训练.物理、化学各有4个不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a 、b 、c 、d 表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定.小张同学对物理的①、②和化学的b 、c 实验准备得较好,请用树形图或者列表法求他两科都抽到空气质量等级 优 良轻度污染 中度污染 重度污染 严重污染天数〔天〕41 135 844745132021年全年空气质量等级天数统计表 空气中PM 扇形统计图准备得较好的实验题目的概率.23.〔此题满分是10分〕如图,E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE=DF .〔1〕求证:四边形AECF 是平行四边形;〔2〕假设BC =10,∠BAC =90°,且四边形AECF 是菱形,求BE 的长 .24.〔此题满分是10分〕某校准备组织局部学生到少年宫参加活动,陈教师从少年宫带回来两条信息:信息一:按原来报名参加的人数,一共需要交费用320元,假如参加的人数可以增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元; 信息二:假如能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?25.〔此题满分是10分〕如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30º,在A 、C 之间选择一点B 〔A 、EB C DB 、C 三点在同一直线上〕,用测角仪测得塔顶D 的仰角为75º,且AB 间间隔为40m .〔1〕求点B 到AD 的间隔 ; 〔2〕求塔高CD26.〔此题满分是10分〕如图,在△ABC 中,以AC 为直径的⊙O 交AB 于点D ,点E 为弧AD 的中点,连结CE 交AB 于点F ,且BF BC =.〔1〕判断直线BC 与⊙O 的位置关系,并证明你的结论; 〔2〕假设⊙O 的半径为2,3cos 5B =,求CE 的长.27.〔此题满分是12分〕抛物线214y x bx c =-++与x 轴交于,A B 两点,与y 轴交于点C ,连结AC BC ,,D 是线段OB 上一动点,以CD 为一边向右侧作正方形CDEF ,连结BF .假设8OBC S ∆=,AC BC =.〔1〕求抛物线的解析式;〔2〕试判断线段BF 与AB 的位置关系,并说明理由;〔3〕当D 点沿x 轴正方向由点O 挪动到点B 时,点E 也随着运动,求点E 所走过的道路长.28.〔此题满分是12等式p x q ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[]p q ,.对于一个函数,假如它的自变量x 与函数值y 满足:当p x q ≤≤时,有p y q ≤≤,我们就称此函数是闭区间[]p q ,上的“闭函数〞. 〔1〕反比例函数2015y x=是闭区间[]12015,上的“闭函数〞吗?请判断并说明理由;〔2〕假设一次函数()0y kx b k =+≠是闭区间[]m n ,上的“闭函数〞,求此一次函数的解析式;〔3〕假设实数c ,d 满足c d <,且2d >,当二次函数2122y x x =-是闭区间[]c d ,上的“闭函数〞时,求c d ,的值.2021年九年级中考模拟考试数学试题 参考答案及评分建议说明:本评分HY 每一小题给出了一种或者几种解法供参考,假如考生的解法与本解答不同,参照本评分HY 的精神酌情给分.一、选择题〔本大题一一共有8小题,每一小题3分,一共24分〕二、填空题〔本大题一一共有10小题,每一小题3分,一共30分〕 9.(3)(3)a a a +- 10.-2 11.答案不唯一,小于4即可 12.0.3 13.214.30 15.8 16 17.2 18.12(,)33三、解答题〔本大题一一共有10小题,一共96分.解答时应写出文字说明、证明过程或者演算步骤〕 19.(1)原式41)=+- …………………………………………4分5=+(此步错误扣1分) …………………………………………4分 (2)去分母得:36624x x --≥+ (2)分移项、合并同类项得:87x -≥ …………………………………………………3分化系数为1得:78x ≤- ……………………………………………………4分 20.原式2242121x x x x x --=÷--+ ……………………………………………………2分2(2)(2)(1)12x x x x x +--=-⋅-- ……………………………………………………4分22x x =--+ ……………………………………………………5分解22x x =得:120,2(x x ==使分式无意义,舍去) ……………………7分当0x =时,原式2=............................................................8分21.解:〔1〕31.1; (2)分〔2〕4513 4113584474513++++++≈0.16 . (5)分该年度重度污染和严重污染出现的频率一共是0.16.〔3〕40 52000000.035100⨯⨯=7 280 0. (8)分估计2021年一天中出行超过20千米的机动车至少要向大气里排放72 800千克污染物.22. 画树状图得:……………………………………4分∵小张同时抽到两科都准备的较好的实验题目的有①b,①c,②b,②c一共4种情况,∴他同时抽到两科都准备的较好的实验题目的概率是=. ………………8分23.〔1〕证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,且AD=BC ,∴AF ∥EC ,……………………………………2分∵BE=DF ,∴AF=EC , ……………………………………4分∵AF=EC ,AF ∥EC ,∴四边形AECF 是平行四边形. ……………5分〔2〕∵四边形AECF 是菱形,∴AE =CE ,∴∠1=∠2∵∠BAC =90°,∴∠3=∠90°-∠2,∠4=∠90°-∠1,∴∠3=∠4,∴AE =BE , ……………9分 ∴BE =AE =CE =12BC =5. ……………10分 24.设原来报名参加的学生有x人, …………………………………………………1分依题意,得 42480320=-xx . …………………………………………………5分 解这个方程,得 x=20. …………………………………………………8分经检验,x=20是原方程的解且符合题意. …………………………………………9分E AB C F3 2 1 4F O E D C B A 答:原来报名参加的学生有20人. …………………………………………………10分25.