数学知识点秋湘教版数学九上3.4《相似三角形的判定》(第2课时)word教案-总结
湘教版数学九年级上册3.4《相似三角形的判定》(第2课时)教学设计

湘教版数学九年级上册3.4《相似三角形的判定》(第2课时)教学设计一. 教材分析《相似三角形的判定》是湘教版数学九年级上册3.4的内容,这部分内容是在学生已经掌握了相似三角形的概念和性质的基础上进行学习的。
本节课的主要内容是引导学生探究并掌握相似三角形的判定方法,并通过大量的例题和练习题,使学生熟练掌握并应用这些方法。
教材中提供了丰富的教学资源,包括例题、练习题、探究题等,有助于提高学生的学习兴趣和积极性。
二. 学情分析九年级的学生已经具备了一定的数学基础,对相似三角形的概念和性质有一定的了解。
但是,对于相似三角形的判定方法,他们可能还比较陌生。
因此,在教学过程中,教师需要引导学生通过观察、思考、探究等活动,发现并总结相似三角形的判定方法。
同时,学生可能对一些复杂的问题感到困惑,需要教师给予适当的指导。
三. 教学目标1.知识与技能:使学生掌握相似三角形的判定方法,并能灵活运用。
2.过程与方法:通过观察、思考、探究等活动,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探究、积极思考的良好学习习惯。
四. 教学重难点1.重点:相似三角形的判定方法。
2.难点:如何引导学生发现并总结相似三角形的判定方法。
五. 教学方法1.引导发现法:教师通过提出问题,引导学生观察、思考、探究,发现并总结相似三角形的判定方法。
2.例题教学法:教师通过讲解典型例题,使学生掌握相似三角形的判定方法。
3.练习法:教师布置适量的练习题,让学生在实践中巩固所学知识。
六. 教学准备1.教材:湘教版数学九年级上册。
2.教学多媒体设备:用于展示教材内容、例题和练习题。
3.练习题:用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似三角形的概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示教材中的例题,引导学生观察、思考,发现相似三角形的判定方法。
湘教版九年级数学上册第3章图形的相似3.4相似三角形的判定与性质教学设计

湘教版九年级数学上册第3章图形的相似3.4相似三角形的判定与性质教学设计一. 教材分析湘教版九年级数学上册第3章图形的相似3.4相似三角形的判定与性质,主要介绍了相似三角形的判定方法和性质。
本节课的内容是学生在学习了相似概念、相似多边形的基础上进行的,是进一步培养学生空间想象能力、逻辑思维能力和解决实际问题能力的重要内容。
二. 学情分析九年级的学生已经掌握了相似的概念和性质,同时具备了一定的空间想象能力和逻辑思维能力。
但学生在学习过程中,对相似三角形的判定与性质的理解和运用还有一定的困难,需要通过本节课的学习,进一步巩固和提高。
三. 教学目标1.理解相似三角形的判定方法。
2.掌握相似三角形的性质。
3.能够运用相似三角形的判定与性质解决实际问题。
4.培养学生的空间想象能力、逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.教学重点:相似三角形的判定方法和性质。
2.教学难点:相似三角形的判定方法的灵活运用。
五. 教学方法1.情境教学法:通过生活实例,引发学生的兴趣,激发学生的思考。
2.小组合作学习法:培养学生团队合作精神,提高学生解决问题的能力。
3.启发式教学法:引导学生主动探究,发现知识,提高学生的逻辑思维能力。
六. 教学准备1.教学课件:制作课件,展示相似三角形的判定与性质的相关知识。
2.教学素材:准备一些生活实例,用于引发学生的思考。
3.学具:准备一些三角形模型,方便学生直观地理解相似三角形的性质。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如相似的建筑物、图片等,引发学生的兴趣,引入相似三角形的概念。
2.呈现(10分钟)利用课件呈现相似三角形的判定方法和性质,引导学生直观地理解知识。
同时,教师进行讲解,阐述相似三角形的判定与性质的重要性。
3.操练(10分钟)学生分组进行讨论,通过给出的实例,运用相似三角形的判定与性质进行解答。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成教材中的练习题,检验自己对相似三角形的判定与性质的理解。
湘教版数学九年级上册3.4.1《相似三角的判定》(第2课时)说课稿

