安徽省马鞍山市2014年高三第二次教学质量检测高三数学(理)试题解析版
【数学】安徽省马鞍山市高三第二次教学质量监测试题(理)(解析版)

安徽省马鞍山市高三第二次教学质量监测数学试题(理)一、选择题:本大题共12个题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数(为虚数单位),则()A. B. 2 C. D.【答案】A【解析】故本题选A.2.已知全集,集合,,则()A. B. C. D.【答案】D【解析】或,因此集合=,,因此集合B=故本题选D.3.已知实数,满足约束条件,则的最大值为()A. B. C. D. 2【答案】C【解析】设,显然是指数函数,是增函数.本题求的最大值就是求出的最大值.可行解域如下图所示:显然直线平行移动到点A时,有最大值,解方程组,解得A点坐标为(1,1),代入直线中,得的最大值为,故本题选C.4.在由直线,和轴围成的三角形内任取一点,记事件为,为,则()A. B. C. D.【答案】D【解析】图形如下图所示:直线,和轴围成的三角形的面积为;直线,和轴围成的三角形的面积为;直线,和轴围成的三角形的面积为;,故本题选D.5.若二项式的展开式中第项为常数项,则,应满足()A. B.C. D.【答案】B【解析】二项式的展开式,第为,已知第项为常数项,所以有且,故本题选B.6.已知某几何体的三视图如图所示,网格中小正方形的边长为1,则该几何体的表面积为()A. 20B. 22C. 24D.【答案】B【解析】通过三视图可知,该几何体是正方体去掉两个“角”。
所以表面积S=.故本题选B.7.已知定义在上的函数,满足,则函数的图象关于()A. 直线对称B. 直线对称C. 原点对称D. 轴对称【答案】B【解析】设函数, 所以有定义域为,所以函数是上的偶函数,图象关于轴对称,也就是关于直线对称.而的图象是由函数向右平移一个单位长度得到的。
因此函数的图象关于直线对称,故本题选B.8.已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象关于轴对称,则的最小值是()A. B. C. D.【答案】A【解析】进行化简得,由题意可知,函数的图象关于轴对称也就是说函数是偶函数,所以有成立,即因为所以的最小值为,此时,故本题选A.9.如图,半径为的球的两个内接圆锥有公共的底面,若两个圆锥的体积之和为球的体积的,则这两个圆锥高之差的绝对值为()A. B.C. D.【答案】D【解析】如已知图,设球的球心为,体积为,上面圆锥的高为,体积为,下面圆锥的高为,体积为;圆锥的底面的圆心为,半径为.由球和圆锥的对称性可知,,,由题意可知:而由于垂直于圆锥的底面,所以垂直于底面的半径,由勾股定理可知:,,可知,这两个圆锥高之差的绝对值为,故本题选D.10.已知抛物线:上点处的切线与轴交于点,为抛物线的焦点,若,则()A. 4B. 5C. 6D. 7【答案】B【解析】设点的坐标,抛物线的焦点准线方程为:,,直线方程为:,令,所以点的坐标为,由抛物线的定义和已知可知:,故本题选B.11.已知圆,,是同心圆,半径依次为1,2,3,过圆上点作的切线交圆于,两点,为圆上任一点,则的取值范围为()A. B. C. D.【答案】C【解析】设同心圆的圆心为,由切线性质可知:,又因为圆上点作的切线交圆于,两点,所以, ,在中,根据,可知,是AB的中点,根据向量加法的几何意义得代入上式得,故本题选C.12.已知函数,若的解集为,且中恰有两个整数,则实数的取值范围为()A. B. C. D.【答案】C【解析】,,设,,问题就转化为在内,,且中恰有两个整数.先研究函数的单调性,当时,,所以函数在单调递减;当时,,所以函数在单调递增,注意到,当时,。
安徽省马鞍山市高三下学期理数第二次教学质量监测试卷附解析

高三下学期理数第二次教学质量监测试卷一、单项选择题1.集合,,那么〔〕A. B. C. D.2.复数与在复平面内对应的点关于原点对称,且,那么〔〕A. B. C. D.3.设a,b为两条直线,那么的充要条件是〔〕A. a,b垂直于同一条直线B. a,b垂直于同一个平面C. a,b平行于同一个平面D. a,b与同一个平面所成角相等4.函数f(x)=xcosx- 在(-π,π)上的图象大致为〔〕A. B.C. D.5.sin = ,那么cos 的值为〔〕A. B. C. D.6.假设的展开式中存在常数项,那么可以是〔〕A. 8B. 7C. 6D. 57.2021年初,从非洲蔓延到东南亚的蝗虫灾害严重威胁了国际农业生产,影响了人民生活.世界性与区域性温度的异常、早涝频繁发生给蝗灾发生创造了时机.蝗虫的产卵量与温度的关系可以用模型拟合,设,其变换后得到一组数据:由上表可得线性回归方程,那么〔〕A. -2B.C. 3D.8.小明去文具店购置中性笔,现有黑色、红色、蓝色三种中性笔可供选择,每支单价均为1元.小明只有6元钱,且全部用来买中性笔,那么不同的选购方法有〔〕A. 10种B. 15种C. 21种D. 28种9.我国的古代医学著作?神农本草经?中最早记录了蜜蜂蜂巢的药用成效.蜜蜂的蜂巢是由数千个蜂房组成的,如图是一个蜂房的结构示意图,它的几何结构是正六棱柱形,其一端是正六边形开口,另一端那么由三个全等的菱形组成.经过测量,某蜂巢一个蜂房的正六边形的边长约为,菱形边长约为,那么该菱形较小角的余弦值约为〔〕(参考数据:,)A. 0.333B. 0.4C. 0.510. 中,,,,那么的值为〔〕A. B. C. D.11.过抛物线:的焦点的直线交抛物线于,两点,线段,的中点在轴上的射影分别为点,,假设与的面积之比为4,那么直线的斜率为〔〕A. B. C. D.12. ,,以下说法错误的选项是〔〕A. 假设,那么B. 假设,那么C. 恒成立D. ,使得二、填空题13.平面向量,,假设,那么实数的值为________.14.设变量,满足,那么目标函数的最小值为________.15.曲率半径可用来描述曲线上某点处曲线弯曲变化程度,曲率半径越大,那么曲线在该点处的弯曲程度越小.椭圆:上点处的曲率半径公式为.假设椭圆上所有点相应的曲率半径的最大值是最小值的8倍,那么椭圆的离心率为________.16.球被平面截下的一局部叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺的体积公式,其中为球的半径,为球缺的高.假设一球与一所有棱长为6的正四棱锥的各棱均相切,那么该球与该正四棱锥的公共局部的体积为________.三、解答题17.等差数列的前项和为,,且.〔1〕求数列的通项公式;〔2〕记数列的前项和为.假设,( 为奇数),求的值. 18.如图,六面体中,面且面,,,.〔1〕求证:平面;〔2〕假设二面角的余弦值为,求点到面的距离.19.为保护长江流域渔业资源,2021年国家农业农村部发布?长江十年禁渔方案?.某市为了解决禁渔期渔民的生计问题,试点推出面点、汽修两种职业技能培训,一周内渔民可以每天自由选择其中一个进行职业培训,七天后确定具体职业.