解:〔1〕过点B 作BE ⊥AD 于点E ,BE 的长为点B 到AD 的间隔 ,由∠A =30°,在Rt△ABE 中,BE =AB ×sin30°=20〔m 〕,∴点B 到AD 的间隔 为20m ; ……………… 3分〔2〕由∠CBD =75°, ∠A =30°,∴∠ADB =∠CBD -∠A =75°-30°=45°,∴△BED 是等腰直角三角形,DE =BE =20〔m 〕, ……………………6分在Rt△ABE 中,AE =AB ×cos30°=40×32=203,∴AD =20〔1+3〕m ,…8分在Rt△ACD 中,CD =20〔1+3〕×sin30°=10+103〔m 〕,答:塔高CD 为〔10+103〕m . ………………10分26.⑴ BC 与⊙O 相切 ………………1分证明:连接AE , ∵AC 是O 的直径 ∴90E ∠= ∴90EAD AFE ∠+∠=︒ ………2分∵BF BC = ∴BCE BFC ∠=∠ ………3分又 ∵E 为AD 的中点 ∴EAD ACE ∠=∠ …………………………………4分∴ 90BCE ACE ∠+∠=︒ 即AC BC ⊥又∵AC 是直径 ∴BC 是O 的切线 ……………………………5分〔2〕∵O 的半为2 ∴4AC =, ∵3cos 5B =由〔1〕知,90ACB ∠=,∴5AB = ,3BC = ∴3BF = ,2AF = ……………………………………………………6分∵EAD ACE ∠=∠, E E ∠=∠ ∴AEF ∆∽CEA ∆,∴12EA AF EC CA == ∴2EC EA =, ……………………………8分设 ,2EA x EC x == 由勾股定理 22416x x += ,x = 〔舍负〕 ∴CE =…………………………………………………10分27.解:〔1〕由AC BC =,可知此抛物线的对称轴是y 轴, 即0b = ……………1分所以(0,),C c B (2)分由182OBC S OB OC ∆=⨯⨯=得4c =,抛物线解析式为 2144y x =-+;…4分 〔2〕BF AB ⊥ ………………………………5分由〔1〕得(0,4),(4,0)C B ,所以224590ACB OCB ∠=∠=⨯︒=︒在ADC ∆和BFC ∆中90ACD DCB BCF ∠=︒-∠=∠,,AC BC DC FC ==∴ADC ∆≌BFC ∆ …………………………………………………7分∴45FBC CAD ∠=∠=︒∴90ABF ABC CBF ∠=∠+∠=︒∴BF AB ⊥…8分〔3〕作EM x ⊥轴,交x 于点M .易证ODC ∆≌MED ∆ …………………9分∴4DM OC ==,OD EM =又∵4OD OB BD BD DM BD BM =-=-=-= ∴BM EM = ∵90FMB ∠=︒,∴45MBE MEB ∠=∠=︒,∴45FBE ∠=︒ ……11分∴点E 所走过的道路长等于BC =……………………………………12分28.解:〔1〕是; (1)分 由函数2014y x=的图象可知,当12014x ≤≤时,函数值y 随着自变量x 的增大而减少,而当1x =时,2014y =;2014x =时,1y =,故也有12014y ≤≤,所以,函数2014y x=是闭区间[]12014,上的“闭函数〞.…………………… 4分〔2〕因为一次函数()0y kx b k =+≠是闭区间[]m n ,上的“闭函数〞,所以根据一次函数的图象与性质,必有:①当0k >时,()km b m m n kn b n +=⎧≠⎨+=⎩,解之得10k b ==,. ∴一次函数的解析式为y x =.…………………………………………………… 6分②当0k <时,()km b n m n kn b m +=⎧≠⎨+=⎩,解之得1k b m n =-=+,. ∴一次函数的解析式为y x m n =-++.………………………………………… 8分故一次函数的解析式为y x =或者y x m n =-++.〔3〕由于函数2122y x x =-的图象开口向上,且对称轴为2x =,顶点为()22-,,由题意根据图象,分以下两种情况讨论: ①当2c d <≤时,必有x c =时,y c =且x d =时,y d =, 即方程2122x x x -=必有两个不等实数根,解得10x =,26x =. 而0,6分布在2的两边,这与2c d <≤矛盾,舍去; ……………………… 10分②当2c d <<时,必有函数值y 的最小值为2-,由于此二次函数是闭区间[]c d ,上的“闭函数〞,故必有2c =-,…………… 11分从而有[][]2c d d =-,,,而当2x =-时,6y =,即得点()26-,; 又点()26-,关于对称轴2x =的对称点为()66,,由“闭函数〞的定义可知必有x d =时,y d =,即2122d d d -= ,解得10d =,26d =.故可得2c =-,6d =符合题意.………………………………………………… 12分综上所述,26c d =-=,为所求的实数.制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。

最新九年级数学下期末第一次模拟试题附答案

最新九年级数学下期末第一次模拟试题附答案

一、选择题1.如图,AB 是半圆的直径,CD 为半圆的弦,且CD//AB ,∠ACD=26°,则∠B 等于( )A .26°B .36°C .64°D .74°2.如图,PA PB 、分别与О相切于A B 、两点,点C 为О上一点,连接AC 、,BC 若50P ∠=,则ACB ∠的度数为( )A .115B .130C .65D .753.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC ∥BD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论: ①AD ⊥BD ;②BC 平分∠ABD ;③BD=2OF=CF ;④△AOF ≌△BED ,其中一定成立的是( )A .①②B .①③④C .①②④D .③④ 4.如图,AB 、CD 是O 的两条弦,且AB CD =.OM AB ⊥,ON CD ⊥,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,连接OP .下列结论正确的个数是( ) ①AB CD =;②OM ON =;③PA PC =;④BPO DPO ∠=∠A .1个B .2个C .3个D .4个5.