湘教版数学九年级上册3.4.1《相似三角的判定》(第2课时)说课稿一. 教材分析湘教版数学九年级上册3.4.1《相似三角形的判定》(第2课时)是在学生已经掌握了相似三角形的概念和性质的基础上进行的一节课。
本节课的主要内容是引导学生探究相似三角形的判定方法,并通过大量的例题和练习让学生熟练掌握这些方法。
在教材的安排上,首先是通过回顾相似三角形的性质,让学生复习和巩固已学过的知识。
然后,引导学生通过观察和分析,发现和总结相似三角形的判定方法。
接着,通过一系列的例题和练习,让学生运用判定方法解决问题,进一步理解和掌握相似三角形的判定。
最后,通过总结和反思,让学生回顾和巩固所学的内容。
二. 学情分析九年级的学生已经具备了一定的数学基础,对相似三角形的概念和性质有一定的了解。
但是,学生在学习过程中可能对相似三角形的判定方法理解不够深入,运用不够熟练。
因此,在教学过程中,我将以学生为主导,引导学生主动探索和发现相似三角形的判定方法,并通过大量的练习让学生熟练掌握和运用。
三. 说教学目标1.知识与技能目标:让学生掌握相似三角形的判定方法,并能运用判定方法解决问题。
2.过程与方法目标:通过观察、分析和推理,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:相似三角形的判定方法。
2.教学难点:理解和运用相似三角形的判定方法。
五. 说教学方法与手段在本节课的教学中,我将采用问题驱动法和案例教学法相结合的教学方法。
首先,通过提出问题和引导学生观察和分析,激发学生的思考,引导学生主动探索和发现相似三角形的判定方法。
然后,通过分析具体的案例,让学生理解和掌握判定方法的应用。
此外,我还将运用多媒体教学手段,如PPT和数学软件,展示和演示相似三角形的判定过程,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过回顾相似三角形的性质,引导学生复习和巩固已学过的知识。
湘教版数学九年级上册3.4《相似三角形的判定与性质》教学设计2

湘教版数学九年级上册3.4《相似三角形的判定与性质》教学设计2一. 教材分析湘教版数学九年级上册3.4《相似三角形的判定与性质》是九年级数学的重要内容,主要让学生掌握相似三角形的判定方法和性质。
本节内容是在学生已经掌握了三角形的基本概念、三角形的分类、三角形的内角和定理等知识的基础上进行学习的,为后续学习相似多边形、三角函数等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于三角形的基本概念和性质有一定的了解。
但是,对于相似三角形的判定和性质的理解还需要加强,特别是对于一些具体的判定方法和性质的证明过程,需要通过实例进行讲解和练习。
三. 教学目标1.让学生掌握相似三角形的定义和性质。
2.让学生学会运用相似三角形的性质解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.相似三角形的定义和判定方法。
2.相似三角形的性质及其应用。
五. 教学方法1.采用问题驱动法,引导学生自主探究相似三角形的定义和性质。
2.运用实例讲解法,让学生通过具体例子理解相似三角形的判定和性质。
3.采用小组合作学习法,让学生在小组内讨论和分享学习心得。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备一些实际的例子,用于讲解和练习相似三角形的判定和性质。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些实际的例子,让学生观察和思考:这些图形有什么共同的特点?从而引导学生发现相似三角形的定义。
2.呈现(10分钟)讲解相似三角形的定义,并通过PPT展示相关的图片和例子,让学生理解和掌握相似三角形的定义。
3.操练(10分钟)让学生通过实际的例子,运用相似三角形的定义进行判定,并在小组内进行讨论和分享。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)讲解相似三角形的性质,并通过PPT展示相关的图片和例子,让学生理解和掌握相似三角形的性质。
湘教版九年级数学上册-3.4.1 第2课时 相似三角形的判定定理1(1)教案