政府对提供培训的机构有不同的补贴政策:面点培训每天200元/人,汽修培训每天300元/人.假设渔民甲当天选择了某种职业培训,第二天他会有0.4的可能性换另一种职业培训.假定渔民甲七天都参与全天培训,且第一天选择的是汽修培训,第天选择汽修培训的概率是( ,2,3,…,7).〔1〕求;〔2〕证明:( ,2,3,…,7)为等比数列;〔3〕试估算一周内政府渔民甲对培训机构补贴总费用的数学期望( 近似看作0).20.双曲线的左焦点为,右顶点为,过点向双曲线的一条渐近线作垂线,垂足为,直线与双曲线的左支交于点.〔1〕设为坐标原点,求线段的长度;〔2〕求证:平分.21.函数,其中为常数.〔1〕当时,求的极值;〔2〕当时,求证:对,且,,不等式恒成立.22.在平面直角坐标系xOy中,曲线C1的参数方程为〔t为参数〕,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线C2的极坐标方程为(ρ∈R,∈[0,π)),且直线C2与曲线C1交于A,B两点.〔1〕求曲线C1的极坐标方程;〔2〕当|AB|最小时,求的值.23.函数.〔1〕解不等式;〔2〕记函数的最小值为,且,其中均为正实数,求证:答案解析局部一、单项选择题1.【解析】【解答】解:∵,,∴.故答案为:C.【分析】首先由二次函数的性质求出函数的值域由此得出集合M,再由交集的定义即可得出答案。
2014级高三二诊数学(理)参考答案及评分意见

( 一㊁ 选择题 : 每小题 5 分 , 共6 0 分) 1. D; 2. A; 3. B; 4. A; 5. D; ; ; ; ; 7. B 8. C 9. D 1 0. C 1 1. D; ) 第 Ⅱ 卷( 非选择题 , 共9 分 0 ( 二㊁ 填空题 : 每小题 5 分 , 共2 0 分) 2 n 1 3. ㊀㊀1 4. 3 2. 8; ㊀㊀1 5. 4; ㊀㊀1 6. . -2; n +1 ( 三㊁ 解答题 : 共7 0 分) B E C E ( 解: 在 әB 据正弦定理 , 有 1 7. Ⅰ) E C 中, . = s i n øB C E s i n B 2 π , ȵ øB = B E =1, C E= 7, 3 3 B E ������s i n B 2 2 1 ʑ s i n øB C E= . = = C E 1 4 7 ( 由平面几何知识 , 可知 øD Ⅱ) E A = øB C E. π 在R t әA E D中, ȵ øA = , A E =5, 2 3 57 2 ʑc o s øD E A = 1-s i n øD E A = 1- = . 2 8 1 4 第 Ⅰ 卷( 选择题 , 共6 0 分) 6. C; 1 2. A.
ɡ ɡ ɡ
C D2 = C E2 +D E2 -2 C E������D E������ c o s øC E D = 7+2 8-2ˑ 7 ˑ2 7 ˑ ( -
当 x =5 7 0时, 3ˑ5 7 0+4 3 3. 2=6 0 4. 2. y =0.
������������������������1 0分
高三数学 ( 理科 ) 二诊测试参考答案第 ㊀ 共 5页) 1 页(
������������������������1 特征量 y 的估计值为 6 ʑ 当 x =5 7 0时, 0 4. 2. 2分 ( 解: 如图 , 作 GM ʊ C 交B 连接 MF . 1 9. Ⅰ) D, C 于点 M , 作 BH ʊ AD , 交 GM 于 N , 交D C 于H. ȵE F ʊC D ,ʑGM ʊ E F. ʑGN =A B =3, HC =9. ȵA B ʊ GM ʊ D C, NM BM A G 2 ʑ = = = . HC B C AD 3 ʑNM =6. ʑGM =GN + NM =9. ������������������������4 分 ʑGM ������E F. ʑ 四边形 GMF E 为平行四边形 . ʑG E ʊ MF . 又 MF ⊂ 平面 B C F, G E ⊄ 平面 B C F, ������������������������6 分 ʑG E ʊ 平面 B C F. ( Ⅱ )ȵ 平面 AD E ʅ 平面 C D E F, AD ʅ D E, AD ⊂ 平面 AD E, ʑAD ʅ 平面 C D E F. 以 D 为坐标原点 , D C 为x 轴 , D E 为y 轴 , DA 为z 轴建立如图所示的空间直角坐标 系D x z. y ʑ E (0, 4, 0) , F (9, 4, 0) , C (1 2, 0, 0) , B (3, 0, 4 3) . ң ң , , , ( ) ʑE F = 900 E B = (3, 4 3) . -4, 设平面 E B F 的法向量n1 = (x1 , z1 ) . y1 , ң x1 =0 n ������E F =0, 9 由 1 得 . ң 3 x1 -4 z1 =0 ������ y1 +4 3 n1 E B =0 ������������������������8 分 取 y1 = 3 , 得 n1 = (0,3, 1) . ң ң 同理 , F C = (3, 0) , F B = ( -6, -4, 4 3) . -4, , ) 设平面 B C F 的法向量n2 = ( x2 , z . y2 2 ң 3 x 4 ������ - =0 2 2 y n F C =0, 由 2 得 . ң x2 -4 z2 =0 -6 y2 +4 3 n2 ������F B =0 ������������������������1 取 x2 =4, 得 n2 = (4, 0分 3, 3 3) . n1 ������ n2 0ˑ4+ 3 ˑ3+1ˑ3 3 63 3 3 9 ʑ c o s< n1 , n2 >= . = = = n1 | n2 | 2 6 | | 2ˑ 1 6+9+2 7 2ˑ2 1 3 ������������������������1 1分 ȵ 二面角 E -B F -C 为钝二面角 ,
2014年安徽省高考数学试卷(理科)答案与解析