如图所示,二次函数2y ax bx c =++的图象经过点(-1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①0abc >;②420a b c -+<;③20a b -<;④284b a ac +>.其中正确的有( )A .1个B .2个C .3个D .4个6.如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2﹣4ac >0; ③8a +c <0; ④5a +b +2c >0,正确的是( )A .①②③B .②③④C .①②④D .②③ 7.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2b a =-;④80a c +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个8.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤ 9.如图,网格中所有小正方形的边长均为1,有A 、B 、C 三个格点,则ABC ∠的余弦值为( )A .12B .25C .5D .210.cos60︒的值是( )A .12B .33C .32D .311.如图,推动个小球沿倾斜角为α的斜坡向上行驶,若5sin 13α=,小球移动的水平距离12AC =米,那么小球上升的高度BC 是( )A .5米B .6米C .6.5米D .7米12.如图,直线y =-33x +2与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转60°后得到△AO'B',则点B'的坐标是( ) A .(4,23)B .(23,4)C .(3,3)D .(23+2,2)二、填空题13.如图,O 与抛物线212y x =交于,A B 两点,且4AB =,则O 的半径等于___________.14.如图,在边长为4cm 的正六边形ABCDEF 中,点P 在BC 上,则PEF 的面积为________2cm .15.抛物线2(0)y ax bx c a =++≠与x 轴的交点是(1,0)-,(5,0),则这条抛物线的对称轴是直线x =__________.16.在平面直角坐标系中,把抛物线22y x =+先绕其顶点旋转180︒后,再向右平移2个单位,向下平移3个单位后的抛物线解析式为__________.17.已知二次函数221y x =-,如果y 随x 的增大而增大,那么x 的取值范围是__________.18.若sin cos 2A A +=,则锐角A ∠=______.19.在ABC 中,90C ∠=︒,若5sin 13B =,则cos A =________. 20.如图,在一笔直的海岸线l 上有A B 、两个观测站,4AB km =,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5︒的方向,则船C 离海岸线l 的距离(即CD 的长)为_____km .21.如图,矩形纸片ABCD 中,6AB =,8AD =,按下列步骤进行折叠,具体操作过程如下:第一步:先把矩形ABCD 对折,折痕为MN ,如图(1)所示;第二步:再把B 点叠在折痕线MN 上,折痕为AE ,点B 在MN 上的对应点为'B ,得Rt 'AB E △,如图(2)所示;第三步:沿'EB 折叠折痕为EF ,且AF 交B N '的延长线于点G ,如图(3)所示;则由纸片折叠成的图形中,'AB G S △为____.22.如图,在菱形ABCD 中,4AB =,45ABC ∠=︒,菱形ABCD 的对角线交于点O ,则ABO 的面积为__________.三、解答题23.如图,在ABC 中,AB AC =,以AB 为直径的 O 分别交BC AC 、边于点D F 、.过点D 作DE CF ⊥于点 E .(1)求证:DE 是O 的切线;(2)2,2AF DE EF -==,求O 的半径.24.如图,某零件的截面为弓形. (1)请用直尺和圆规作出该弓形的圆心.(2)若23AB =,弓形的高为1.①求弓形的半径②求AB 的长25.已知抛物线2y x bx c =++经过(3,),(2,)A n B n -两点.(1)求b 的值;(2)当11x -<<时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(3)若方程20x bx c ++=的两实根12,x x 满足2139x x -<,且22123p x x =-,求p 的最大值.26.在平面直角坐标系中,设二次函数2212,1y x bx a y ax bx =++=++(,a b 是实数,0a ≠).(1)若函数1y 的对称轴为直线3x =,且函数1y 的图象经过点(,)a b ,求1y 的表达式. (2)设函数1y 的图象经过点(,)m n ,函数2y 的图象经过点11,m n ⎛⎫ ⎪⎝⎭,其中0mn ≠,求,m n 满足的关系式.(3)当01x <<时,比较1y 和2y 的函数值的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用平行线的性质,得∠ACD=∠CAB=26°,根据直径上的圆周角为直角,得∠ACB=90°,利用直角三角形的性质计算即可.【详解】∵CD//AB,∠ACD=26°,∴∠ACD=∠CAB=26°,∵AB是半圆的直径,∴∠ACB=90°,∴∠B=64°,故选C.【点睛】本题考查了平行线的性质,圆周角的原理,直角三角形的性质,熟练掌握性质,并灵活运用是解题的关键.2.A解析:A【分析】由切线的性质得出∠OAP=∠OBP=90°,利用四边形内角和可求∠AOB=130°,再利用圆周角定理可求∠ADB=65°,再根据圆的内接四边形对角互补可求∠ACB.【详解】解:如图所示,连接OA、OB,在优弧AB上取点D,连接AD、BD,∵ AP、BP是切线,∠P=50°,∴∠OAP=∠OBP=90°,∴∠AOB=360°-90°-90°-50°=130°,∴∠ADB=65°,又∵圆的内接四边形对角互补,∴∠ACB=180°-∠ADB=180°-65°=115°.故选:A.【点睛】本题考查了切线的性质、圆周角定理、圆内接四边形的性质、解题的关键是连接OA、OB,求出∠AOB.3.A解析:A【分析】根据直径的性质,垂径定理等知识一一判断即可;【详解】解:∵AB是直径,∴∠ADB=90°,∴AD⊥BD,故①正确,∵OC∥BD,BD⊥AD,∴OC⊥AD,∴AC CD=,∴∠ABC=∠CBD,∴BC平分∠ABD,故②正确,∵AF=DF,AO=OB,∴BD=2OF≠CF,故③错误,△AOF和△BED中,没有对应边相等,故④错误,故选:A.