第2课时 相似三角形的判定定理 11.理解并掌握相似三角形的判定定理1.(重点,难点)2.运用相似三角形的判定定理1解决简单数学问题.(重点,难点)一、情境导入观察下列几组图形,探究其中规律.试着判断这几组图形是否相似,并探究其中规律.二、合作探究探究点一:相似三角形的判定定理1如图所示,在△ABC 中,∠AED=∠B ,则下列等式成立的是( )A.DE BC =AD DBB.AE BC =AD BDC.DE CB =AE ABD.AD AB =AE AC解析:由相似三角形的判定定理1可得△ADE ∽△ACB ,即可得DE CB =AEAB,故选C.方法总结:在解此题时一定要明确对应关系,由于△ADE ∽△ACB ,所以AE对应AB ,AD 对应AC ,ED 对应BC .探究点二:相似三角形的判定定理1的应用【类型一】利用相似三角形的判定定理1求值如图所示,已知AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,点B ,D ,C 分别为垂足,点C 是线段BD 的中点,若ED =1,BD=4,则AB =W.解析:由题设可证△ABC ∽△CDE ,∴AB CD =BCDE ,又∵ED =1,BD =4,C 为BD 的中点,∴AB =CD ·BC DE =2×21=4.故填4.方法总结:根据三角形内角和可判定∠ACB =∠CED ,再结合相似三角形判定定理1得出△ABC 与△CDE 的相似关系,从而求解.【类型二】利用相似三角形的判定定理1证明相似如图,在△ABC 中,AB =AC ,BD=CD ,CE ⊥AB 于E .求证:△ABD ∽△CBE .解析:已知∠B 是公共角,判定两三角形相似,再找一组角相等即可,由题易证AD ⊥BC ,有∠ADB =∠CEB =90°,即可得证.证明:在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC ,∵CE ⊥AB ,∴∠ADB =∠CEB =90°,又∠B =∠B ,∴△ABD ∽△CBE .方法总结:解此类题型时首先要根据题设寻求两三角形相似的条件,再证明两三角形相似,并根据相似获得题目要求的数量关系.三、板书设计相似三角形判定定理1⎩⎪⎨⎪⎧内容:两角分别相等的两个三角形相似内容拓展:所有的等边三角形都相似,所有的等腰直角三角形都相似,有一组锐角相等的两个直角三角形相似教学过程中,注重引导学生自主探究并且验证相关定理,在实际学习的过程中反复验证定理的准确性,进而加深学生对定理的理解和记忆,巩固基础知识.为进一步学习打下坚实基础.。
湘教版-数学-九年级上册-3.4相似三角形的判定与性质 教案

3.4相似三角形的判定与性质(二)〔教学目标〕1. 掌握判定两个三角形相似的方法:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
2. 培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法与全等三角形判定方法(SAS )的区别与联系,体验事物间特殊与一般的关系。
3. 让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
〔教学重点与难点〕重点:两个三角形相似的判定方法3及其应用 难点:探究两个三角形相似判定方法3的过程 相似三角形的判定方法有那些?方法1:定义方法2:平行于三角形一边的直线与其他两边相交。
三个角对应相等三边对应成比例复习方法3:两角对应相等。
判定定理 3 如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似. 如右图:在△ABC 和 △A ’B ’C ’中:∠A= ∠A ’△ABC ∽△A ’B ’C ’这个定理可以简单说成:两边对应成比例且夹角相等的两个三角形相似. 如图有一点E 在边AC 上,那么点E 应该在什么位置才能使△ADE 与△ABC 相似呢?说一说:两条直角边对应成比例的两个直角三角形相似吗?为什么?相似,因为符合相似三角形判定定理 3的条件. 例1 已知在△ABC 与△DEF 中,∠C=∠F=70°, AC= 3.5cm ,BC=2.5cm ,DF=2.1cm ,EF=1.5cm.求证:△DEF ∽△ABC .动脑筋:如图3-21,在△ABC 与△DEF 中,∠B =∠E =40°,AB =4.2cm ,AC =3cm ,DE =2.1cm ,DF =1.5cm. △ABC 与△DEF 有两边对应成比例吗?有一个角对应相等吗?这两个三角形相似吗?在两个三角形中,有两边对应成比例,如不是这两边的夹角相等,则这两个三角形不相似.错误!不能通过编辑域代码创建对象。
湘教版数学九年级上册《3.4.2相似三角形的性质》教学设计