2014年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2014•安徽)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()代入+i•∴∴==取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被的参数方程是=<=2,5.(5分)(2014•安徽)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a 或﹣16.(5分)(2014•安徽)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()(()+sin)+sin+sin)+sin+sin+sin=sin+sin+sin==8+=21+.=66解:,﹣﹣﹣∴﹣≥,+1>﹣,+1或﹣时,﹣10.(5分)(2014•安徽)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()不妨令=),=||中.已知向量、,||=||=1•=0不妨令=),=则(+,=cos+|||二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)(2014•安徽)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.﹣轴对称可得,)的图象向右平移﹣,﹣﹣,故答案为:.的等比数列列式求出公差,则由得:整理得:q=13.(5分)(2014•安徽)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,)的展开式的通项为)的展开式的通项为,,14.(5分)(2014•安徽)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E 于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为x2+=1.(﹣,﹣bc,﹣代入椭圆方程可得==++15.(5分)(2014•安徽)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,S min表示S所有可能取值中的最小值.则下列命题正确的是②④(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则S min与||无关;③若∥,则S min与||无关;④若||>4||,则S min>0;⑤若||=2||,S min=8||2,则与的夹角为.++++•+++=+•++•+=﹣•≥+2|||≥个个S=2+3S=+2•+2S=4•++++,=•+•+,=+•++•++2•+﹣2||≥⊥,则=||∥,则=4•,与||||4||=4|||4||||+>﹣=0||=2||=8|=与的夹角为.区域.16.(12分)(2014•安徽)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.A+)的值.a=6a=2cosB=sinB=sinA=sin2B=,A+)则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;,,(+(+×(=,,=,,×+3×+4×+5×=.18.(12分)(2014•安徽)设函数f(x)=1+(1+a)x﹣x﹣x,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;<<)和(在(19.(13分)(2014•安徽)如图,已知两条抛物线E1:y=2p1x(p1>0)和E2:y=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.的方程,然后分别和两抛物线联立求得交点坐标,得到的联立,解得联立,解得联立,解得联立,解得因此11111且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;,则,== ahd====,ahdahd所分成上、下两部分的体积之比=1,.21.(13分)(2014•安徽)设实数c>0,整数p>1,n∈N.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.=a+a a,写成相加,上式左边当且仅当,即a a,即>a a c成立,即从数列。
高三数学月考试题及答案-安徽马鞍山省级示范高中2014届高三9月联考(理)2

马鞍山市省级示范高中2014届高三联考试卷数学(理科)试题一、选择题1.设集合{}{}22|60,|ln ,1A x x x B y y x x e =+-≤==≤≤,则()R A C B ⋂=A .[3,2]-B .[2,0)(0,3]-C [3,0]-.D .[3,0)- 2.命题2:,10p x R ax ax ∀∈++≥,若p ⌝是真命题,则实数a 的取值范围是 A .(0,4] B .[0,4] C .(,0][4,)-∞⋃+∞ D .(,0)(4,)-∞⋃+∞ 3.已知函数()f x 为偶函数,且当0x <时,21()f x x x=-,则(1)f = A .2- B .2C .1D .04.已知函数22()1x xf x x x ⎧-+⎪=⎨+⎪⎩(0)(0)x x ≤>,若方程|()|0f x a -=有两具不等实根,则a 的值为A .1-B .1C .2D .35.已知函数(21)f x +的定义域是[0,1],则函数1()1f x -的定义域为 A .(0,1]B .[1,0)-C .4[,2]3D .[1,3]6.设函数()f x 是定义在R 上的奇函数,且当0x ≥时,()f x 为单调递减,若120x x +>,则12()()f x f x +的值A .恒为正值B .恒等于零C .恒为负值D .不能确定正负7.已知函数32()2f x x x x =--,设函数|()|()(||)f x g x f x ⎧=⎨⎩(0)(0)x x ≥<,则函数()g x 的大致图像是8.已知121122log log 01b a c <<<<,则A .222bac>> B .222abc>> C .222cba>> D .222cab>>9.设函数2(1)()4x f x ⎧+⎪=⎨⎪⎩(1)(1)x x <≥,则使得()1f x ≥的自变量x 的取值范围为A .(,2][0,10]-∞-⋃B .(,2)[0,1]-∞-⋃C .(,2][1,10]-∞-⋃D .[2,0][1,10]-⋃10.设函数()x x x f x a b c =+-,其中,,a b c 是ABC ∆的三条边,且,c a c b >>,则“ABC ∆为钝角三角形”是“(1,2)x ∃∈,使()0f x =”A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 二、填空题11.命题“32,()x R f x x kx x ∀∈=+-在R 上有极大值和极小值”的否命题 。
2014马鞍山二模数学(理)试题及答案20140408

马鞍山市2014届第二次教学质量检测高三理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的学校、姓名、班级、座号、准考证号. 2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号. 3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上答题无效......... 4.考试结束,务必将试题卷和答题卡一并上交.第I 卷(选择题,共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应位置将正确结论的代号用2B 铅笔涂黑.(1)设1z i -=-(i 是虚数单位),则22z z+等于(▲)A .1i --B .1i -+C .1i -D . 1i + 命题意图:考查共轭复数及复数的运算,容易题。