【点睛】本题考查直径的性质、垂径定理、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.D解析:D【分析】如图连接OB、OD,只要证明Rt△OMB≌Rt△OND,Rt△OPM≌Rt△OPN即可解决问题.【详解】解:如图连接OB、OD;∵AB=CD,∴AB CD=,故①正确∵OM⊥AB,ON⊥CD,∴AM=MB ,CN=ND ,∴BM=DN ,∵OB=OD ,∴Rt △OMB ≌Rt △OND ,∴OM=ON ,故②正确,∵OP=OP ,∴Rt △OPM ≌Rt △OPN ,∴PM=PN ,∠OPB=∠OPD ,故④正确,∵AM=CN ,∴PA=PC ,故③正确,故选:D .【点睛】本题考查垂径定理、圆心角、弧、弦的关系、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题,属于中考常考题型.5.D解析:D【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①∵a <0,2b a-<0, ∴b <0.∵抛物线交y 轴与正半轴,∴c >0.∴abc >0,故①正确.②根据图象知,当x=-2时,y <0,即4a-2b+c <0;故②正确;③∵该函数图象的开口向下,∴a <0; 又∵对称轴-1<x=2b a-<0, ∴2a-b <0,故③正确; ④∵y=244ac b a->2,a <0,∴4ac-b 2<8a ,即b 2+8a >4ac ,故④正确.综上所述,正确的结论有①②③④.故答案为:D .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,掌握相关性质是解题的关键.6.B解析:B【分析】由函数图像与对称轴的方程结合可判断①,由抛物线与x 轴有两个交点,可判断②,由抛物线的对称轴为:1,2b x a=-= 可得2,b a =-结合图像可得当2x =-时,42y a b c =-+<0, 可判断③,由图像可得当2x =时,4+2y a b c =+>0,当1x =-时,y a b c =-+>0,两式相加可得:52a b c ++>0,可判断④,从而可得答案.【详解】 解: 图像开口向下,a ∴<0,12b x a==->0, b ∴>0, 函数图像与y 轴交于正半轴,c ∴>0,abc ∴<0,故①不符合题意; 抛物线与x 轴有两个交点,24b ac ∴->0, 故②符合题意;抛物线的对称轴为:1,2b x a=-= 2,b a ∴=-当2x =-时,42y a b c =-+<0,()422a a c ∴-⨯-+<0,8a c ∴+<0,故③符合题意;当2x =时,4+2y a b c =+>0,当1x =-时,y a b c =-+>0,两式相加可得:52a b c ++>0,故④符合题意;故选:.B【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.7.B解析:B【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴,∴a >0, b <0,c <0,∴abc >0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =, ∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0),∴0a b c -+=;∴结论②错误;∵当x=-2时,y=4a-2b+c >0, ∵12b a-=,则b=-2a ∴80a c +>,∴结论④正确;故选B .【点睛】 本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.8.D解析:D【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案.【详解】解:由图象开口向上,可知a<0,与y 轴的交点在x 轴的下方,可知c<0, 又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误; ∵122b a -= ∴=-a b , ∴0a b +=,故B 错误; 当12x =时,则11042y a b c =++>, ∵=-a b , ∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误;当21x n =+时,222(1)(1)y a n b n c =++++4222an an a an a c =++--+42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥,∴22(1)an n c c ++≤,即y c ≤,故D 正确;故选:D .【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明9.B解析:B【分析】过点B 作BD ⊥AC 于点D ,过点C 作CE ⊥AB 于点E ,则BD=AD=3,CD=1,利用勾股定理可求出AB ,BC 的长,利用面积法可求出CE 的长,再利用余弦的定义可求出∠ABC 的余弦值.【详解】解:过点B 作BD ⊥AC 于点D ,过点C 作CE ⊥AB 于点E ,则BD=AD=3,CD=1,如图所示.2232BD AD +=2210BD CD += ∵12AC•BD=12AB•CE ,即12×2×3=122•CE , ∴2,∴2222BC CE -=∴cos ∠ABC=222510BE BC ==. 故选:B .【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,利用面积法及勾股定理求出CE ,BC 的长度是解题的关键. 10.A解析:A【分析】根据特殊角三角函数值直接判断即可.【详解】解:∵1cos 60=2︒, 故选:A .【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键. 11.A解析:A【分析】在Rt △ABC 中,先根据三角函数求出5tan 12α=,再通过解直角三角形求出BC 即可. 【详解】解:如图,在Rt △ABC 中,∵5sin 13α=, ∴5tan 12α=, ∴5tan 12BC AC α==, ∵12AC =米, ∴55×12=51212BC AC ==米. 故选:A .【点睛】 此题主要考查解直角三角形,锐角三角函数等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.12.B解析:B【分析】根据直线解析式求出点A 、B 的坐标,从而得到OA 、OB 的长度,再求出∠OAB =30°,利用勾股定理列式求出AB ,然后根据旋转角是60°判断出AB′⊥x 轴,再写出点B′的坐标即可.