中考试题压轴题的满分攻略-考典40几何计算域说理计算问题

合集下载

中考数学压轴题的常见类型与解题思路

中考数学压轴题的常见类型与解题思路

中考数学压轴题的常见类型与解题思路中考数学压轴题通常是对学生多个知识点综合考察的题目,要求考生综合运用所学的数学知识进行解答。

下面是一些常见类型的中考数学压轴题及其解题思路。

1. 几何题几何题是中考数学中常见的题型之一。

几何题涉及图形的性质、计算图形的面积、周长和体积等等。

解决几何题的关键是要熟悉几何的基本定理和公式,并通过观察图形性质找到解题思路。

2. 基础运算题基础运算题是中考数学中的重点内容,包括四则运算、分数运算、百分数运算等等。

解决基础运算题的关键是熟练掌握运算规则和方法,有条理地进行计算。

3. 等式方程题等式方程题是中考数学中常见的题型之一。

解决等式方程题的关键是要根据题目给出的条件建立方程,然后通过运用方程的性质解题。

在解题过程中,要注意合理运用方程的基本性质和解方程的方法。

4. 函数题函数题是中考数学中的重要内容,要求考生熟练掌握函数的定义、性质和运算。

解决函数题的关键是要根据给定的函数关系或函数图像进行分析,确定函数的性质,并运用函数的定义和性质解答问题。

5. 统计与概率题统计与概率题是中考数学中常见的题型之一。

解决统计与概率题的关键是要对给定的数据进行统计分析,找到规律,并运用统计学和概率学的知识解答问题。

6. 证明题证明题是中考数学中的重点内容,要求考生运用数学的推理和证明方法,通过有条理的推理过程证明结论。

解决证明题的关键是要理解证明的目标和要求,清晰地表述证明过程,运用合适的证明方法解答问题。

解决中考数学压轴题的关键是要熟练掌握数学的基本知识和运算方法,同时要灵活运用数学知识,善于找到解题的思路和方法。

在解题过程中,要注重思维的逻辑性和严密性,慎重选择解题思路,合理运用数学知识解答问题。

通过对各个题型的系统练习和深入理解,可以提高解题能力,应对中考数学压轴题。

【中考复习】攻克中考数学压轴题的三个技巧

【中考复习】攻克中考数学压轴题的三个技巧

【中考复习】攻克中考数学压轴题的三个技巧对于数学而言,不分地区,在全国各地中考试卷中,
高中入学考试
压轴题,一直都是大家的痛,不仅耗费时间,而且分值高,一道题就是10分左右,
特别容易拉开差距。

要想得到高分,压轴题必须要攻克。

常见结局问题的特点:
一、解决过程中需要添加一定的辅助线
尤其是与几何有关的终轴问题,往往需要加线段形成特殊三角形或特殊四边形,并结
合相似三角形、两点间最短线段距离、勾股定理等知识点;或将不规则图形转换为规则图形,并通过切割和补偿方法进行计算。

