2019年一轮北师大版(理)数学教案:第8章 第6节 抛物线 Word版含解析
抛物线的简单几何性质(第1课时)课件-高二上学期数学北师大版(2019)选择性必修第一册

e
≥0
∈R
x轴
≤0
∈R
≥0
1
(0,0)
∈R
≤0
∈R
y轴
解惑提高 四种抛物线的几何性质的特点
1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线;
2.抛物线只有一条对称轴,没有对称中心;
3.抛物线只有一个顶点、一个焦点、一条准线;
4.抛物线的离心率是确定的,为1;
典例剖析
=40.
由抛物线方程2=4,可得其准线方程为= − 1.
由点到焦点的距离为5可知,点到抛物线的准线的距离也为5,
即0 − −1 =5 ,解得0=4.
将0=4代入2=4,得20=16,即0= ± 4.
所以点的坐标为(4,4)或(4,-4).
典例剖析
例2 已知点到点(4,0)的距离比它到直线: + 6=0的距离小2,求点
1.范围
≥ 0, ∈
由方程①可知,对于抛物线①上的任意一点(,),都有 ≥ 0, ∈ ,
所以这条抛物线在轴的右侧,开口向右;
当的值增大时,||也随之增大,这说明
抛物线向右上方和右下方无限延伸①的结构特点,可以发现:
若 0,0 满足方程①,则 0, − 0 也满足方程①,所以抛物
探究新知
图 象
四种抛物线的几何性质的对比
标准方程
y2 = 2px
(p>0)
y2 = -2px
(p>0)
x2 = 2py
(p>0)
x2
= -2py
(p>0)
焦点坐标
p
F ( ,0 )
2
p
F ( ,0)
2
p
2019高三数学文北师大版一轮教师用书:第8章 第6节 抛

第六节抛物线[考纲传真] 1.了解抛物线的实际背影,了解抛物线在刻画现实世界和解决实际问题中的作用.2.了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、准线方程).3.理解数形结合的思想.4.了解抛物线的简单应用.(对应学生用书第123页)[基础知识填充]1.抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的集合叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程与几何性质[知识拓展]1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝ ⎛⎭⎪⎫p 2,0的距离|PF |=x 0+p 2,也称为抛物线的焦半径.2.y 2=ax 的焦点坐标为⎝ ⎛⎭⎪⎫a 4,0,准线方程为x =-a 4.3.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角). (3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内与一个定点F 和一条定直线l 的距离相等的点的集合一定是抛物线.( )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a 4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝ ⎛⎭⎪⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( ) [答案] (1)× (2)× (3)× (4)√2.(教材改编)若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1716 B .1516 C .78D .0B[M到准线的距离等于M到焦点的距离,又准线方程为y=-116,设M(x,y),则y+116=1,∴y=1516.]3.抛物线y=14x2的准线方程是()A.y=-1 B.y=-2 C.x=-1 D.x=-2A[∵y=14x2,∴x2=4y,∴准线方程为y=-1.]4.(2018·大同模拟)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为()A.(-1,0) B.(1,0)C.(0,-1) D.(0,1)B[抛物线y2=2px(p>0)的准线为x=-p2且过点(-1,1),故-p2=-1,解得p=2,所以抛物线的焦点坐标为(1,0).]5.(2016·浙江高考)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是________.9[设点M的横坐标为x0,则点M到准线x=-1的距离为x0+1,由抛物线的定义知x0+1=10,∴x0=9,∴点M到y轴的距离为9.](对应学生用书第124页)A(x,y0)是C上一点,|AF|=54x0,则x0=()A.1 B.2C.4D.8(2)已知抛物线y2=4x,过焦点F的直线与抛物线交于A,B两点,过A,B分别作y轴的垂线,垂足分别为C,D,则|AC|+|BD|的最小值为__________.【导学号:00090304】(1)A (2)2 [(1)由y 2=x ,知2p =1,即p =12, 因此焦点F ⎝ ⎛⎭⎪⎫14,0,准线l 的方程为x =-14.设点A (x 0,y 0)到准线l 的距离为d ,则由抛物线的定义可知d =|AF |. 从而x 0+14=54x 0,解得x 0=1.(2)由y 2=4x ,知p =2,焦点F (1,0),准线x =-1. 根据抛物线的定义,|AF |=|AC |+1,|BF |=|BD |+1. 因此|AC |+|BD |=|AF |+|BF |-2=|AB |-2.所以|AC |+|BD |取到最小值,当且仅当|AB |取得最小值, 又|AB |=2p =4为最小值. 故|AC |+|BD |的最小值为4-2=2.][规律方法] 1.凡涉及抛物线上的点到焦点距离,一般运用定义转化为到准线的距离处理.如本例充分运用抛物线定义实施转化,使解答简捷、明快. 2.若P (x 0,y 0)为抛物线y 2=2px (p >0)上一点,由定义易得|PF |=x 0+p2;若过焦点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则弦长为|AB |=x 1+x 2+p ,x 1+x 2可由根与系数的关系整体求出.[变式训练1] (1)设P 是抛物线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值为__________.(2)若抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),则|P A |+|PF |取最小值时点P 的坐标为________.(1)5 (2)(2,2)[(1)如图,易知抛物线的焦点为F (1,0),准线是x =-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到F 的距离.于是,问题转化为在抛物线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.连接AF 交抛物线于点P ,此时最小值为 |AF |=[1-(-1)]2+(0-1)2= 5.(2)将x =3代入抛物线方程y 2=2x ,得y =±6. ∵6>2,∴A 在抛物线内部,如图.