【详解】令y =0,则−33x +2=0, 解得x =3,令x =0,则y =2,所以,点A (30),B (0,2),所以,OA =3OB =2,∵tan ∠OAB =3323OB OA ==, ∴∠OAB =30°,由勾股定理得,AB ()22222324OA OB +=+=,∵旋转角是60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(23,4).故选:B .【点睛】本题考查了坐标与图形性质−旋转,一次函数图象上点的坐标特征,勾股定理的应用,三角函数的应用,求出AB′⊥x 轴是解题的关键.二、填空题13.【分析】连接OA 设AB 与y 轴交于点C 由抛物线的对称性和圆的对称性得y 轴⊥AB 可得出点AB 的横坐标分别为−22再代入抛物线即可得出点AB 的坐标再根据勾股定理得出⊙O 的半径【详解】解:连接OA 设AB 与y解析:22【分析】连接OA ,设AB 与y 轴交于点C ,由抛物线的对称性和圆的对称性得y 轴⊥AB ,可得出点A ,B 的横坐标分别为−2,2.再代入抛物线212y x =即可得出点A ,B 的坐标,再根据勾股定理得出⊙O 的半径.【详解】解:连接OA ,设AB 与y 轴交于点C ,由抛物线的对称性和圆的对称性得y 轴⊥AB ,∵AB =4,∴点A ,B 的横坐标分别为−2,2.∵⊙O 与抛物线212y x =交于A ,B 两点, ∴点A ,B 的坐标分别为(-2,2),(2,2),在Rt △OAC 中,由勾股定理得OA 22222222OC AC +=+=,∴⊙O 的半径为2故答案为:2【点睛】本题考查了垂径定理、勾股定理以及二次函数图象上点的特征,求得点A的坐标是解题的关键.14.【分析】连接BFBE过点A作AT⊥BF于T证明S△PEF=S△BEF求出△BEF 的面积即可【详解】解:连接BFBE过点A作AT⊥BF于T∵ABCDEF是正六边形∴CB∥EFAB=AF∠BAF=120解析:83【分析】连接BF,BE,过点A作AT⊥BF于T,证明S△PEF=S△BEF,求出△BEF的面积即可.【详解】解:连接BF,BE,过点A作AT⊥BF于T,∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BF,AB=AF,∴BT=FT,∠BAT=∠FAT=60°,∴BT=FT=AB•sin60°=23∴BF=2BT=3∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=12•EF•BF=12×4×4383故答案为:3【点睛】本题考查正多边形与圆,解直角三角形等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.15.【分析】根据抛物线的对称性即可求解【详解】解:∵抛物线y=ax2+bx+c 与x轴的公共点的坐标是(-10)(50)∴这条抛物线的对称轴是直线x=(5-1)=2故答案为2【点睛】本题考查了抛物线与x轴解析:2【分析】根据抛物线的对称性即可求解.【详解】解:∵抛物线y=ax 2+bx+c 与x 轴的公共点的坐标是(-1,0),(5,0),∴这条抛物线的对称轴是直线x=12(5-1)=2, 故答案为2.【点睛】本题考查了抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征. 16.【分析】先求出抛物线绕其顶点旋转后解析式再根据平移规律即可求解【详解】解:抛物线先绕其顶点旋转后解析式为将抛物线向右平移个单位向下平移个单位后的抛物线解析式为故答案为:【点睛】本题考查了抛物线图象与 解析:2(2)1=---y x【分析】先求出抛物线22y x =+绕其顶点旋转180︒后解析式,再根据平移规律即可求解.【详解】解:抛物线22y x =+先绕其顶点旋转180︒后解析式为22y x =-+,将抛物线22y x =-+向右平移2个单位,向下平移3个单位后的抛物线解析式为()212y x =---.故答案为:2(2)1=---y x【点睛】本题考查了抛物线图象与几何变换,熟知二次函数图象旋转与平移规律是解题关键. 17.【分析】由于抛物线y=2x2-1的对称轴是y 轴所以当x≥0时y 随x 的增大而增大【详解】解:∵抛物线y=2x2-1中a=2>0∴二次函数图象开口向上且对称轴是y 轴∴当x≥0时y 随x 的增大而增大故答案为解析:0x ≥【分析】由于抛物线y=2x 2-1的对称轴是y 轴,所以当x≥0时,y 随x 的增大而增大.【详解】解:∵抛物线y=2x 2-1中a=2>0,∴二次函数图象开口向上,且对称轴是y 轴,∴当x≥0时,y 随x 的增大而增大.故答案为:0x ≥.【点睛】本题考查了抛物线y=ax 2+b 的性质:①图象是一条抛物线;②开口方向与a 有关;③对称轴是y 轴;④顶点(0,b ).18.45【分析】根据特殊锐角的三角函数值即可求解【详解】解:∵∵即∴∠A=45°【点睛】本题主要考查特殊锐角三角函数值解题的关键是熟记特殊锐角的三角函数值解析:45︒【分析】根据特殊锐角的三角函数值即可求解.【详解】解:∵sin cos 2A A +=∵22sin 45=cos 4522︒︒=, 即sin 45cos 452︒+︒=∴∠A =45°【点睛】 本题主要考查特殊锐角三角函数值,解题的关键是熟记特殊锐角的三角函数值. 19.【分析】根据三角函数的性质一个锐角的正弦值等于它余角的余弦值可求【详解】解:∴故答案为:【点睛】本题考查了三角函数的性质解题关键是正确理解三角函数的意义得出一个锐角的正弦值等于它余角的余弦值 解析:513【分析】根据三角函数的性质一个锐角的正弦值等于它余角的余弦值可求.【详解】解:90C ∠=︒,5sin 13B =, ∴513=AC AB , 5cos 13AC A AB ==, 故答案为:513. 【点睛】 本题考查了三角函数的性质,解题关键是正确理解三角函数的意义,得出一个锐角的正弦值等于它余角的余弦值.20.【分析】构造点B 的正北方向交AC 于点E 利用特殊角和已知条件可证AB=BE=EC 三角形ACD 是等腰直角三角形从而问题得证【详解】构造点B 的正北方向交AC 于点E 如图所示根据题意得∠BAE=∠AEB=∠A 解析:(422)+.【分析】构造点B的正北方向,交AC于点E,利用特殊角和已知条件,可证AB=BE=EC,三角形ACD是等腰直角三角形,从而问题得证.【详解】构造点B的正北方向,交AC于点E,如图所示,根据题意,得∠BAE=∠AEB=∠ACD=45°,∠EBC=∠ECB=22.5°,∴AB=BE=EC=4,AD=CD,∴AE=42,∴AC=AE+EC=42+4,∴CD=2AC=22+4,故答案为:22+4.