二、一般来说压轴题的第一小问(如求点的坐标、函数解析式等)都比较简单,一定
要克服心理恐惧,严谨读题,一定可以拿下。

三、没有无缘无故的爱,没有无缘无故的恨,也没有无缘无故的第一个问题。

一般压轴题中几个小问都是紧密关联的,解决第二问、第三问等很多时候需要用第一
问的结论。

简而言之,最后一个问题并不难。

有很多问题类型。

仍然有可能赢得前两个问题。

这样,最后一道题可以得到2/3的分数,这也是相当可观的,与其他问题的差距也不会太大。

2020-2021学年中考数学压轴题的满分攻略-几何计算域说理计算问题

2020-2021学年中考数学压轴题的满分攻略-几何计算域说理计算问题

几何计算说理与说理计算问题【真题典藏】1. (2007年上海市第24题)参见《考典35 梯形的存在性问题》第1题,如图1.2. (2008年上海市第24题)如图2,在平面直角坐标系中,O 为坐标原点.二次函数y =-x 2+bx +3的图像经过点A(-1,0),顶点为B .(1)求这个二次函数的解析式,并写出顶点B 的坐标;(2)如果点C 的坐标为(4,0),AE ⊥BC ,垂足为点E ,点D 在直线AE 上,DE =1,求点D 的坐标.图1 图23.(2010年上海市第24题)如图3,已知平面直角坐标系xOy ,抛物线y =-x 2+bx +c 过点A(4,0)、B(1,3).(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.图34.(2012年上海市第24题)如图4,在平面直角坐标系中,二次函数y =ax 2+6x +c 的图像经过点A(4, 0)、B(-1,0),与y 轴交于点C ,点D 在线段OC 上,OD =t ,点E 在第二象限,∠ADE =90°,1tan 2DAE ∠=,EF ⊥OD ,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示);(3)当∠ECA =∠OAC 时,求t 的值.图4【满分攻略】我们用三种方法证明第1题(2007年上海市第24题)的第(2)题DC//AB :方法一,由于点(,)B a b 在双曲线4y x =上,所以4b a=. 因为1A B x DE DB x a ==,414E A y CE a CA y a ===,所以DE CE DB CA=,因此DC//AB . 这里依据“三角形一边的平行线判定定理推论”. 方法二,因为4tan E E y CE CDE DE x a ∠===,444tan 1A E B E y y AE a ABE BE x x a a --∠====--, 所以CDE ABE ∠=∠,因此DC//AB .方法三,如图6,由反比例函数的图形与性质,知△AOC 与△BOD 的面积相等.图5中的△ADC 与图6中的△AOC 的面积相等,图5中的△BCD 与图6中的△BOD 的面积相等,经过等量代换,图5中的△ACD 与△BCD 的面积相等.因为这两个三角形是同底CD 的,因此它们是同底等高的三角形,所以DC//AB .图5 图6 图7其中方法一和方法二是通过计算进行说理,方法三是说理证明.第2题(2008年上海市第24题)的第(2)题求点D 的坐标是几何计算.准备动作:22223(214)(1)4y x x x x x =-++=--+-=--+.罗列点:A(-1,0),B(1,4),C(4,0).画图:先画直线BC ,过点A 向BC 画垂线,垂足为E .拿起圆规,以E 为圆心,1长为半径画圆,圆与直线AE 有几个交点?这就是行动体现思想,你画图的过程已经体现了分类讨论思想,点D 有两个(如图7).试问有必要画抛物线吗?解题的过程反复用到数形结合思想——不要问为什么——拿来就用.示范一下:注意标志性语句的引领作用,体现书写的层次性,吸引阅卷老师的注意力.第3题(2010年上海市第24题)的第(1)题做完之后停一停,确认无误之后再作第(2)题,否则就是徒劳无益.第(1)题用待定系数法求抛物线的解析式,用配方法求抛物线的对称轴和顶点坐标,无需画图.抛物线的表达式为y=-x2+4x,对称轴为直线x=2,顶点坐标为(2,4).第(2)题的最大障碍就是画示意图了,事实上,无需画出抛物线,如图8,只要顺次画出点A、对称轴、点P的大概位置(在点A的右下方)、点E、点F,就可以直观感受到,四边形OAPE是等腰梯形,四边形OAPF是平行四边形.说理是关键的一步:平行四边形OAPF的底边OA=4是确定的,高是点P到x轴的距离,用点P的纵坐标表示为-n,列方程-4 n=20容易求的n=-5.解方程-m2+4m=-5,会得到m有两个解,根据题目条件“点P(m,n)在第四象限”舍去不合题意的解.如果不用上述几何说理的方法,我们也可以根据点的坐标特征进行说理:这个说理方法的最大困难是用m表示点F的坐标(4-m,n).图8第4题(2012年上海市第24题),DE和AD横看成岭侧成峰,DE∶AD=1∶2,既是Rt△ADE 的两条直角边的比,也是两个相似的△DEF和△ADO的斜边比.