设抛物线上点P 到准线l :x =-12的距离为d ,由定义知|P A |+|PF |=|P A |+d ,当P A ⊥l 时,|P A |+d 最小,最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2,∴点P 的坐标为(2,2).](1)是( ) A .x 2=112y B .x 2=112y 或x 2=-136y C .x 2=-136yD .x 2=12y 或x 2=-36y(2)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx (k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) A .12 B .1 C .32D .2(1)D (2)D [(1)将y =ax 2化为x 2=1a y .当a >0时,准线y =-14a ,则3+14a =6,∴a =112.当a<0时,准线y=-14a,则⎪⎪⎪⎪⎪⎪3+14a=6,∴a=-136.∴抛物线方程为x2=12y或x2=-36y.(2)由抛物线C:y2=4x知p=2.∴焦点F(1,0).又曲线y=kx(k>0)与曲线C交于点P,且PF⊥x轴.∴P(1,2),将点P(1,2)代入y=kx,得k=2][规律方法] 1.求抛物线的标准方程的方法:(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.2.由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离,从而进一步确定抛物线的焦点坐标及准线方程.[变式训练2](1)(2018·郑州模拟)抛物线y2=2px(p>0)的焦点为F,O为坐标原点,M为抛物线上一点,且|MF|=4|OF|,△MFO的面积为43,则抛物线的方程为() 【导学号:00090305】A.y2=6x B.y2=8xC.y2=16x D.y2=15x 2(2018·西安模拟)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O 为坐标原点.若|AF|=3,则△AOB的面积为________.(1)B(2)322[(1)设M(x,y),因为|OF|=p2,|MF|=4|OF|,所以|MF|=2p,由抛物线定义知x+p2=2p,所以x=32p,所以y=±3p.又△MFO的面积为43,所以12×p2×3p=43,解得p=4(p=-4舍去).所以抛物线的方程为y2=8x.(2)如图,由题意知,抛物线的焦点F 的坐标为(1,0),又|AF |=3,由抛物线定义知,点A 到准线x =-1的距离为3,所以点A 的横坐标为2,将x =2代入y 2=4x 得y 2=8,由图知点A 的纵坐标为y =22,所以A (2,22),所以直线AF 的方程为y =22(x -1),联立直线与抛物线的方程⎩⎨⎧y =22(x -1),y 2=4x ,解得⎩⎪⎨⎪⎧x =12,y =-2或⎩⎨⎧x =2,y =22,由图知B ⎝ ⎛⎭⎪⎫12,-2,所以S △AOB =12×1×|y A -y B |=322.]角度1 (2016·全国卷Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. [解] (1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t .又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,2分故直线ON 的方程为y =pt x ,将其代入y 2=2px ,整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p .因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.5分(2)直线MH 与C 除H 以外没有其他公共点.理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp (y -t ). 8分代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.12分 [规律方法] 1.(1)本题求解的关键是求出点N ,H 的坐标.(2)第(2)问将直线MH 的方程与抛物线C 的方程联立,根据方程组的解的个数进行判断. 2.(1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)解题时注意应用根与系数的关系及设而不求、整体代换的技巧.角度2 与抛物线弦长或中点有关的问题(2017·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8. (1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1的垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△F AB 的面积. [解] (1)易知直线与抛物线的交点坐标为(8,-8), 2分 ∴(-8)2=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .5分(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .6分由⎩⎨⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0,Δ=64+32m >0,∴m >-2.y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.8分由题意可知OA⊥OB,即x1x2+y1y2=m2-8m=0,∴m=8或m=0(舍),∴直线l2:x=y+8,M(8,0). 10分故S△F AB=S△FMB+S△FMA=12·|FM|·|y1-y2|=3(y1+y2)2-4y1y2=24 5. 12分[规律方法] 1.抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.2.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等方法.3.涉及弦的中点、斜率时,一般用“点差法”求解.。
2019年高考数学一轮复习学案北师大版理科第8章平面解析几何第6节抛物线学案理

第六节抛物线[考纲传真] (教师用书独具)1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.理解数形结合思想.3.了解抛物线的实际背景及抛物线的简单应用.(对应学生用书第141页)[基础知识填充]1.抛物线的定义平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的集合叫作抛物线.点F 叫作抛物线的焦点,直线l叫作抛物线的准线.2.抛物线的标准方程与几何性质1122倾斜角为θ,如图861,则图861(1)|AB |=x 1+x 2+p =2psin 2θ;(2)x 1x 2=p 24,y 1y 2=-p 2;(3)1|AF |+1|BF |=2p ; (4)S △AOB =p 22sin θ;(5)|CD |=2p ,即通径,通径是过抛物线焦点弦中最短的弦.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a4,0,准线方程是x =-a4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝ ⎛⎭⎪⎫p2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( )[答案] (1)× (2)× (3)× (4)√2.抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2C .x =-1D .x =-2A [∵y =14x 2,∴x 2=4y ,∴准线方程为y =-1.]3.(教材改编)若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .1716B .1516C .78D .0B [M 到准线的距离等于M 到焦点的距离,又准线方程为y =-116,设M (x ,y ),则y +116=1,∴y =1516.]4.顶点在原点,对称轴是y 轴,并且经过点P (-4,-2)的抛物线方程是________.x 2=-8y [设抛物线的方程为x 2=my ,将点P (-4,-2)代入x 2=my ,得m =-8,所以抛物线方程是x 2=-8y .]5.(2016·浙江高考)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________.9 [设点M 的横坐标为x ,则点M 到准线x =-1的距离为x +1,由抛物线的定义知x +1=10,∴x =9, ∴点M 到y 轴的距离为9.](对应学生用书第142页)(1)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4 FQ →,则|QF |=( ) A .72 B .52 C .3D .2(2)(2017·全国卷Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________. (1)C (2)6 [(1)∵FP →=4 FQ →, ∴|FP →|=4|FQ →|, ∴|PQ ||PF |=34. 如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4,∴|PQ ||PF |=|QQ ′||AF |=34, ∴|QQ ′|=3.根据抛物线定义可知|QF |=|QQ ′|=3.(2)如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2. ∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6.] 由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化注意灵活运用抛物线上一点x ,到焦点[跟踪训练(1)(2017·广东汕头调研)已知P 3)2+(y -1)2=1上的一个动点,N (1,0)是一个定点,则|PQ |+|PN |的最小值为( ) A .3 B .4 C .5D .2+1(2)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________.【导学号:79140289】(1)A (2)y 2=4x [(1)由抛物线方程y 2=4x ,可得抛物线的焦点F (1,0),又N (1,0),所以N 与F 重合.过圆(x -3)2+(y -1)2=1的圆心M 作抛物线准线的垂线MH ,交圆于Q ,交抛物线于P ,则|PQ |+|PN |的最小值等于|MH |-1=3.(2)设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .](1)点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的标准方程是( ) A .x 2=112yB .x 2=112y 或x 2=-136yC .x 2=-136yD .x 2=12y 或x 2=-36y(2)(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A .2 B .4 C .6D .8(1)D (2)B [(1)将y =ax 2化为x 2=1ay .当a >0时,准线y =-14a ,则3+14a =6,∴a =112.当a <0时,准线y =-14a ,则⎪⎪⎪⎪⎪⎪3+14a =6,∴a =-136. ∴抛物线方程为x 2=12y 或x 2=-36y .(2)设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p +8=r 2,p 24+5=r 2,∴16p 2+8=p24+5,∴p =4(负值舍去). ∴C 的焦点到准线的距离为4.] 求抛物线的标准方程常用待定系数法,因为未知数只有值即可.抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量2.研究抛物线的焦点坐标或准线方程,必须把抛物线化成标准方程,正确的求出[跟踪训练点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为 ( ) A .y 2=6x B .y 2=8x C .y 2=16xD .y 2=15x 2(2)若抛物线y 2=2x 上一点M 到它的焦点F 的距离为32,O 为坐标原点,则△MFO 的面积为( ) A .22B .24C .12D .14(1)B (2)B [(1)设M (x ,y ),因为|OF |=p2,|MF |=4|OF |,所以|MF |=2p ,由抛物线定义知x +p2=2p ,所以x =32p ,所以y =±3p .又△MFO 的面积为43,所以12×p2×3p =43,解得p =4(p =-4舍去).所以抛物线的方程为y 2=8x .(2)由题意知, 抛物线准线方程为x =-12.设M (a ,b ),由抛物线的定义可知, 点M 到准线的距离为32,所以a =1,代入抛物线方程y 2=2x , 解得b =±2,所以S △MFO =12×12×2=24.]◎角度1 直线与抛物线的交点问题(2016·全国卷Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.[解] (1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t .又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t , 故直线ON 的方程为y =ptx ,将其代入y 2=2px 整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t 2p.因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点.理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点. ◎角度2 与抛物线弦长或中点有关的问题(2017·北京高考)已知抛物线C :y 2=2px 过点P (1,1).过点⎝ ⎛⎭⎪⎫0,12作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.[解] (1)由抛物线C :y 2=2px 过点P (1,1),得p =12.所以抛物线C 的方程为y 2=x .抛物线C 的焦点坐标为⎝ ⎛⎭⎪⎫14,0,准线方程为x =-14. (2)证明:由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0,则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎪⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝ ⎛⎭⎪⎫kx 2+12x 1-2x 1x2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k2k2x 2=0,所以y 1+y 2x 1x 2=2x 1, 故A 为线段BM 的中点.