【点睛】本题考查了方位角视角下的解直角三角形,熟记特殊角的函数值,灵活运用方位角知识,规范解直角三角形是解题的关键.21.【分析】根据折叠得到△AEF是等边三角形再根据Rt△ABE中求得AE=根据相似三角形的性质可得到的长即可求解【详解】如图所示将图3展开可得下图由折叠可得Rt△AMB中AM=AB==3∴∠ABM=30解析:33【分析】根据折叠得到△AEF是等边三角形,再根据Rt△ABE中,求得AE=43的性质可得到B G 的长,即可求解.【详解】如图所示,将图3展开,可得下图,由折叠可得,Rt △AMB'中,AM=12AB=12AB '=3, ∴∠AB'M=30°,∴∠AA'B=30°,∴∠A'AB=60°,∴∠BAE=∠B'AE=30°, ∴∠EAF=60°,∠AEB=60°=∠AEB',∴△AEF 是等边三角形,又∵Rt △ABE 中,AB=6,∠BAE=30°,∴EF=AE=cos30AB ︒=43 ∵∠B'AE=∠AA'B=30°, ∴AE= A'E=3∵B'G ∥A'E ,∴~FB G FEA '', ∴1EF 2B G FB EA ''==', ∴23B G '=,∵△A B G ''的高为BM=3, ∴'1'332AB G S B G BM =⨯⨯=△. 故答案为:33【点睛】 本题属于折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.得到△AEF 是等边三角形是解决问题的关键. 22.【分析】过A 作AE ⊥BC 于点E 则由题意可得AE 的值进一步可求得△ABO 的面积【详解】解:如图过A 作AE ⊥BC 于点E ∵AB=4∠ABC=45°∴AE=AB=∴故答案为【点睛】本题考查菱形性质和解直角三 解析:2【分析】过A 作AE ⊥BC 于点E ,则由题意可得AE 的值,进一步可求得△ABO 的面积.【详解】解:如图,过A 作AE ⊥BC 于点E ,∵AB=4,∠ABC=45°,∴AE=AB sin 45︒=2422⨯= ∴1111·422222224ABO ABC S S BC AE ==⨯=⨯⨯=故答案为2 .【点睛】本题考查菱形性质和解直角三角形的综合应用,熟练掌握菱形的性质是解题关键.三、解答题23.(1)见解析;(2)5.【分析】(1)连接OD ,根据AB AC =,OD OB =得 C B ∠=∠,ODB B ∠=∠,即有C ODB ∠=∠,可证 //OD AC ,再根据DE CF ⊥可得90ODE DEC ∠=∠=︒,则可得 OD DE ⊥且OD 为O 的半径,可得DE 是O 的切线;(2)过点O 作OG AF ⊥于点G ,根据90OGE OGA ∠=∠=︒,根据垂径定理可得12AG GF AF ==,又90DEG ODE ∠=∠=︒,得四边形OGED 为矩形,则有OG DE =,OD GE =,设AG GF x ==,则2OA OD GE GF EF x ===+=+,2AF x =,222OG DE AF x ==-=-,在Rt OAG 中,根据勾股定理222AG OG OA +=得222(22)(2)x x x +-=+,解得13x =, 可得325OD =+=,即O 的半径为5.【详解】(1)证明:连接,OD DE CF ⊥,90DEC DEF ∴∠=∠=︒.,AB AC C B =∴∠=∠,,OD OB ODB B =∴∠=∠.C ODB ∴∠=∠.//OD AC ∴,90ODE DEC ∴∠=∠=︒,OD DE ∴⊥且OD 为O 的半径.DE ∴是O 的切线.(2)过点O 作OG AF ⊥于点G ,190,2OGE OGA AG GF AF ∴∠=∠=︒==. 又90DEG ODE ∠=∠=︒,∴四边形OGED 为矩形,,OG DE OD GE ∴==.设AG GF x ==,则2OA OD GE GF EF x ===+=+, 2AF x =,222OG DE AF x ==-=-.在Rt OAG 中,222AG OG OA +=,即222(22)(2)x x x +-=+,解得13x =,20x =(不合题意,舍去)325OD ∴=+=,即O 的半径为5.【点睛】本题考查的是切线的判定与性质,垂径定理,矩形的判定与性质,勾股定理,解一元二次方程等知识点,掌握切线的判定定理、垂径定理是解题的关键.24.(1)见解析;(2)①2;②4=3AB π的长 【分析】(1)在弧AB 上取一点C ,连接AC ,分别作出AC 、AB 的垂直平分线即可;(2)①根据垂径定理可得3AE BE ==②根据1cos 2OE AOE OA ∠==,求出圆心角,根据公式计算即可; 【详解】 (1)在弧AB 上取一点C ,连接AC ,分别作出AC 、AB 的垂直平分线,如图,点O 即为所求.(2)①如图,过点O 作OE AB ⊥交圆O 与点D ,∵23AB = ∴3AE BE ==设弓形的半径为r ,在Rt △AOE 中,222OA AE OE =+, 即()22231r r =+-, 解得:2r;②∵2OA =,1OE =, ∴1cos 2OE AOE OA ∠==, ∴60AOE =︒∠,∴2120AOB AOE ∠=∠=︒, ∴120241801803n rl πππ⨯⨯===; 【点睛】本题主要考查了尺规作图垂直平分线、垂径定理、锐角三角函数、弧长的计算,准确计算是解题的关键.25.(1)1b =;(2)14c =或20c -<;(3)当21x =时,p 最大值为1 【分析】 (1)利用抛物线的对称轴为直线12x =-求解即可; (2)分两种情况讨论①当公共点是顶点时,②当公共点不是顶点时,解答即可;(3)根据根与系数的关系得出x 的取值范围,再根据二次函数的增减性求出p 的最大值.【详解】解:(1)∵抛物线经过(3,),(2,)A n B n -两点,∴抛物线的对称轴为直线12x =-. 122b ∴-=-. 1b ∴=.(2)由(1)得,抛物线的解析式为2y x x c =++, 对称轴为直线12x =-,且当11x -<<时, 抛物线与x 轴有且只有一个公共点,①当公共点是顶点时,140c ∴=-=,解得14c =. ②当公共点不是顶点时, ∴当1x =-时,110c -+,且当1x =时,110c ++>.解得20c -<.综上所述,c 的取值范围是14c =或20c -<. (3)解法一:由(1)知1b =,设2y x x c =++.方程20x x c ++=的两实根为12x x ,,∴抛物线2y x x c =++与x 轴交点的横坐标为12,x x ,12122x x +∴=-,即121x x +=-. 