湘教版数学九年级上册《3.4.2相似三角形的性质》教学设计一. 教材分析湘教版数学九年级上册《3.4.2相似三角形的性质》是学生在学习了相似三角形的定义和性质之后的内容。
本节内容主要介绍了相似三角形的性质,包括对应边成比例,对应角相等。
这些性质是解决实际问题的重要工具,也是进一步学习立体几何的基础。
二. 学情分析九年级的学生已经掌握了相似三角形的定义和性质,具备了进一步学习相似三角形性质的基础。
但是,对于这些性质的理解和应用还需要进一步的加强。
此外,学生对于实际问题的解决能力还有待提高。
三. 教学目标1.理解相似三角形的性质,包括对应边成比例,对应角相等。
2.能够运用相似三角形的性质解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.相似三角形的性质的理解和应用。
2.解决实际问题能力的培养。
五. 教学方法采用问题驱动法,通过引导学生提出问题,解决问题的方式,让学生主动探索相似三角形的性质。
同时,运用案例分析法,通过具体的例子,让学生理解相似三角形的性质在实际问题中的应用。
六. 教学准备1.教材和教案。
2.相关的实际问题案例。
3.教学多媒体设备。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾相似三角形的定义和性质,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过多媒体展示相似三角形的性质,让学生直观地感受相似三角形的性质。
3.操练(15分钟)学生分组讨论,通过实际的例子,探索相似三角形的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师提出一些有关相似三角形性质的问题,让学生回答,以巩固所学知识。
5.拓展(10分钟)教师提出一些实际问题,让学生运用相似三角形的性质解决。
通过案例分析,让学生理解相似三角形的性质在实际问题中的应用。
6.小结(5分钟)教师引导学生总结本节课所学的相似三角形的性质,以及如何在实际问题中应用。
7.家庭作业(5分钟)教师布置一些有关相似三角形性质的练习题,让学生课后巩固所学知识。
湘教版数学九年级上册《3.4.1相似三角形的判定》教学设计

湘教版数学九年级上册《3.4.1相似三角形的判定》教学设计一. 教材分析湘教版数学九年级上册《3.4.1相似三角形的判定》是本册教材中的重要内容,主要让学生掌握相似三角形的判定方法。
本节课的内容是在学生已经掌握了三角形的基本性质和判定方法的基础上进行授课的。
教材通过例题和练习题的形式,帮助学生理解和掌握相似三角形的判定方法,并能够运用到实际问题中。
二. 学情分析九年级的学生已经具备了一定的数学基础,对三角形的基本性质和判定方法有一定的了解。
但是,学生对相似三角形的判定方法的理解和运用还需要加强。
因此,在教学过程中,需要通过例题和练习题的讲解和训练,帮助学生理解和掌握相似三角形的判定方法。
三. 教学目标1.让学生掌握相似三角形的判定方法。
2.培养学生运用相似三角形的判定方法解决实际问题的能力。
3.培养学生合作学习的意识和能力。
四. 教学重难点1.教学重点:相似三角形的判定方法。
2.教学难点:相似三角形的判定方法的运用。
五. 教学方法1.情境教学法:通过生活实例引入相似三角形的判定,激发学生的学习兴趣。
2.例题教学法:通过典型例题的讲解,让学生理解和掌握相似三角形的判定方法。
3.练习法:通过练习题的训练,巩固学生对相似三角形判定方法的理解。
4.小组合作学习:让学生在小组内讨论和分享学习心得,培养学生的合作能力。
六. 教学准备1.教学PPT:制作教学PPT,展示相似三角形的判定方法和例题。
2.练习题:准备一些练习题,用于巩固学生的学习效果。
3.教学黑板:准备教学黑板,用于板书和展示解题过程。
七. 教学过程1.导入(5分钟)利用生活实例,如相似的图形、图片等,引导学生思考什么是相似三角形,引出相似三角形的判定方法。
2.呈现(10分钟)通过PPT展示相似三角形的判定方法,引导学生观察和思考,让学生理解和掌握判定方法。
3.操练(10分钟)让学生独立完成一些类似的例题,教师进行讲解和指导,帮助学生巩固对相似三角形判定方法的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时相似三角形的判定(2)
教学目标
【知识与技能】
经历三角形相似的判定定理“两边成比例且夹角相等的两个三角形相似”和“三边成比例的两个三角形相似”的探索及证明过程.