第(1)题求得抛物线的解析式y=-2x2+6x+8,与y轴交于点C(0,8).第(2)题,如图9,在Rt △ADE 中,已知1tan 2DAE ∠=,所以12DE AD =. 已知∠ADE =∠EFD =90°,所以∠DEF 与∠ADO 都是∠EDF 的余角.因此∠DEF =∠ADO .所以△DEF ∽△ADO .因此12DF EF DE AO DO AD ===,即142DF EF t ==. 于是得到2DF =,12EF t =.所以2OF t =-.图9 图10第(3)题难在示意图怎么画?在森林中认识树木:当∠ECA =∠OAC 时,如果延长CE 与x 轴交于点M ,根据等角对等边,那么△MAC 是等腰三角形,MA =MC .这样我们作AC 的垂直平分线先找到点M ,在MC 的适当位置画一个点E ,这样示意图就画好了. 如图10,设AC 的垂直平分线与x 轴交于点M ,那么MA =MC ,∠MCA =∠MAC .当∠ECA =∠OAC 时,点E 在MC 上.由于12cos AC AO A AC MA==,而OA =4,OC =8,所以5AC = 因此2102AC MA AO==.所以MO =6. 由EF//MO ,得EF CF MO CO =,即18(2)268t t --=.解得t =6.考典40几何计算说理与说理计算问题1.如图1,在平面直角坐标系中,二次函数y =ax 2+6x +c 的图像经过点A(4, 0)、B(-1,0),与y 轴交于点C ,点D 在线段OC 上,OD =t ,点E 在第二象限,∠ADE =90°,1tan 2DAE ∠=,EF ⊥OD ,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示);(3)当∠ECA =∠OAC 时,求t 的值.图12.如图2,已知△ABC 中,∠ACB =90°,点P 到∠ACB 两边的距离相等,且PA =PB .(1)先用尺规作出符合要求的点P (保留作图痕迹,不需要写作法),然后判断△ABP 的形状,并说明理由;(2)设PA =m ,PC =n ,试用m 、n 的代数式表示△ABC 的周长和面积;(3)设CP 与AB 交于点D ,试探索当边AC 、BC 的长度变化时,BCCD AC CD +的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.C B A图23.在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N.动点P从点B出发沿射线BA以每秒3厘米的速度运动.同时动点Q从点N出发沿射线NC运动,且始终保持MQ⊥MP.设运动时间为t秒(t>0).(1)△PBM与△QNM相似吗?以图3为例说明理由;(2)若∠ABC=60°,43AB 厘米.①求动点Q的运动速度;②设△APQ的面积为S(平方厘米),求S与t的函数关系式;(3)探求BP2、PQ2、CQ2三者之间的数量关系,以图3为例说明理由.图34.在Rt△ABC中,AB=BC=4,∠B=90°,将一直角三角板的直角顶点放在斜边AC的中点M 处,将三角板绕点M旋转,三角板的两直角边分别与边AB、BC或其延长线上交于D、E两点(假设三角板的两直角边足够长),如图4、图5表示三角板旋转过程中的两种情形.(1)直角三角板绕点M旋转过程中,当BE=时,△MEC是等腰三角形;(2)直角三角板绕点M旋转到图1的情形时,求证:MD=ME;(3)如图6,若将直角三角板的直角顶点M在斜边AC上移动,设AM∶MC=m∶n(m、n为正数),试判断MD、ME的数量关系,并说明理由.图4 图5 图6考典40几何计算说理与说理计算问题1.(1)y =-2x 2+6x +8.(2)如图1,在Rt △ADE 中,已知1tan 2DAE ∠=,所以12DE AD =. 已知∠ADE =∠EFD =90°,所以∠DEF 与∠ADO 都是∠EDF 的余角.因此∠DEF =∠ADO . 所以△DEF ∽△ADO .因此12DF EF DE AO DO AD ===,即142DF EF t ==. 于是得到2DF =,12EF t =.所以2OF t =-.图1 图2(3)如图2,设AC 的垂直平分线与x 轴交于点M ,那么MA =MC ,∠MCA =∠MAC . 当∠ECA =∠OAC 时,点E 在MC 上.由于12cos AC AO A AC MA==,而OA =4,OC =8,所以5AC = 因此2102AC MA AO==.所以MO =6. 由EF//MO ,得EF CF MO CO =,即18(2)268t t --=.解得t =6. 2.(1)求作点P 的作图痕迹如图3所示.△PAB 是等腰直角三角形,证明如下: 作PM ⊥AC ,PN ⊥BC ,垂足分别为M 、N .因为点P 在∠ACB 的平分线上,所以PM =PN .又因为PA =PB ,所以Rt △APM ≌Rt △BPN (HL ).因此∠1=∠2.又因为∠2与∠BPM 互余,所以∠1与∠BPM 互余,即∠APB =90°.所以△PAB 是等腰直角三角形.