答案:D(2)一个几何体的三视图如图所示,则这个几何体的体积为(▲)A .16643π-B .32643π-C .6416π-D .64643π-命题意图:考查三视图及体积的运算,考查空间想象能力。
容易题。
答案:A解析:3211642(13)6433V ππ=-⨯⨯+=-(3)51()(21)ax x x+-的展开式中各项系数的和为2,则该展开式中常数项为(▲)A .-20B .-10C .10D .20命题意图:考查二项式定理的应用,容易题。
答案:C(4)某程序框图如图所示,若输出的57S =,则判断框内的条件为(▲)俯视图侧视图正视图第(2)题图第(4)题图A .4?k >B .5?k >C .6?k >D .7?k >命题意图:考查程序框图,容易题。
安徽省马鞍山市高三第二次教学质量监测数学(理)试题(解析版)

安徽省马鞍山市高三第二次教学质量监测数学(理)试题一、单选题1.复数521iz i i=++的共轭复数为( ) A. 12i - B. 12i + C. 1i - D. 1i -2.等比数列的前项和为,则的值为( )A. B. C. D.3.若实数满足约束条件则的最小值为( )A. 2B. 1C.D. 不存在4.已知函数 ,则函数的大致图象是( )A. B.C. D.5.从3名男生,2名女生中选3人参加某活动,则男生甲和女生乙不同时参加该活动,且既有男生又有女生参加活动的概率为( )A. B. C. D.6.若,则的值不可能为( )A. B. C. D.7.如图所示的一个算法的程序框图,则输出的最大值为( )A. B. 2 C. D.8.如图,点在正方体的棱上,且,削去正方体过三点所在的平面下方部分,则剩下部分的左视图为()A. B.C. D.9.二项式n+的展开式中只有第11项的二项式系数最大,则展开式中x的指数为整数的项的个数为()A. 3B. 5C. 6D. 710.设,函数的图象向右平移个单位长度后与函数图象重合,则的最小值是()A. B. C. D.11.已知为椭圆上关于长轴对称的两点,分别为椭圆的左、右顶点,设分别为直线的斜率,则的最小值为()A. B. C. D.12.已知数列满足对时,,且对,有,则数列的前50项的和为()A. 2448B. 2525C. 2533D. 2652二、填空题13.已知向量满足,,则的夹角为__________.14.点分别为双曲线的焦点、实轴端点、虚轴端点,且为直角三角形,则双曲线的离心率为__________.15.在三棱锥中,,当三梭锥的体积最大时,其外接球的表面积为__________.16.已知函数,函数有三个零点,则实数的取值范围为__________.三、解答题17.如图,中为钝角,过点作交于,已知.(1)若,求的大小;(2)若,求的长.18.某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足关系式(为大于0的常数).现随机抽取6件合格产品,测得数据如下:对数据作了初步处理,相关统计位的值如下表:(1)根据所给数据,求关于的回归方程;(2)按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现从抽取的6件合格产品中再任选3件,记为取到优等品的件数,试求随机变量的分布列和期望.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.19.如图,在五棱锥中,四边形为等腰梯形,,和都是边长为的正三角形.(1)求证:面;(2)求二面角的大小.20.直线与抛物线交于两点,且,其中为原点.(1)求此抛物线的方程;(2)当时,过分别作的切线相交于点,点是抛物线上在之间的任意一点,抛物线在点处的切线分别交直线和于点,求与的面积比.21.已知函数.(1)若对恒成立,求的取值范围;(2)证明:不等式对于正整数恒成立,其中为自然对数的底数.22.在平面直角坐标系中,直线的参数方程为:(为参数).在极坐标系(与平面直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为. (1)求圆的直角坐标方程;(2)设圆与直线交于点,求的大小.安徽省马鞍山市高三第二次教学质量监测数学(理)试题一、单选题1.复数521iz i i=++的共轭复数为( ) A. 12i - B. 12i + C. 1i - D. 1i -【答案】A【解析】根据题意化简得12z i =+, 12z i =-,选A. 2.等比数列的前项和为,则的值为( )A. B. C. D. 【答案】B【解析】当时,,当时,所以,故选B.3.若实数满足约束条件则的最小值为( )A. 2B. 1C.D. 不存在 【答案】B【解析】由题得,不等式组对应的区域为如图所示的开放区域(阴影部分),当直线经过点C(0,1)时,直线的纵截距z 最小,所以的最小值为,故选B.4.已知函数,则函数的大致图象是()A. B.C. D.【答案】A【解析】对于函数f(x),当x≥0时,-x≤0,所以,同理当x<0时,,所以函数f(x)是偶函数.令,所以,所以函数h(x)是偶函数,所以排除B,D.当时,,故选A.点睛:遇到函数的问题,大家都要联想到用函数的奇偶性、对称性、单调性和周期性等来帮助我们分析解答问题,所以本题要先研究函数f(x)、g(x)、h(x)的奇偶性,通过奇偶性排除选项.再利用其它性质分析求解.5.从3名男生,2名女生中选3人参加某活动,则男生甲和女生乙不同时参加该活动,且既有男生又有女生参加活动的概率为()A. B. C. D.【答案】D【解析】由题得总的基本事件个数为,事件A分三类,第一类:从三个男生中选两个男生和另外一个女生组合,有种方法;第二类:选除了甲以外的两个男生和女生乙,有一种方法;第三类:选两个女生,从除了甲以外的两个男生中选一个,有种方法,共有6种方法,所以由古典概型的公式得,故选D.6.若,则的值不可能为()A. B. C. D.【答案】B【解析】由题得,所以,把代入,, 显然不成立,故选B.7.如图所示的一个算法的程序框图,则输出的最大值为()A. B. 2 C. D.【答案】C【解析】先读懂程序框图,由程序框图得,d表示的就是上半圆上的点到直线x-y-2=0的距离,画图由数形结合可以得到,故选C.8.如图,点在正方体的棱上,且,削去正方体过三点所在的平面下方部分,则剩下部分的左视图为()A. B.C. D.【答案】A【解析】先作出经过三点所在的平面,可以取的中点F ,则平行四边形就是过三点所在的平面(两个平行的平面被第三个平面所截交线平行),所以剩下部分的三视图是A ,故选A.9.