211x x ∴=--.2139x x -<, ()11319x x ∴---<.152x ∴-<-.22123p x x ∴=-()221131x x =---2133222x ⎛⎫=-++ ⎪⎝⎭. 当152x -<-时,p 随1x 的增大而增大, ∴当12x =-时,p 的最大值为1.解法二:由(1)知1b =.方程20x x c ++=的两实根为12,x x ,2110x x c ∴++=,即211x x c =--,①2220x x c ++=,即222x x c =--②①-②,得()221212x x x x -=--, ()()()121212x x x x x x ∴+-=--.2139x x -<,120x x ∴-≠.121x x ∴+=-.即121x x =--.()22319x x ∴---<214x ∴<22123p x x ∴=-()222213x x =--- 2213222x ⎛⎫=--+ ⎪⎝⎭ 当214x <时,p 随2x 的增大而减少, ∴当21x =时,p 最大值为1.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,不等式的性质等知识,解题的关键是能用分类讨论的思想解决问题.26.(1)2126y x x =+-或2136y x x =+-;(2)220m n -=;(3)当1a <且0a ≠时,12y y <;当1a >时,12y y >【分析】(1)由题意易得32b -=,则有6b =-,然后再把点(,)a b 代入求解即可; (2)把点(),m n 和点11,m n ⎛⎫ ⎪⎝⎭分别代入1y ,2y 进行求解即可; (3)由题意可求12y y -的值,然后根据01x <<及分类讨论a 的范围,从而得出12y y -的大小即可.【详解】解:(1)由函数1y 的对称轴为直线3x =,可得32b -=, ∴6b =-,∴点(),6a -,∴266a a a -+=-,解得:122,3a a ==,∴函数1y 的解析式为2126y x x =+-或2136y x x =+-; (2)把点(),m n 和点11,m n ⎛⎫ ⎪⎝⎭分别代入1y ,2y 得: 22111m mb a n b a m mn ⎧++=⎪⎨⎛⎫++=⎪ ⎪⎝⎭⎩,解得:220m n -=;(3)由2212,1y x bx a y ax bx =++=++可得: ()()()()22212211111y x bx a ax bx a x y a a x =++-++-+-=--=-, ∵01x <<,∴210x -<,∴当1a <且0a ≠时,10a ->,则有120y y -<,即12y y <; 当1a >时,10a -<,则有120y y ->,即12y y >; 综上:当1a <且0a ≠时,12y y <;当1a >时,12y y >.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省东莞市寮步镇香市中学2015届九年级数学下学期第一次模拟试题一、选择题(每题3分,共30分) 1、4的平方根是( )A .2B .-2C .±2D .162、2014年广东省人口数超过105000000,将105000000这个数用科学记数法表示为( ) A .0.105×109B .1.05×109C .1.05×108D .105×1063、化简211mm m m -÷- 的结果是( ) A .m B .m1C .1-mD .11-m4、下图是由四个大小相同的正方体搭成的几何体,则它的主视图是( )5、在下列运算中,计算正确的是( )A.326a a a ⋅=B.824a a a ÷=C.236()a a = D. 224+a a a =6、若分式52-x 有意义,则x 的取值范围是( ) A .5x ≠ B .5x ≠- C .5x > D .5x >-7、如右图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心. 若∠B=25°,则∠C 的大小等于( )A .20°B .25°C .40°D .50° 8、如右图,在边长为1的小正方形网格中,的三个顶点均在格点上,则A tan 的值为( ) A .53 B .54 C .43 D .349、下列事件中是必然事件是( ) A .明天太阳从西边升起B .篮球队员在罚球线投篮一次,未投中C .实心铁球投入水中会沉入水底A B C D正面D .抛出一枚硬币,落地后正面向上10、二次函数y=ax 2+bx+c (a ≠0)的大致图象如右图,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线x=C .当x <,y 随x 的增大而减小D .当﹣1<x <2时,y >0 二、填空题(每题4分,共24分)11.分解因式: 34a a -= .12、如右图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC=5cm ,CD=6cm ,则OE= cm . 13.已知△ABC 与△DEF 相似且周长的比为3:5,则它们的面积之比是 . 14、已知反比例函数xm y 1-=的图像的一支位于第一象限,则常数m 的取值范围是 . 15、如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .16、矩形纸片ABCD 中,AB =3cm ,BC =4cm ,现将纸片折叠压平,使A 与C 重合,设折痕为EF ,则重叠部分△AEF 的面积等于 . 三、解答题(每题6分,共18分) 17、计算:()()220131212π-⎛⎫--- ⎪⎝⎭.18、先化简,再求值:2(3)(1)x x x +-+,其中1x =.19、一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同. (1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率;(2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,请用列表或画树状图的方法求两次摸出的球都是编号为3的球的概率.四、解答题(每题7分,共21分)20、如图,已知正方形ABCD 中,BE 平分DBC ∠且交CD 边于点.E 将BCE △绕点C 顺时针旋转到DCF △的位置,并延长BE 交DF 于点.G 求证:BDG△21、如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB 、BC 各为多少米?22、如图,小明想测山高和索道的长度.