(2)如图4,在等腰直角三角形PAB 中,PA =m ,所以AB =2m . 在等腰直角三角形MPC 中,PC =n ,所以CM =22n . 由Rt △APM ≌Rt △BPN ,得AM =BN .所以CA +CB =2CM =2n .因此△ABC 的周长=AB +CA +CB =2m +2n .△ABC 的面积可以这样割补:S △ABC =S 正方形MPNC -S △PAB 221122n m =-. (3)如图5,作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,那么四边形CEDF 是正方形,CD =2DE =2DF .设AD =x ,BD =y .由DF BD y AC BA x y ==+,DE AD x BC AB x y==+,两式相加,得1DF DE AC BC +=. 于是得到2CD CD AC BC +=.图3 图4 图53.(1)如图6,∠B 与∠1都是∠C 的余角,所以∠B =∠1.∠BMP 与∠NMQ 都是∠PMN 的余角,所以∠BMP =∠NMQ .所以△PBM ∽△QNM .(2)①当∠ABC =60°时,∠C =30°,cot 3CM C NM ∠=由△PBM ∽△QNM ,得BM BP NM NQ =. 而已知BM =CM ,所以3BP NQ=. 因为3BP t =,所以NQ =t .因此点Q 的运动速度为每秒1厘米.②在Rt △ABC 中,∠B =60°,3AB =AC =12,3BC =在Rt △CMN 中,3BC =C =30°,所以CN =8.因此AN =4,AQ =4+t .如图7,当P 在BA 上时,0≤t ≤4,433AP t =-. 此时2113(433)(4)8322S AP AQ t t t =⋅=-+=-+. 如图8,当P 在BA 的延长线上时, t >4,343AP t =-. 此时2113(343)(4)8322S AP AQ t t t =⋅=-+=-.图6 图7 图8(3)如图9,过点C 作AB 的平行线交BM 的延长线于P ′, 那么△QCP ′是直角三角形,P ′Q 2=P ′C 2+CQ 2.因为P ′C//AB ,M 是BC 的中点,所以BP =CP ′,PM =P ′M . 所以QM 垂直平分PP ′,PQ =P ′Q .于是得到PQ 2=BP 2+CQ 2.图9第(3)题容易想到代数方法,通过计算得到结论:22222233)(4)41664PQ AP AQ t t t t =+=++=-+, 222(3)3BP t t ==,222(124)1664CQ t t t =--=-+. 所以PQ 2=BP 2+CQ 2.4.(1)0,2,422-422+.(2)如图10,△MGD ≌△MHE ,MD =ME .(3)如图11,△AGM 和△MHC 都是等腰直角三角形,Rt △AGM ∽Rt △MHC . 因此MG MA m MH MC n==.又因为△MGD ∽△MHE ,所以MD MG m ME MH n ==.图10图11后叙一、这不是一本中考的试题集,这是一本关于中考解题策略的书,如叙家常.二、本书分三部分,我们把每一部分概论中的第一句话摘录如下:简单题错失一道将悔恨不已,因此要加强简单题的准确性训练.简答题丢失一步将满分无望,因此要加强简答题的规范性训练.压轴题多练一道就自信一分,因此要加强压轴题的规律性训练.三、我们摘录每一部分的高频词语和经典语句:第一部分的高频词语有:粗心,不要口算,即刻回头检查.第二部分的经典语句有:没有不会的,只有不对的;重温课本;想好了再写——时间诚可贵,答对价更高;标志性语句的引领,表明书写的层次,吸引阅卷老师的眼球;踩分点;中考的版面有限,不能写到框外,要注意扑捉命题意图哦!第三部分的经典语句有:导航仪不代表体力——想的对不等于能做对;拿起尺、规画图,答案就在图形中;你的思想还不成熟——数形结合思想,分类讨论思想;歇歇脚再走,否则徒劳无益.四、一位上高一的学生来看我,说他离梦想的那所市重点高中就差0.5分,要是再降1分,他肯定被录取了.我笑笑.他纳闷.我解释说,例如数学,上海考生约10万人,减去极端高分和极端低分2万人,那么分数集中在100—140分之间的40分,平均每分2000人.中考1分意味着什么呢?五、这本书剖析近6年的中考数学题目——应该注意的问题、容易出现的失误、思维的出发点、书写的规范——你标记了多少认同的地方?六、本书最牛的一句话——选择放弃也是一种好的策略,保证其他题目准确无误也是高分——压轴题中你不会的那道小题,可能绝大多数人都不会.例如2012年最后两道压轴题皆因辅助线而难倒众生,其实第25题第(2)题需要添加的辅助线,本来是常见的联结两个中点构造三角形的中位线,但是因为图形中其它线条的干扰,使众多考生没有发现这条辅助线.如果添加了这条辅助线,那么问题一下子就解决了.七、或许你做对了,但是你写的字让人误解或者费解,吃亏的不是别人.这句话开始说过,这里再说一次;这句话语文老师一定也说过,理化和英语老师同样说过.八、好运留给有准备的人——祝你好运!。