二项式n+的展开式中只有第11项的二项式系数最大,则展开式中x 的指数为整数的项的个数为( )A. 3B. 5C. 6D. 7 【答案】D【解析】因为展开式中只有第11项的二项式系数最大,所以n=20.二项式展开式的通项为)42020203212020rrrr rr r T C C x ---+==,由题得4203r -为整数,所以0,3,6,9,12,15,18.r =故选D.10.设,函数的图象向右平移个单位长度后与函数图象重合,则的最小值是( )A. B. C. D. 【答案】C【解析】函数的图象向右平移个单位长度后,得到与函数图象重合,则:,解得:,,当时,,故选C.11.已知为椭圆上关于长轴对称的两点,分别为椭圆的左、右顶点,设分别为直线的斜率,则的最小值为()A. B. C. D.【答案】C【解析】设,由题得,所以,故选C.点睛:本题的难点在于计算出要观察变形,再联想到基本不等式解答.观察和数学想象是数学能力中的一个重要组成部分,所以平时要有意识地培养自己的数学观察想象力.12.已知数列满足对时,,且对,有,则数列的前50项的和为()A. 2448B. 2525C. 2533D. 2652【答案】B【解析】由题得,.故选B.点睛:本题的难点在于通过递推找到数列的周期. 可以先通过列举找到数列的周期,再想办法证明. 由于问题中含有的项数较多,且有规律性,所以要通过分析递推找到数列的周期.二、填空题13.已知向量满足,,则的夹角为__________.【答案】【解析】由题得, 因为,所以故填.14.点分别为双曲线的焦点、实轴端点、虚轴端点,且为直角三角形,则双曲线的离心率为__________.【答案】【解析】由题得所以所以(舍去负根),所以,故填.15.在三棱锥中,,当三梭锥的体积最大时,其外接球的表面积为__________. 【答案】【解析】∵,∴即为直角三角形,当面时,三梭锥的体积最大,又∵,外接圆的半径为,故外接球的半径满足,∴外接球的表面积为,故答案为.点睛:考查四棱锥的外接球的半径的求法,考查空间想象能力,能够判断球心的位置是本题解答的关键;研究球与多面体的接、切问题主要考虑以下几个方面的问题:(1)球心与多面体中心的位置关系;(2)球的半径与多面体的棱长的关系;(3)球自身的对称性与多面体的对称性;(4)能否做出轴截面.16.已知函数,函数有三个零点,则实数的取值范围为__________.【答案】【解析】由题得有三个零点,所以有三个零点,所以函数h(x)的图像就是坐标系中的粗线部分,y=a(x-2)表示过定点(2,0)的直线,所以直线和粗线有三个交点. 所以由题得.所以所以a的取值范围为.点睛:本题的难点在作函数的图像. 要作函数的图像,由于含有绝对值,所以要分类讨论,写出它的表达式.如果把f(x)代进去求x的范围,那就复杂了,可以不需要求x 的范围,直接得到,再画出函数的图像,这样就简洁了很多.三、解答题17.如图,中为钝角,过点作交于,已知.(1)若,求的大小;(2)若,求的长.【答案】(1)(2)【解析】试题分析:(1)第(1)问,直接利用正弦定理得到,解答. (2)第(2)问,先在直角△ADC中,求出,再在△ABD中利用余弦定理求解BD的长.试题解析:(1)在中,由正弦定理得,,解得,又为钝角,则,故.(另解:在中,由余弦定理解得,从而是等腰三角形,得)(2)设,则.∵,∴,∴.在中由余弦定理得,,∴,解得,故.18.某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足关系式(为大于0的常数).现随机抽取6件合格产品,测得数据如下:对数据作了初步处理,相关统计位的值如下表:(1)根据所给数据,求关于的回归方程;(2)按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现从抽取的6件合格产品中再任选3件,记为取到优等品的件数,试求随机变量的分布列和期望.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.【答案】(1)(2)见解析【解析】试题分析:(1)第(1)问,先对,两边取自然对数得,再换元将非线性转化成线性问题,求线性回归方程,再利用最小二乘法公式和参考数据求解. (2)第(2)问,先写出随机变量的值,再写出随机变量的分布列和期望.试题解析:(1)对,两边取自然对数得,令,得,由,,故所求回归方程为.(2)由,即优等品有 3 件,的可能取值是0,1,2, 3,且,,.其分布列为∴.点睛:本题的难点在于将非线性转化成线性后如何求最小二乘法公式中的各基本量,所以这里要理解公式中各字母的含义,再利用参考数据解答.19.如图,在五棱锥中,四边形为等腰梯形,,和都是边长为的正三角形.(1)求证:面;(2)求二面角的大小.【答案】(1)见解析(2)【解析】试题分析:(1)第(1)问,把面转化成证明线线垂直和.(2)第(2)问,直接利用空间向量的方法求二面角的大小.试题解析:(1)证明:分别取和的中点,连接.由平面几何知识易知共线,且.由得,从而,∴,又,∴.∴面,∴.在中,,∴,在等腰梯形中,,∴,∴,又,面,∴面.(2)由(1)知面且,故建立空间直角坐标系如图所示.则,.由(1)知面的法向量为.设面的法向量为,则由,得,令,得,∴.所以,二面角大小为.20.直线与抛物线交于两点,且,其中为原点.(1)求此抛物线的方程;(2)当时,过分别作的切线相交于点,点是抛物线上在之间的任意一点,抛物线在点处的切线分别交直线和于点,求与的面积比.【答案】(1)(2)2【解析】试题分析:(1)第(1)问,利用韦达定理和数量积公式把转化成p的方程,再解方程得解. (2)第(2)问,分别计算出与的面积,再计算出它们的面积比.试题解析:(1)设,将代入,得.其中,.所以,.由已知,.所以抛物线的方程.(2)当时,,易得抛物线在处的切线方程分别为和.从而得.设,则抛物线在处的切线方程为,设直线与轴交点为,则.由和联立解得交点,由和联立解得交点,所以,,所以与的面积比为2.点睛:本题的技巧在第(2)问,计算与的面积时,要注意灵活.,.计算准了,后面的面积比就容易求解了.21.已知函数.(1)若对恒成立,求的取值范围;(2)证明:不等式对于正整数恒成立,其中为自然对数的底数.【答案】(1)(2)见解析【解析】试题分析:(1)第(1)问,方法一,构造函数,再分析f(x)的最大值和零的关系得到a的取值范围.方法二,分离参数得到恒成立,即a大于F(x)的最大值.(2)第(2)问,先要把证明的不等式转化,再由第(1)问,恒成立,得到恒成立,把数列的通项放缩,对数列求和,再化简证明不等式.试题解析:(1)法一:记,则,,①当时,∵,∴,∴在上单减,又,∴,即在上单减,此时,,即,所以a≥1.②当时,考虑时,,∴在上单增,又,∴,即在上单増,,不满足题意.综上所述,.法二:当时,等价于,,记,则,∴在上单减,∴,∴,即在上单减,,故.(2)由(1)知:取,当时,恒成立,即恒成立,即恒成立,即对于恒成立,由此,,,于是,故.