直线与抛物线的位置关系和直线与椭圆的位置关系类似,有关直线与抛物线的弦长问题,可直接使用公式涉及抛物线的弦长、提醒:涉及弦的中点、弦所在直线的斜率时一般用“点差法”求解[跟踪训练1交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△FAB 的面积.【导学号:79140290】[解] (1)易知直线与抛物线的交点坐标为(8,-8), ∴(-8)2=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎪⎨⎪⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0,Δ=64+32m >0,∴m >-2.y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍), ∴直线l 2:x =y +8,M (8,0).故S △FAB =S △FMB +S △FMA =12·|FM |·|y 1-y 2|=3(y 1+y 2)2-4y 1y 2=24 5.。
高考数学统考一轮复习 第八章 平面解析几何 第六节 抛物线(教师文档)教案 文 北师大版

学习资料第六节 抛物线授课提示:对应学生用书第164页[基础梳理]1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内.(2)与一个定点F 和一条定直线l 距离相等. (3)l 不经过点F 。
2.抛物线的标准方程与几何性质标准方程y 2=2px (p 〉0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p 〉0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0(x 轴) x =0(y 轴)焦点 F 错误! F 错误!F 错误!F 错误!离心率 e =1准线方程 x =-错误! x =p 2y =-错误! y =错误! 范围x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 焦半径(其中P (x 0,y 0))|PF |=x 0+错误!|PF |=-x 0+错误!|PF |=y 0+错误!|PF |=-y 0+错误!焦点弦性质设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=错误!,y 1y 2=-p 2。
(2)弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角).(3)错误!+错误!=错误!。
(4)以弦AB 为直径的圆与准线相切.(5)以AF 或BF 为直径的圆与y 轴相切.(6)通径:过焦点垂直于对称轴的弦,长等于2p 。
[四基自测]1.(基础点:抛物线定义)若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.错误! B .错误! C.错误! D .0 答案:B2.(基础点:求抛物线标准方程)以x 轴为对称轴,原点为顶点的抛物线上的一点P (1,m )到焦点的距离为3,则其方程是( ) A .y =4x 2 B .y =8x 2 C .y 2=4x D 。
高考数学一轮复习第八章平面解析几何8-6抛物线学案理含解析北师大版

第六节抛物线命题分析预测学科核心素养从近五年的考查情况来看,抛物线的定义、标准方程、几何性质以及直线与抛物线的位置关系是高考的命题热点,常以选择题和填空题的形式出现,直线与抛物线的位置关系常以解答题的形式出现.本节主要考查考生的转化与化归思想的运用,提升考生数学运算、直观想象核心素养.授课提示:对应学生用书第181页知识点一抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F的距离与到定直线l的距离相等;(3)定点不在定直线上.•温馨提醒•抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.1.抛物线y2=8x上到其焦点F距离为5的点P有()A.0个B.1个C.2个D.4个〖解析〗设P(x1,y1),则|PF|=x1+2=5,y21=8x1,所以x1=3,y1=±26.故满足条件的点P有两个.〖答案〗C2.(易错题)设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是_________.〖解析〗抛物线y2=8x的准线方程x=-2,因为点P到y轴的距离为4,所以点P到准线的距离为6,由抛物线定义知点P到焦点的距离为6.〖答案〗6知识点二 抛物线的标准方程和几何性质标准方程y 2=2px(p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 x 轴y 轴焦点 F ⎝⎛⎭⎫p 2,0F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p2 F ⎝⎛⎭⎫0,-p2 离心率 e =1续表准线方程 x =-p2x =p 2 y =-p 2y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右 向左 向上 向下 焦半径(其中P (x 0,y 0)) |PF |=x 0+p2|PF |=-x 0+p 2|PF |=y 0+p2|PF |=-y 0+p 2• 温馨提醒 •抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则: (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角).(3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦长等于2p .1.(易错题)抛物线y =ax 2的准线方程是y =1,则a 的值为( )A .14B .-14C .4D .-4〖解 析〗由题意知抛物线的标准方程为x 2=1a y ,所以准线方程y =-14a =1,解得a =-14.〖答 案〗B2.过点P (-2,3)的抛物线的标准方程是( ) A .y 2=-92x 或x 2=43yB .y 2=92x 或x 2=43yC .y 2=92x 或x 2=-43yD .y 2=-92x 或x 2=-43y〖解 析〗设抛物线的标准方程为y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y .〖答 案〗A3.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=_________.〖解 析〗抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8. 〖答 案〗8授课提示:对应学生用书第182页题型一 抛物线的标准方程及几何性质1.