初中数学压轴题答题技巧及知识体系整理方法

初中数学压轴题答题技巧及知识体系整理方法

初中数学压轴题答题技巧及知识体系整理方法01分类讨论题分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要大家注意分类讨论的:1.熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。

在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。

2.讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。

3.图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。

4.代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。

5.考查点的取值情况或范围。

这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。

6.函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。

7.由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。

值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。

最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。

02四个秘诀切入点一:做不出、找相似,有相似、用相似压轴题牵涉到的知识点较多,知识转化的难度较高。

学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。

切入点二:构造定理所需的图形或基本图形在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。

切入点三:紧扣不变量在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。

切入点四:在题目中寻找多解的信息图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。

中考数学压轴题解题思路答题技巧

中考数学压轴题解题思路答题技巧

中考数学压轴题解题思路答题技巧中考解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。

现介绍几种常用的解题策略,供中考同学参考。

1、以坐标系为桥梁,运用数形结合思想纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

2、以直线或抛物线知识为载体,运用函数与方程思想直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。

因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。

例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。

3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。

4、综合多个知识点,运用等价转换思想任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。

中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。

因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。

5、分题得分中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

初三数学压轴题解题技巧和方法

初三数学压轴题解题技巧和方法

初三数学压轴题解题技巧和方法
1. 压轴题解题技巧
认真审题,弄清题意。

压轴题通常会给出含多个未知数的一元二次方程或
二元一次方程组,并伴随一些其他条件或限制。

首先,要明确题目要求解什么,以及给出的条件和限制是什么。

尝试化简方程或方程组。

如果方程或方程组较为复杂,尝试将其化简,以
便更容易找到解题思路。

寻找等量关系。

压轴题中通常会有一些等量关系,如面积、体积、角度等。

找到这些等量关系,可以帮助我们找到解题的突破口。

尝试使用代数方法。

对于一些压轴题,代数方法可能比较适用。

例如,通
过对方程进行变形、替换或解方程等,可以找到未知数的值。

画图分析。

对于一些几何压轴题,可以通过画图来帮助分析。

在画图的过
程中,可以更好地理解题目的条件和要求,从而找到解题思路。

2. 压轴题方法总结
代数法:通过对方程进行变形、替换或解方程等,找到未知数的值。

几何法:通过画图来帮助分析,更好地理解题目的条件和要求,从而找到
解题思路。

等量关系法:通过寻找等量关系,如面积、体积、角度等,找到解题的突
破口。

化简法:将复杂的方程或方程组化简,以便更容易找到解题思路。

中考数学压轴题解题思路与应试技巧

中考数学压轴题解题思路与应试技巧

中考数学压轴题解题思路与应试技巧11.函数型综合题:题目先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质.关于二次函数,它所对应的图像是抛物线.求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法).此类题在陕西24题中出现,基本设置2-3小问来呈现.利用二次函数研究动点图形的某些性质,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索线段,周长,面积之间满足一定关系。