点睛:本题的难点在第(2)问,先要把证明的不等式化简,由于的左边无法化简,所以要对左边进行化简,对不等式进行转化,不等式两边要取对数.再利用第(1)问的结论对数列的通项进行放缩,再求和,再证明不等式.22.在平面直角坐标系中,直线的参数方程为:(为参数).在极坐标系(与平面直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为. (1)求圆的直角坐标方程;(2)设圆与直线交于点,求的大小.【答案】(1);(2)【解析】试题分析:(1)等式两边同时乘以,根据即可得圆的直角坐标方程;(2)将直线的参数方程代入圆的方程,根据参数方程的几何意义结合韦达定理可得结果.试题解析:(1)由,得圆的直角坐标方程为:.(2)将直线的参数方程代入圆的方程可得:整理得:∴根据参数方程的几何意义,由题可得:.23.已知,.(1)若且的最小值为1,求的值;(2)不等式的解集为,不等式的解集为,,求的取值范围.【答案】(1);(2)【解析】试题分析:(1)利用绝对值三角不等式可得,解出方程即可;(2)易得,即,即且,再根据列出不等式即可得结果.试题解析:(1)(当时,等号成立)∵的最小值为 1,∴,∴或,又,∴.(2)由得,,∵,∴,即且且.。
2014年高考安徽卷数学(理)试卷解析(精编版)(解析版)

2014年普通高等学校招生全国统一考试(安徽卷) 数学(理科)试卷第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设i 是虚数单位,z 表示复数z 的共轭复数. 若,1i z +=则zi z i+⋅=( ) 2- B. i 2- C. 2 D. i 220<x ”是“0)1ln(<+x ”的( )充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】B 【解析】试题分析:因为0)1ln(<+x ,所以ln(1)ln1x +<,即10x -<<,因而“0<x ”是“0)1ln(<+x ”的必要而不充分条件考点:1.对数的运算;2.充要条件.如图所示,程序框图(算法流程图)的输出结果是( ) A. 34 B. 55 C. 78 D. 89【答案】B以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( )14B.142C.2D.22y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一...,则实数a 的值为( ) A,121-或 B.212或 C.2或1 D.12-或 【答案】D 【解析】试题分析:题中的约束条件表示的区域如下图,将ax y z -=化成斜截式为y ax z =+,要使其取得最大值的最优解不唯一,则y ax z =+在平移的过程中与20x y +-=重合或与220x y -+=重合,所以2a =或1-.考点:1.线性规划求参数的值.设函数))((R x x f ∈满足.sin )()(x x f x f +=+π当π<≤x 0时,0)(=x f ,则=)623(πf ( ) 21 B. 23 C.0 D.21-一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+3B.18+3C.21D.18考点:多面体的三视图与表面积.8.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60 的共有()A.24对B.30对C.48对D.60对考点:1.直线的位置关系;2.异面直线所成的角.9.若函数()12f x x x a =+++的最小值为3,则实数a 的值为( ) A.5或8 B.1-或5 C.1-或4- D.4-或810.在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q 满足2()OQ a b =+.曲线{cos sin ,02}C P OP a b θθθπ==+≤≤,区域{0,}P r PQ R r R Ω=<≤≤<.若C Ω为两段分离的曲线,则( )A.13r R <<<B.13r R <<≤C.13r R ≤<<D.13r R <<< 【答案】A第I I 卷(非选择题 共100分)二. 选择题:本大题共5小题,每小题5分,共25分. 11.若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称, 则ϕ的最小正值是________.10d +=,∴1q =.考点:1.等差,等比数列的性质.设n a ,0≠是大于1的自然数,na x ⎪⎭⎫⎝⎛+1的展开式为n n x a x a x a a ++++ 2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .【答案】3 【解析】试题分析:由图易知0121,3,4a a a ===,则12212113,()4n n a C a C a a ====,即23(1)42na n n a ⎧=⎪⎪⎨-⎪=⎪⎩,解得3a =.考点:1.二项展开式的应用.设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为__________已知两个不相等的非零向量,,b a 两组向量54321,,,,x x x x x 和54321,,,,y y y y y 均由2个a 和3个b 排列而成.记5544332211y x y x y x y x y x S ⋅+⋅+⋅+⋅+⋅=,min S 表示S 所有可能取值中的最小值.则下列命题的是_________(写出所有正确命题的编号). ①S 有5个不同的值. ②若,b a ⊥则min S a .③若,b a ∥则min S 与b 无关. ④若a b 4>,则0min >S . ⑤若2min ||2||,8||b a Sa ==,则a 与b 的夹角为4π三.解答题:本大题共6小题,共75分.解答应写出文子说明、证明过程或演算步骤.解答写在答题卡上的指定区域内. (16)(本小题满分12分)设ABC 的内角,,A B C 所对边的长分别是,,a b c ,且3,1,2.b c A B === (1)求a 的值; (2)求sin()4A π+的值.故sin()sin coscos sin444A A A πππ+=+2221242()32326-=⨯+-⨯=.(17)(本小题满分12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立. 求甲在4局以内(含4局)赢得比赛的概率;记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).k 局乙获胜”.则2()3k P A =,1(),1,2,3,4,53k P B k ==. 