(2021·宜春联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 是抛物线C 上一点,圆M 与y 轴相切,且被直线x =p 2截得的弦长为2p ,若|MF |=52,则抛物线的方程为( )A .y 2=4xB .y 2=2xC .y 2=8xD .y 2=x〖解 析〗设圆M 与y 轴相切于点N ,直线x =p2与圆M 交于A ,B 两点,如图所示,设M (x 0,y 0),则|MN |=|MA |=|MB |=x 0,|AB |=2p ,所以⎝⎛⎭⎫22p 2+⎝⎛⎭⎫x 0-p 22=x 20,解得x 0=34p ,由抛物线的定义知,|MF |=x 0+p 2,因为|MF |=52,所以52=34p +12p ,即p =2,所以抛物线方程为y 2=4x .〖答 案〗A2.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A .72B .52C .3D .2〖解 析〗因为FP →=4FQ →,所以|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4,所以|PQ ||PF |=|QQ ′||AF |=34.所以|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3.〖答 案〗C3.(2021·辽宁五校联考)抛物线C :y 2=4x 的焦点为F ,N 为准线上一点,M 为y 轴上一点,∠MNF 为直角,若线段MF 的中点E 在抛物线C 上,则△MNF 的面积为( ) A .22B . 2C .322D .3 2〖解 析〗如图所示,不妨设点N 在第二象限,连接EN ,易知F (1,0),因为∠MNF 为直角,点E 为线段MF 的中点,所以|EM |=|EF |=|EN |,又E 在抛物线C 上,所以EN ⊥l ,E ⎝⎛⎭⎫12,2,所以N (-1,2),M (0,22),所以|NF |=6,|NM |=3,所以△MNF 的面积为322.〖答 案〗C4.(2020·高考全国卷Ⅲ)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A .⎝⎛⎭⎫14,0 B .⎝⎛⎭⎫12,0 C .(1,0)D .(2,0)〖解 析〗法一:∵抛物线C 关于x 轴对称,∴D ,E 两点关于x 轴对称.可得出直线x =2与抛物线的两交点的坐标分别为(2,2p ),(2,-2p ).不妨设D (2,2p ),E (2,-2p ),则OD →=(2,2p ),OE →=(2,-2p ).又∵OD ⊥OE ,∴OD →·OE →=4-4p =0,解得p =1,∴C 的焦点坐标为⎝⎛⎭⎫12,0.法二:∵抛物线C 关于x 轴对称,∴D ,E 两点关于x 轴对称.∵OD ⊥OE ,∴D ,E 两点横、纵坐标的绝对值相等.不妨设点D (2,2),将点D 的坐标代入C :y 2=2px ,得4=4p ,解得p =1,故C 的焦点坐标为⎝⎛⎭⎫12,0. 〖答 案〗B1.求抛物线方程的三个注意点(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种. (2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系. (3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题. 2.运用抛物线几何性质的技巧涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.题型二 抛物线的定义及应用与抛物线定义相关的最值问题常涉及距离最短、距离和最小等等.常见的命题角度有:(1)焦点与定点距离之和最小问题;(2)点与准线的距离之和最小问题;(3)焦点弦中距离之和最小问题.〖例1〗 (2021·赣州模拟)若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( ) A .(0,0) B .⎝⎛⎭⎫12,1 C .(1,2)D .(2,2)〖解析〗 过M 点作准线的垂线,垂足是N (图略),则|MF |+|MA |=|MN |+|MA |,当A ,M ,N 三点共线时,|MF |+|MA |取得最小值,此时M (2,2). 〖答案〗 D考法(二) 点与准线的距离之和最小问题〖例2〗 (2021·邢台摸底)已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是_________.〖解析〗 依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1(图略),则有|MA |+|MF |=|MA |+|MM 1|,结合图形可知|MA |+|MM 1|的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即等于6-1=5,因此|MA |+|MF |的最小值是5.〖答案〗 5考法(三) 焦点弦中距离之和最小问题〖例3〗 已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为_________.〖解析〗 由题意知F (1,0),|AC |+|BD |=|AF |+|FB |-2=|AB |-2,即|AC |+|BD |取得最小值时当且仅当|AB |取得最小值,依抛物线定义知当|AB |为通径,即|AB |=2p =4时为最小值,所以|AC |+|BD |的最小值为2. 〖答案〗 2与抛物线有关的最值问题的两个转化策略(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解.(2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.〖题组突破〗1.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,则抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是_________.〖解 析〗由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点F 为(1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值即为焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.〖答 案〗22.(2021·上海虹口区模拟)已知点M (20,40),抛物线y 2=2px (p >0)的焦点为F .若对于抛物线上的任意点P ,|PM |+|PF |的最小值为41,则p 的值等于_________.〖解 析〗过点P 作抛物线准线的垂线,垂足为D ,则|PF |=|PD |.根据点M 与抛物线的位置分类讨论,当点M (20,40)位于抛物线内时, 如图(1),|PM |+|PF |=|PM |+|PD |.当点M ,P ,D 共线时,|PM |+|PF |的值最小. 由最小值为41,得20+p2=41,解得p =42.当点M (20,40)位于抛物线外时,如图(2),当点P ,M ,F 共线时,|PM |+|PF |的值最小. 由最小值为41,得402+⎝⎛⎭⎫20-p 22=41,解得p =22或58.当p =58时,y 2=116x ,点M (20,40)在抛物线内,故舍去. 综上,p =42或22.〖答 案〗42或22题型三 直线与抛物线的位置关系〖例〗 (2019·高考全国卷Ⅲ)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以E ⎝⎛⎭⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.