2.几何型综合题:题目先给定几何图形,根据已知条件进行作图或计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式最后根据所求的函数关系进行探索研究,求x的值等和直线(圆)与圆的相切时求自变量的值等.要能灵活寻找等量关系.找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法.几何型综合题在25题出现,一般设置3小问.最后常常要归结到实际问题的解决,体现“起点低,落点高,尾巴翘”的命题思路。

解中考数学压轴题秘诀:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高.解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略.中考数学压轴题解题策略:1.以坐标系为桥梁,运用数形结合及坐标思想:二次函数压轴题,都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答.在研究点的坐标时一定要树立纵横观念,必要时画出点与坐标轴的垂线段,构造直角三角形,利用相似三角形或者三角函数寻找等量关系。

中考几何压轴题解法

中考几何压轴题解法

中考几何压轴题解法
中考几何压轴题是考生普遍感到难度较大的一道题目。

如何应对这类题目,取得更好的成绩呢?以下是一些解题方法供大家参考。

1. 熟练掌握基本几何知识
中考几何压轴题通常是综合性的,涉及到多个几何概念,因此考生需要熟练掌握基本的几何知识,如图形的性质、圆的相关概念、相似与全等等。

2. 画图分析
在解决中考几何压轴题时,画图是必不可少的。

考生需要根据题目所给的条件,画出几何图形,并分析图形的性质和特点,从而找到解题的突破口。

3. 运用类比法
中考几何压轴题通常需要考生将所学的几何知识应用到实际问题中,这要求考生具备较强的类比能力。

考生需要将题目中的几何图形或条件与已知的几何知识进行类比,从而推导出未知部分的相关信息。

4. 设置方程求解
对于一些比较复杂的中考几何压轴题,考生可以尝试通过设置方程的方法求解。

首先需要根据题目所给的条件,设出未知量,并根据几何知识建立方程,最终求解出未知量。

5. 分析选项
在中考几何压轴题解答时,正确的选项往往具有一定的规律和特
点。

因此,考生需要认真分析每个选项,从中找出错误和存在的问题,最终得出正确答案。

总之,中考几何压轴题需要考生具备较强的几何知识、分析能力和解题技巧。

只有通过不断的练习和巩固,才能在考试中取得好成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考典40 几何计算说理与说理计算问题
【真题典藏】
1. (2007年上海市第24题)参见《考典35 梯形的存在性问题》第1题,如图1.
2. (2008年上海市第24题)如图2,在平面直角坐标系中,O 为坐标原点.二次函数y =-x 2+bx +3的图像经过点A (-1,0),顶点为B .
(1)求这个二次函数的解析式,并写出顶点B 的坐标;
(2)如果点C 的坐标为(4,0),AE ⊥BC ,垂足为点E ,点D 在直线AE 上,DE =1,求点D 的坐标.
图1 图2 3.(2010年上海市第24题)如图3,已知平面直角坐标系xOy ,抛物线y =-x 2+bx +c 过点A (4,0)、B (1,3).
(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;
(2)记该抛物线的对称轴为直线l ,设抛物线上的点P (m ,n )在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.
图3
4.(2012年上海市第24题)如图4,在平面直角坐标系中,二次函数y =ax 2+6x +c 的图像经过点A (4, 0)、B (-1,0),与y 轴交于点C ,点D 在线段OC 上,OD =t ,点E 在第二象限,∠ADE =90°,1tan 2
DAE ∠=,EF ⊥OD ,垂足为F . (1)求这个二次函数的解析式;。

相关文档
最新文档