121231234()()()()P A P A A P B A A P A B A A =++121231234()()()()()()()()()P A P A P B P A P A P A P B P A P A =++2222122125633333381⎛⎫⎛⎫⎛⎫=+⨯+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.X 的可能取值为2,3,4,5.121212125(2)()()()()()()9P X P A A P B B P A P A P B P B ==+=+=. 1231231231232(3)()()()()()()()()9P X P B A A P A B B P B P A P A P A P B P B ==+=+=123412341234123410(4)()()()()()()()()()()81P X P A B A A P B A B B P A P B P A P A P B P A P B P B ==+=+=8(5)1(2)(3)(4)81P X P X P X P X ==-=-=-==. X 2 345P59 29 1081 8814a ≥时,21x ≥,由(1)知,()f x 在[0,1]上单调递增,所以()f x 在0x =和1x =处分别取得最小值和最大值.②当04a <<时,21x <.由(1)知,()f x 在2[0,]x 上单调递增,在2[,1]x 上单调递减,因此()f x 在21433ax x -++==处取得最大值.又(0)1,(1)f f a ==,所以当01a <<时,()f x 在1x =处取得最小值;当1a =时,()f x 在0x =和1x =处同时取学科网得最小只;当14a <<时,()f x 在0x =处取得最小值.考点:1.含参函数的单调性;2.含参函数的最值求解. (本小题满分13分)如图,已知两条抛物线()02:1121>=p x p y E 和()02:2222>=p x p y E ,过原点O 的两条直线1l 和2l ,1l 与21,E E 分别交于21,A A 两点,2l 与21,E E 分别交于21,B B 两点.证明:;//2211B A B A过原点O 作直线l (异于1l ,2l )与21,E E 分别交于21,C C 两点.记111C B A ∆与222C B A ∆的面积分别为1S 与2S ,求21S S 的值.(20)(本题满分13分)如图,四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD .四边形ABCD 为梯形,BC AD //,且BC AD 2=.过D C A ,,1三点的平面记为α,1BB 与α的交点为Q . 证明:Q 为1BB 的中点;求此四棱柱被平面α所分成上下两部分的体积之比;若A A 14=,2=CD ,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角大小.【答案】(1)Q 为1BB 的中点;(2)117;(3)4π.解法2如第(20)题图2,以D 为原点,1,DA DD 分别为x 轴和z 轴正方向建立空学科网间直角坐标系.(本小题满分13分)设实数0>c ,整数1>p ,*N n ∈.(1)证明:当1->x 且0≠x 时,px x p+>+1)1(;(2)数列{}n a 满足pc a 11>,pn n n a pc a p p a -++-=111,证明:p n n c a a 11>>+.综合①②可得,当1->x 且0≠x 时,对一切整数1p >,不等式px x p +>+1)1(均成立.证法1:先用数学归纳法证明1pn a c >.①当1n =时,由题设11pa c >知1pn a c >成立.②假设(1,*)n k k k N =≥∈时,不等式1pk a c >成立.由111p n n n p c a a a p p-+-=+易知0,*n a n N >∈.当1n k =+时,1111(1)p k k p k ka p c ca a p p p a -+-=+=+-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省马鞍山市2014届第二次教学质量检测高三数学(理)试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的学校、姓名、班级、座号、准考证号.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上答题无效......... 4.考试结束,务必将试题卷和答题卡一并上交.第I 卷(选择题,共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应位置将正确结论的代号用2B 铅笔涂黑.(1)设1z i -=-(i 是虚数单位),则22z z+等于(▲)A .1i --B .1i -+C .1i -D . 1i + 命题意图:考查共轭复数及复数的运算,容易题。
答案:D(2)一个几何体的三视图如图所示,则这个几何体的体积为(▲)A .16643π-B .32643π-C .6416π-D .64643π-命题意图:考查三视图及体积的运算,考查空间想象能力。
容易题。
答案:A解析:3211642(13)6433V ππ=-⨯⨯+=-(3)51()(21)ax x x+-的展开式中各项系数的和为2,则该展开式中常数项为(▲)A .-20B .-10C .10D .20命题意图:考查二项式定理的应用,容易题。
答案:C(4)某程序框图如图所示,若输出的57S =,则判断框内的条件为(▲)俯视图侧视图正视图第(2)题图A .4?k >B .5?k >C .6?k >D .7?k >命题意图:考查程序框图,容易题。
答案:A(5)设n S 是等差数列{}n a 的前n 项和,若5359a a =,则95SS 等于(▲) A .1B .-1C .2 D.12命题意图:考查等差数列性质及运算,容易题。
答案: A(6)函数5sin()sin()1212y x x ππ=-+的最大值为(▲)A .12B .14C .1D 命题意图:考查三角函数性质与运算,容易题。
答案: A(7)以下判断正确的是( )A .函数()y f x =为R 上的可导函数,则“0()0f x '=”是“0x 为函数()f x 极值点”的充要条件B .“1a =”是“直线10ax y +-=与直线10x ay ++=平行”的充要条件C .命题“在ABC ∆中,若,sin sin A B A B >>则”的逆命题为假命题D .命题“2,10x R x x ∈+-<存在”的否定是“2,10x R x x ∈+->任意”命题意图:考查简易逻辑基本概念,容易题。
答案:B(8)我国古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将这五种不同属性的物质任意排成一列,设事件A 表示“排列中属性相克的两种物质均不相邻”,则事件A 发生的概率为(▲)A .16 B .112 C .512 D .124命题意图:考查排列组合、概率,中档题。