【过程与方法】
让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力.
【情感态度】
在合作、交流、探讨的学习氛围中,体验学习的快乐,树立学习的信心.
【教学重点】
掌握判定定理,会运用判定定理判定两个三角形相似.
【教学难点】
会准确的运用两个三角形相似的条件来判定两个三角形是否相似.
教学过程
一、情景导入,初步认知
问题:(1)相似三角形的定义是什么?
三边成比例,三角分别相等的两个三角形相似.
(2) 判定两个三角形相似,你有哪些方法?
方法1:通过定义(不常用);
方法2:通过平行线(条件特殊,使用起来有局限性);
方法3:判定定理1,两角分别相等的两个三角形相似.
【教学说明】引导学生复习学过的知识,承前启后,激发学生学习新知的欲望.
二、思考探究,获取新知
下面我们来探究还可用哪些条件来判定两个三角形相似.
1.我们学习了三角形相似的判定定理1,类似于三角形全等的“SAS”判定方法,你能通过类比的方法猜想到三角形相似的其它判定方法吗?
2.任意画△ABC与△A′B′C′,使∠A′=∠A,AB AC
A B A C
=
''''
=k.
(1)分别度量∠B′和∠B,∠C′和∠C的大小,它们分别相等吗?
(2)分别度量BC和B′C′的长,它们的比等于k吗?
(3)改变∠A或k的大小,你的结论相同吗?由此你有什么发现?
【教学说明】引导学生画图,并鼓励证明命题归纳结论.
【归纳结论】两边成比例且夹角相等的两个三角形相似.
3.如图,在△ABC与△DEF中,已知∠C=∠
F,AC=3.5cm,BC=2.5cm,DF=2.1cm,EF=1.5cm.求证:△ABC∽△DEF.
证明:∵AC=3.5cm,BC=2.5cm,DF=2.1cm,
EF=1.5cm,
又∵∠C=∠F,
∴△ABC∽△DEF.
4.我们已经学习了三角形相似的2个判定定理,类似于三角形全等的“SSS”判定方法,你能通过类比的方法猜想三角形相似的其他判定方法吗?
5.你能证明你的结论吗?
已知:如图,在△A′B′C′和△ABC中,
求证:△A′B′C′∽△ABC.
【教学说明】引导学生证明.
【归纳结论】三边成比例的两个三角形相似.
6.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB AC A B A C ''''
=.
求证:△ABC∽△A′B′C′.
分析:已知两边成比例,只需证明三边成比例就可以证明两个三角形相似.可以利用勾股定理来证明.
【教学说明】用已学过的知识解题,并通过解题巩固对判定定理的理解.
三、运用新知,深化理解
1.见教材P82例6、P84例8.
2.如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.
解:(1)△ADE∽△ABC,两角相等;
(2)△ADE∽△ACB,两角相等;
(3)△CDE∽△CAB,两角相等;(4)△EAB∽△ECD,两边成比例且夹角相等;(5)△ABD∽△ACB,两边成比例且夹角相等;(6)△ABD∽△ACB,两边成比例且夹角相等.