〖解析〗 (1)证明:设D ⎝⎛⎭⎫t ,-12,A (x 1,y 1), 则x 21=2y 1.因为y ′=x ,所以切线DA 的斜率为x 1,故y 1+12x 1-t =x 1.整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0.故直线AB 的方程为2tx -2y +1=0. 所以直线AB 过定点⎝⎛⎭⎫0,12. (2)由(1)得直线AB 的方程为y =tx +12.由⎩⎨⎧y =tx +12,y =x 22可得x 2-2tx -1=0.于是x 1+x 2=2t ,x 1x 2=-1, y 1+y 2=t (x 1+x 2)+1=2t 2+1, |AB |=1+t 2|x 1-x 2|=1+t 2×(x 1+x 2)2-4x 1x 2=2(t 2+1).设d 1,d 2分别为点D ,E 到直线AB 的距离, 则d 1=t 2+1,d 2=2t 2+1.因此,四边形ADBE 的面积 S =12|AB |(d 1+d 2)=(t 2+3)t 2+1.设M 为线段AB 的中点,则M ⎝⎛⎭⎫t ,t 2+12. 因为EM →⊥AB →,而EM →=(t ,t 2-2),AB →与向量(1,t )平行, 所以t +(t 2-2)t =0,解得t =0或t =±1. 当t =0时,S =3;当t =±1时,S =42. 因此,四边形ADBE 的面积为3或42.直线与抛物线相交问题处理规律(1)凡涉及抛物线的弦长、弦的中点、弦的斜率问题时都要注意利用根与系数的关系,避免求交点坐标的复杂运算.解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质.(2)对于直线与抛物线相交、相切、中点弦、焦点弦问题,以及定值、存在性问题的处理,最好是作出草图,由图像结合几何性质做出解答.并注意“设而不求”“整体代入”“点差法”的灵活应用. (3)对于抛物线x 2=2py的切线问题,常结合导数的几何意义求解切线的斜率.由y =x 22p得k=y ′=x 0p.〖对点训练〗设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.〖解 析〗(1)设A (x 1,y 1),B (x 2,y 2), 则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4,于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1.(2)由y =x 24,得y ′=x 2.设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y =x +m 代入y =x 24得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±2m +1.从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1),解得m=7.所以直线AB 的方程为y =x +7.抛物线几何性质应用中的核心素养直观想象——抛物线几何性质的创新应用〖例〗 (2021·合肥调研)设抛物线C :y 2=2px (p >0)的焦点为F ,斜率为k 的直线过F 交C 于点A ,B ,AF →=2FB →,则直线AB 的斜率为( ) A .22 B .2 3 C .±2 2D .±2 3〖解析〗 法一:由题意知k ≠0,F ⎝⎛⎭⎫p 2,0,则直线AB 的方程为y =k ⎝⎛⎭⎫x -p 2,代入抛物线方程消去x ,得y 2-2p ky -p 2=0.不妨设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2),因为AF →=2FB →,所以y 1=-2y 2.又y 1y 2=-p 2,所以y 2=-22p ,x 2=p 4,所以k AB =-22p -0p 4-p 2=22.根据对称性可得直线AB 的斜率为±22.法二:如图,过A ,B 分别作准线的垂线,垂足分别为D ,E ,设直线AB 交准线于M ,由抛物线的定义知|AF |=|AD |,|BF |=|BE |,结合AF →=2FB →,知|BE |=12|AD |=13|AB |,则BE 为△AMD 的中位线,所以|AB |=|BM |,所以|BE |=13|BM |,所以|ME |=|BM |2-|BE |2=22|BE |,所以tan ∠MBE =|ME ||BE |=22,即此时直线AB 的斜率为22,根据对称性可得直线AB 的斜率为±22.〖答案〗 C求解此类问题有两种方法:一是利用条件坐标化解决,注意几何性质的运用;二是数形结合充分利用平面几何性质,结合定义转化求解,注意向量的工具作用.〖对点训练〗(2021·惠州调研)已知F 是抛物线C :y =2x 2的焦点,N 是x 轴上一点,线段FN 与抛物线C相交于点M ,若2FM →=MN →,则|FN |=( )A .58B .12C .38D .1 〖解 析〗法一:因为抛物线C :y =2x 2,所以F ⎝⎛⎭⎫0,18,抛物线C 的准线方程为y =-18.如图,过点M 作抛物线准线的垂线,交x 轴于点A ,交抛物线C 的准线于点B ,则MA ∥OF ,所以|MA ||OF |=|MN ||FN |.因为2FM →=MN →,所以|MA |=23×18=112,|MF |=|MB |=112+18=524,|FN |=3|FM |=58.法二:因为抛物线y =2x 2,所以F ⎝⎛⎭⎫0,18.设N (x 0,0),则由2FM →=MN →,可得M ⎝⎛⎭⎫13x 0,112,代入抛物线方程,得112=2⎝⎛⎭⎫13x 02,解得x 20=38,则|FN |=|ON |2+|OF |2= 38+164=58. 〖答 案〗A。
抛物线的简单几何性质高二上学期数学北师大版(2019)选择性必修第一册

不同标准方程对应的焦点弦如下:
标准方程
y2 2 px
y2 2 px
p0
焦点弦 AB
x1+x2 p
p x1 x2
yp
2 x1
A (பைடு நூலகம்1, y1)
OF
p 2
x1
p 2
x2
p
B (2x2 ,xy2 2 )
x
x2 2 py
x2 2 py
y1 +y2 p
p y1 y2
3.通径
在抛物线 y2
2 px p
0
中,令 x0 =
新课学习
思考:回顾一下我们对椭圆和双曲线的研究,想一想我们可以从哪几个方面来研 究抛物线的几何性质呢?
我们可以从抛物线的范围,对称性,顶点,离心率及准线等方面来研究抛物线的性质
根据抛物线的标准方程 y2 2 px p 0 ①和图象研究它的几何性质.
1.范围 由方程①可知,对于抛物线①上的任意一点 M x, y ,都有 x 0, y R ,所以这条
学习目标
1.掌握抛物线的简单几何性质. 2.了解抛物线几何性质的简单应用. 3.归纳、对比四种方程所表示的抛物线的几何性质的异同.
学习重点
抛物线的简单几何性质.
学习难点
抛物线几何性质的简单应用.
新课导入
前面我们由椭圆和双曲线的方程,讨论了它们的几何性质,下面我 们继续通过抛物线的方程来研究抛物线具有的几何性质.
抛物线在 y 轴的右侧,开口向右;当 x 的值增大时,|y|也随之增大,这说明抛物线 向右上方和右下方无限延伸.
2.对称性 根据方程①的结构特点,可以发现:若 x0, y0 满足方程①,则 x0, y0 也满足 方程①,所以抛物线 y2 2 px p 0 是关于 x 轴对称的曲线.