他在B 处仰望山顶A ,测得仰角∠B =31°,再往山的方向(水平方向)前进80m 至索道口C 处,沿索道方向仰望山顶,测得仰角∠ACE =39°.求这座山的高度(小明的身高忽略不计).(参考数据:tan31° ≈35,sin31° ≈12,tan39° ≈911墙五、解答题(每题9分,共27分)23、如图:已知A (-4,n )、B (2,-4)是一次函数y 1m的两个交点.(1)求反比例函数和一次函数的解折式.(2)求直线AB 与x 轴的交点C 的坐标及△AOB (3)求不等式y 1<y 2的解集(请直接写出答案).24、如图,△ABC 的边AB 为⊙O 的直径,BC 与圆交于点D ,D 为BC 的中点,过D 作DE ⊥AC 于E .(1)求证:AB=AC ; (2)求证:DE 为⊙O 的切线; (3)若AB=13,sinB=1312,求CE 的长.25、如图,已知抛物线212y x bx c x =++与轴交于点A (-4,0)和B (1,0),与y 轴交于C 点. (1)求此抛物线的解析式;(2)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的长最大,并求此时P 点的坐标;(3)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当CEF的面积是BEF面积的2倍时,求E点的坐标.xx第(2)题图第(3)题图2015届第一次模拟考试初三数学答案一、选择题(每题3分,共30分)1-5、CCADC 6-10、ACDCD二、填空题(每题4分,共24分)11、)2)(2(-+a a a 12、4 13、9:25 14、m>1 15、1k 16、7516三、解答题:(每题6分,共18分)17、解:原式1214=+-- -----------4分= 2.- -----------6分18、解:原式2(3)(21)x x x x =+-++ -----------3分22321x x x x =+--- -----------4分1.x =- -----------5分当1x =时,原式11=-= -----------6分19、解:(1)P (编号为1)=31; -----------2分 (2)画树状图如下:-----------4分P (都是编号为3)=91. -----------6分四.解答题:(每题7分,共21分) 20、证明:∵BE 平分DBC ∠∴DBE EBC =∠∠ -----------1分 又由旋转可知:BCE DCF △≌△ -----------3分∴EBC CDF =∠∠ -----------4分 ∴DBE CDF =∠∠ -----------5分 又∵DGE ∠=DGE ∠ -----------6分 故.BDG DEG △∽△ -----------7分21、解:设羊圈的边长AB 为x 米,得 -----------1分 400)4100(=-x x -----------4分 整理,得2251000x x -+=解得5x =或20x = -----------5分 当5x =时, 10048025x -=>,不合题意,舍去当20x =时, 10042025x -=< -----------6分 答:羊圈的边长AB 为20米,边长BC 为20米. -----------7分22、解:过点A 作AD ⊥BE 于D ,设山AD 的高度为x m , -----------1分 在Rt △ABD 中,∠ADB =90°,tan31°=35=ADBD ,∴5=3tan3135AD x BD x =≈º.在Rt △ACD 中,∠ADC =90°, tan39°=ADCD, ∴11=9tan39911AD x CD x =≈º. -----------5分∵BC BD CD =- ∴ 5118039x x -=,解这个方程,得180x =.即山的高度为180米. -----------7分五、解答题:(每题9分,共27分) 23、解:⑴将B (2,-4)代入y 2=x m ,可得2m=-4 解得m=-8∴y 2=x8- -----------2分 当x=-4时,y=248=--∴A(-4,2)又将A(-4,2)、B (2,-4)代入y 1=kx+b 可得⎩⎨⎧-=+=+-4224b k b k 解得⎩⎨⎧-=-=21b k ∴y 1=-x-2 -----------4分 ⑵令y 1=0可得:-x-2=0 ∴x=-2 ∴C(-2,0) S △AOB = S △AOC + S △BOC =21×2×2+21×2×4 =6 -----------7分 ⑶-2<X <0或X >2 -----------9分24、(1)证明:连接AD , ∵AB 是⊙O 的直径, ∴∠ADB=90°∴AD ⊥BC ,又D 是BC 的中点,∴AB=AC ; -----------3分 (2)证明:连接OD , ∵O 、D 分别是AB 、BC 的中点, ∴OD ∥AC ,∴∠ODE=∠DEC=90°, ∴OD ⊥DE ,∴DE 是⊙O 的切线; -----------6分(3)解:∵AB=13,sinB=,∴=,∴AD=12,∴由勾股定理得BD=5, ∴CD=5, ∵∠B=∠C , ∴=, ∴DE=,∴根据勾股定理得CE=. -----------9分25.解:(1)由二次函数212y x bx c =++与x 轴交于(4,0)A -、(1,0)B 两点可得: 221(4)4021102b c b c ⎧--+=⎪⎪⎨⎪⋅++=⎪⎩,. 解得: 322b c ⎧=⎪⎨⎪=-⎩,.故所求二次函数的解析式为213222y x x =+-. -----------3分(2)由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2).若设直线AC 的解析式为y kx b =+,则有20,04b k b -=+⎧⎨=-+⎩. 解得:1,22k b ⎧=-⎪⎨⎪=-⎩.故直线AC 的解析式为122y x =--.设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭,则Q 点的坐标为(1,2)2a a --.则有:2131[(2)](2)222PQ a a a =-+----=2122a a --=()21222a -++即当2a =-时,线段PQ 取大值,此时P 点的坐标为(-2,-3)-----------6分 (3)∵S △CEF =2 S △BEF ,∴1,2BF CF =1.3BF BC =∵EF //AC ,∴△BEF ~△BAC ,∴1,3BE BF BA BC ==得5,3BE =故E 点的坐标为(23-,0).-----------9分。

相关文档
最新文档