答案: B第(4)题图(9)已知()0)f x a <,定义域为D ,任意,m n D ∈,点(,())P m f n 组成的图形为正方形,则实数a 的值为(▲)A .1-B .2-C .3-D .4- 命题意图:考查函数定义域,值域及最值,考查理解能力,较难题。
答案:D(10)定义域为R 的函数()f x ,满足(0)1f =,()()1f x f x '<+,则不等式()12x f x e +<的解集为(▲) A. {1}x R x ∈> B. {01}x R x ∈<< C. {0}x R x ∈< D. {0}x R x ∈> 命题意图:考查运用导数解决问题的能力,较难题。
答案:D解答:构造函数()1()()1()()x xf x f x f xg x g x e e '+--'=⇒=由已知()()1f x f x '<+()0g x '⇒<,故()g x 在R 上为减函数,而(0)2g =不等式()12x f x e +<化为()(0)0g x g x <⇒>,故选D第II 卷(非选择题,共100分)二、填空题:本大题共5个小题,每小题5分,共25分.请在答题卡上答题. (11)在极坐标系中,曲线4sin ρθ=和cos 1ρθ=相交于点A 、B ,则AB = ▲ . 命题意图:考查极坐标的基础知识,容易题。
答案:(12)若双曲线2215y x k+=与抛物线212x y =有相同焦点,则实数k 的值为 ▲ .命题意图:考查圆锥曲线基本量计算,容易题。
答案:4-(13)若三角形的三个内角的弧度数分别为,,αβγ,则41αβγ++的最小值为 ▲ . 命题意图:考查基本不等式,容易题。
答案:9π(14) 已知1a =,2b = ,且,a b 不共线,则向量a b - 与b 的夹角θ的取值范围为 ▲ .命题意图:考查平面向量概念及运算,数形结合思想等,中档题。
答案:5[,)6ππ(15)如图,四面体O ABC 中,, , OA OB OC两两垂直,且OA 1, O B O C==. 给出下列命题: ①存在点D (点O 除外),使得四面体DABC 仅有3个面是直角三角形;②存在点D ,使得四面体DOBC 的4个面都是直角三角形;③存在唯一的点D ,使得四面体DABC 是正棱锥(底面是正多边形,且顶点在底面的射影是底面正多边形的中心,这样的棱锥叫做正棱锥);④存在唯一的点D ,使得四面体DABC 与四面体O ABC 的体积相等; ⑤存在无数个点D ,使得AD 与BC 垂直且相等...... 其中正确命题的序号是 ▲ .(把你认为正确命题的序号都填上) 命题意图:综合考查空间几何体的概念、线面关系,等价转化的思想,较难题. 答案:①②⑤三、解答题:本大题共6个小题,满分75分.解答应写出必要的文字说明、证明过程或演算步骤.(16)(本小题满分12分)在ABC ∆中,,,A B C 的对边分别是,,a b c ,已知平面向量(sin ,cos )m C C =,(cos ,sin )n B B =,且sin 2m n A ⋅= .(Ⅰ)求sin A 的值;(2)若1,cos cos 1a B C =+=,求边c 的值.命题意图:综合考查平面向量数量积,三角恒等变形等知识,容易题。
解析:(1)由题意,sin 2sin cos cos sin A C B C B =+,得2sin cos sin()sin A A B C A =+=由于ABC ∆中,sin 0A >,∴2cos 1A =,1cos 2A =,3A π=,∴sin A .…………6分 (Ⅱ)由cos cos 1B C +=得cos()cos 1A C C -++=,即sin sin cos cos cos 1A C A C C-+=1cos 12C C +=. 得sin()16C π+=,∵203C π<<, 5666C πππ<+<,∴3C π=,所以ABC ∆为正三角形,1c =…………………………………………………………12分(17)(本小题满分12分)空气质量指数(Air Quality Index ,简称AQI )是定量描述空气质量状况的指数,其数值越大说明空气污染状况越严重,对人体健康的危害也就越大。
根据国家标准,指数在0-50之间时,空气质量为优;在51-100之间时,空气质量为良;在101-150之间时,空气质量为轻度污染;在151-200之间时,空气质量为中度污染;在大于200时,空气质量为重度污染。
环保部门对某市5月1日至5月15日空气质量指数预DCB OA第(15)题图某人选择5月1日至5月13日某一天到达该市,并停留三天. (Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设X 是此人停留期间空气质量优良的天数,求随机变量X 的分布列及数学期望;(Ⅲ)根据上表判断从哪天开始连续三天的空气质量指数方差最大(不要求计算,只写出结果).命题意图: 考查概率统计的基本运算及随机变量分布列,中档题。
解析:(Ⅰ)记事件A 为此人到达当日空气重度污染,则由表中数据可得4()13P A =…………2分所以随机变量X 的概率分布如下:所以25511801231313131313EX =⨯+⨯+⨯+⨯=……………………………………………………10分(Ⅲ)从5月3日开始连续三天的空气质量指数方差最大. ………………………………12分(18)(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,2AD =,PD =4AB PB ==,60BAD ∠=︒.(Ⅰ)求证:AD PB ⊥; (Ⅱ)E 是侧棱PC 上一点,记PEPCλ=,当PB ⊥平面ADE时,求实数λ的值.命题意图:综合考查立体几何有关知识,考查运算能力.中档题。
解析:(Ⅰ)在ABD ∆中,∵2AD =,4AB =,60BAD ∠=︒,∴由余弦定理求得BD =∴222AD BD AB +=,∴AD BD ⊥.∵平面PBD ⊥平面ABCD ,交线为BD ,∴AD ⊥平面PBD ,∴AD PB ⊥.……………………………………………………6分(Ⅱ)作EF BC ∥,交PB 于点F ,连接AF ,由EF BC AD ∥∥可知,,,A D E F 四点共面,连接DF ,所以由(Ⅰ)的结论可知,PB ⊥平面ADE 当且仅当PB DF ⊥.在PBD ∆中,由4PB =,BD =PD =得cos BPD ∠,∴在RT PDF ∆中,cos 3PF PD BPD =∠=,因此34PE PF PC PB λ===.…………………………………………12分 (19)(本小题满分12分)已知函数1()()2ln ()f x m x x m R x=-+∈. (Ⅰ)若1m =,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论函数()f x 的单调性.命题意图: 综合考查导数的应用,分类讨论思想,中档题。