北师大版高中数学选修抛物线学案

抛物线【考点分析解读】 1、由于对抛物线的考查要求下降,为A 级要求,因此主要对其定义、几何性质和标准方程进行一定的考查,不大会出现综合性的大题。
2、抛物线的标准方程有四种,要深刻理解抛物线的焦半径公式:2px AF A +=,不可死记硬背。
【学习目标】(1)了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用. (2)掌握抛物线的定义、几何图形、标准方程及简单性质. 【基本概念】 1.抛物线定义:1===e dPF(定点F 为焦点在准线l 外) 2.抛物线的标准方程和焦点坐标及准线方程: ① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 说明:(1)p 为焦准距(p 越大,张口越大);(2)张口方向(焦点位置):焦点在一次项字母对应的坐标轴上,系数决定张口方向; (3)开口补丁时可设ny x mx y ==22或 3.几何性质:px y 22= px y 22-= py x 22= py x 22-=范围: R y x ∈≥,0 R y x ∈≤,0 R x y ∈≥,0 R x y ∈≤,0 对称轴: x 轴 x 轴 y 轴 y 轴 顶点: 原点 原点 原点 原点 焦半径: 02x p PF +=02x p PF -= 02y p PF += 02y pPF -= 通径: 垂直于对称轴的焦点弦(最短的焦点弦)长为p 2 【例题讲解】1.抛物线22x y =的焦点坐标是______)81,0( 2.若抛物线241x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为____53.抛物线x y 42=上一点M 到焦点的距离为2,则M 到y 轴的距离为________14.经过点)2,4(-P 的双曲线方程为___________y x x y 8,22-==5.抛物线y x 42=的弦AB 过焦点F ,且AB 的长为6,则AB 的中点M 的纵坐标为____26.若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为_________47.圆心在抛物线x y 82=上,与抛物线的准线相切且过原点的圆的标准方程是_____9)22()1(22=±+-y x8.设F 为抛物线x y 42=的焦点,C B A ,,为该抛物线上三点,若→−→−−→−−→−=++0FC FB FA ,则=++FC FB FA __________69.已知抛物线x y 42=上的点P 到抛物线的准线的距离为1d ,到直线0943=+-y x 的距离为2d ,则21d d +的最小值是____.51210.(2008 徐州模拟)已知点P 为抛物线x y 22=上的动点,点P 在y 轴上的 射影是M ,点)4,27(A ,则PM PA +的最小值为__________.29。
北师大版选修(11)2.2《抛物线》word教案

当堂检测
备注
1.已知抛物线 上一点M与焦点F的距离|MF|=2p,求点M的坐标。
2.根据下列条件,求抛物线的标准方程,并画出草图:
(1)准线方程是y=2;
(2)对称轴是x轴,并且顶点与焦点的距离等于8;
(3)对称轴是y轴,并经过点p(-6,-3)。
离心率
2.抛物线(焦点在 轴正半轴上)通径的定义
,其中2P的几何意义是。
注:可以利用抛物线的几何性质及抛物线上坐标为 , 的两点,能够方便的画出抛物线的草图。
基础检测
备注
1.顶点在原点,且经过点(4,-2)的抛物线的标准方程是()
A B C D
2.分别写出满足下列条件的抛物线的标准方程:
(1)顶点在原点,关于 轴对称,过点M(4,-4)
高二数学教(学)案
年级:高二编写人:审核人:编制时间:
课题
§2抛物线---2.2抛物线的简单性质
班级
授课(完成)时间
教师(学生)
教
学
目
标
知识与技能
掌握抛物线的范围、对称性、定点、焦点、准线、离心率、顶点、通径,理解2P和e的几何意义,初步学习利用方程研究曲线性质的方法。
过程与方法
通过曲线的方程来研究曲线性质的方法,让学生体会数形结合的思想、方程思想及转化的思想在研究和解决问题中的应用。
(2)顶点在原点,焦点是F(0,5)
(3)焦点是F(0,-8),准线是y=8
3.在同一平面直角坐标系中画出下列抛物线的草图:
(1) (2) (3)
比较这些图形,说明抛物线开口的大小与方程中 的系数有怎样的关系。
4.过抛物线 的焦点作直线交抛物线于 两点,如果 ,那么|AB|等于()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六节抛物线[考纲传真] 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用.2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.3.了解抛物线的简单应用.4.理解数形结合的思想.1.抛物线的概念平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的集合叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.2.抛物线的标准方程与几何性质1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a 4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝ ⎛⎭⎪⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( )[答案] (1)× (2)× (3)× (4)√2.(教材改编)若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A.1716B.1516C.78D .0B [M 到准线的距离等于M 到焦点的距离,又准线方程为y =-116, 设M (x ,y ),则y +116=1,∴y =1516.] 3.抛物线y =14x 2的准线方程是( ) A .y =-1 B .y =-2 C .x =-1D .x =-2A [∵y =14x 2,∴x 2=4y ,∴准线方程为y =-1.]4.(2017·西安质检)若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =__________.22 [抛物线的准线方程为x =-p2,p >0,双曲线的焦点为F 1(-2,0),F 2(2,0),所以-p2=-2,p =2 2.]5.(2016·浙江高考)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________.9 [设点M 的横坐标为x 0,则点M 到准线x =-1的距离为x 0+1,由抛物线的定义知x 0+1=10,∴x 0=9,∴点M 到y 轴的距离为9.]00)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .8(2)(2017·广东汕头调研)已知P 是抛物线y 2=4x 上的一个动点,Q 是圆(x -3)2+(y -1)2=1上的一个动点,N (1,0)是一个定点,则|PQ |+|PN |的最小值为( )A .3B .4C .5D .2+1(1)A (2)A [(1)由y 2=x ,知2p =1,即p =12, 因此焦点F ⎝ ⎛⎭⎪⎫14,0,准线l 的方程为x =-14. 设点A (x 0,y 0)到准线l 的距离为d ,则由抛物线的定义可知d =|AF |. 从而x 0+14=54x 0,解得x 0=1.(2)由抛物线方程y 2=4x ,可得抛物线的焦点F (1,0),又N (1,0),所以N 与F 重合.过圆(x -3)2+(y -1)2=1的圆心M 作抛物线准线的垂线MH ,交圆于Q ,交抛物线于P ,则|PQ |+|PN |的最小值等于|MH |-1=3.][规律方法] 1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.