3.在△ABC和△A′B′C′中,已知下列条件成立,判断这两个三角形是否相似,并说明理由.
(1)AB=5,AC=3,∠A=45°,
A′B′=10,A′C′=6,∠A′=45°;
(2)∠A=38°,∠C=97°,
∠A′=38°,∠B′=45°;
(3)AB=2 ,BC=2,AC=10,
A′B′=2, B′C′=1 ,A′C′=5.
解:(1)SAS,相似;
(2)AA,相似;
(3)SSS,相似.
4.如图,BC与DE相交于点O.问
(1)当∠B 满足什么条件时,△ABC∽△ADE?
(2)当AC∶AE 满足什么条件时,△ABC∽△ADE ?
(学生小组合作交流、讨论,教师巡视引导.)
解:(1)∵∠A=∠A ,
∴当∠B=∠D时,△ABC∽△ADE.
(2)∵∠A=∠A ,
∴当AC∶AE=AB∶AD时,
△ABC∽△ADE.
5.如图,在等腰直角三角形ABC中,顶点为C,∠
MCN=45°,试说明△BCM∽△ANC.
解:∵△ACB是等腰直角三角形,
∴∠A=∠B=45°.
又∵∠MCN=45°,
∠CNA=∠B+∠BCN=45°+∠BCN,
∠MCB=∠MCN+∠NCB=45°+∠BCN.
∴∠CNA=∠MCB,
在△BCM和△ANC中,
∠A=∠B
∠CNA=∠MCB,
∴△BCM∽△ANC.
6.如图,已知△ABC、△DEB均为等腰直角三角形,∠ACB=∠EDB=90°,点E在边AC上,CB、ED交于点F.
证明:△ABE∽△CBD.
证明:∵△ABC、△DEB均为等腰直角三角形,
∴∠DBE=∠CBA=45°,
∴∠DBE-∠CBE=∠CBA-∠CBE.
即∠ABE=∠CBD ,又
EB AB BD BC
==2, ∴△ABE ∽△CBD. 7.在平行四边形ABCD 中,M ,N 为对角线BD 上两点,连接AM 交BC 于
E ,连接EN 并延长交AD 于
F .
试说明△AMD ∽△EMB.
解:∵ABCD 是平行四边形,
∴AD ∥BC ,∠ADB=∠DBC ,
∠MAD=∠MEB ,
∴△MAD ∽△MEB .
8.如图,已知△ABD ∽△ACE ,求证:△ABC ∽△ADE.
分析:由于△ABD ∽△ACE ,则∠BAD=∠CAE ,因此∠BAC=∠DAE ,如果
再进一步证明ABAD=ACAE ,则问题得证.
证明:∵△ABD ∽△ACE ,
∴∠BAD=∠CAE .
又∵∠BAC=∠BAD+∠DAC ,
∠DAE=∠DAC+∠CAE ,
∴∠BAC=∠DAE .
∵△ABD ∽△ACE ,∴
AB AC AD AE
=.
在△ABC 和△ADE 中,
∵∠BAC=∠DAE,A
AB AC AD AE =, ∴△ABC ∽△ADE.
【教学说明】通过练习,使学生能够综合运用相似三角形的判
定定理解决问题.
四、师生互动、课堂小结
先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.
课后作业
布置作业:教材“习题3.4”中第1、3、4 题.
教学反思
相似三角形的判定主要介绍了四种方法,从练习的结果来看,不是很理想,绝大部分学生对定理的应用不是很熟练,特别对于"两边对应成比例且夹角相等"不能灵活运用,夹角也不能准确找到.我想问题的主要原因在于学生对图形的认知不深,对定理的理解不透,一味死记结论.不能理解每个量所表示的含义.我想在下一阶段中应培养他们认识图形的能力,合情推理的能力,争取这方面有所提高.。