如本例充分运用抛物线定义实施转化,使解答简捷、明快.2.若P (x 0,y 0)为抛物线y 2=2px (p >0)上一点,由定义易得|PF |=x 0+p2;若过焦点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则弦长为|AB |=x 1+x 2+p ,x 1+x 2可由根与系数的关系整体求出.[变式训练1] (2017·郑州调研)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4 FQ →,则|QF |=( )A.72 B .52C .3D .2C [∵FP →=4 FQ →, ∴|FP →|=4|FQ →|, ∴|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4, ∴|PQ ||PF |=|QQ ′||AF |=34, ∴|QQ ′|=3.根据抛物线定义可知|QF |=|QQ ′|=3.]方程是( )【导学号:57962399】A .x 2=112y B .x 2=112y 或x 2=-136y C .x 2=-136yD .x 2=12y 或x 2=-36y(2)(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8(1)D (2)B [(1)将y =ax 2化为x 2=1a y .当a >0时,准线y =-14a ,则3+14a =6,∴a =112. 当a <0时,准线y =-14a ,则⎪⎪⎪⎪⎪⎪3+14a =6,∴a =-136. ∴抛物线方程为x 2=12y 或x 2=-36y .(2)设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2, ∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5.∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p 24+5,∴p =4(负值舍去).∴C 的焦点到准线的距离为4.[规律方法] 1.求抛物线的标准方程的方法:(1)求抛物线的标准方程常用待定系数法,因为未知数只有p ,所以只需一个条件确定p 值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.2.由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离;从而进一步确定抛物线的焦点坐标及准线方程.[变式训练2] (1)(2017·河南中原名校联考)抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为 ( )【导学号:57962400】A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=15x2(2)若抛物线y 2=2px 的焦点与椭圆x 29+y 25=1的右焦点重合,则该抛物线的准线方程为__________.(1)B (2)x =-2 [(1)设M (x ,y ),因为|OF |=p2,|MF |=4|OF |, 所以|MF |=2p ,由抛物线定义知x +p2=2p , 所以x =32p ,所以y =±3p . 又△MFO 的面积为43,所以12×p2×3p =43,解得p =4(p =-4舍去). 所以抛物线的方程为y 2=8x .(2)由椭圆x 29+y 25=1,知a =3,b =5, 所以c 2=a 2-b 2=4,所以c =2. 因此椭圆的右焦点为(2,0), 又抛物线y 2=2px 的焦点为⎝ ⎛⎭⎪⎫p 2,0.依题意,得p2=2, 于是抛物线的准线x =-2.](2016·全国卷Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. [解] (1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t .又N 为M 关于点P 的对称点, 故N ⎝ ⎛⎭⎪⎫t 2p ,t ,2分故直线ON 的方程为y =p t x ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p .因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2. 5分(2)直线MH 与C 除H 以外没有其他公共点.理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp (y -t ).8分代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点. 12分[规律方法] 1.(1)本题求解的关键是求出点N ,H 的坐标.(2)第(2)问将直线MH 的方程与抛物线C 的方程联立,根据方程组的解的个数进行判断.2.(1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)解题时注意应用根与系数的关系及设而不求、整体代换的技巧.☞角度2 与抛物线弦长或中点有关的问题(2017·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1的垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△F AB 的面积.【导学号:57962401】[解] (1)易知直线与抛物线的交点坐标为(8,-8), 2分 ∴(-8)2=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .5分(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .6分由⎩⎨⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0, Δ=64+32m >0,∴m >-2. y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.8分由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍), ∴直线l 2:x =y +8,M (8,0).10分故S △F AB =S △FMB +S △FMA =12·|FM |·|y 1-y 2| =3(y 1+y 2)2-4y 1y 2=24 5.12分[规律方法] 1.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.2.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等方法.3.涉及弦的中点、斜率时,一般用“点差法”求解.[思想与方法]1.抛物线定义的实质可归结为“一动三定”:一个动点M ,一个定点F (抛物线的焦点),一条定直线l (抛物线的准线),一个定值1(抛物线的离心率).2.抛物线的定义中指明了抛物线上点到焦点的距离与到准线距离的等价性,故二者可相互转化,这一转化思想在解题中有着重要作用.3.抛物线的焦点弦:设过抛物线y 2=2px (p >0)的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则:(1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ=x 1+x 2+p . [易错与防范]1.认真区分四种形式的标准方程.(1)区分y =ax 2(a ≠0)与y 2=2px (p >0),前者不是抛物线的标准方程. (2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx 或x 2=my (m ≠0).2.直线与抛物线结合的问题,不要忘记验证判别式.3.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.当直线与抛物线有一个公共点,并不表明直线与抛物线相切.。