虚拟存储器技术
虚拟存储器的管理和技术有哪些

虚拟存储器的管理和技术有哪些我们很多的人应该都听说过虚拟存储器,今天,本文为大家带来的是虚拟存储器管理方面的知识,虚拟存储器管理是怎么样的,它又有哪些类型呢。
一、分区式存储管理1、这类型的存储管理方法管理起来不复杂比较的简单,它的不足之处就会会对于内存空间造成大量的浪费,早期的单一用户以及单一任务的控制装置,把内存空间进行划分,形成两个分区,为我们的用户区域以及系统区域。
我们的操作系统则采用的是系统区域;应用程序则使用的是我们的用户区域,同时的可以对用户区域的所有的空间进行利用。
2、为了达到多个程序同时的一起被执行,在我们现代的控制系统里面则加入了分区式的存储方法管理,将内存划分为很多个区域,操作系统使用里面的其中一个区域,所有的剩下的区域则由应用程序进行利用,各个应用程序占据里面的一个或者是几个区域。
3、按照划分区域的空间有没有固定,又能够吧分区式的存储管理划分成为固定区域以及动态区域两个区域。
二、交换技术和分区技术1、按照程序的部分性的为原理,在一个不是很长的时间端里面,程序进行访问的存储器位置占有比较大的比例集聚在存储器位置比较少的空间里面。
交换技术则是采用了程序的部分性原理达到多个任务同时的进行环境存储管理工作。
2、交换的进程里面通过换入以及换出这两个进程构成,换入的进程把外村交换区的数据以及程序代码进行交换到内存里面,换出的进程则是把内存里面的数据进行交换到外村交换里面中去。
3、操作控制装置不会立刻的执行程序代码在外存里面进行保存的工作,同时的把这些过程排到过程请求中的长期调度里面中去,队列里面的一些过程被调进主存里面进行执行,当因为输入以及输出等操作而造成存储器里面没有过程处于准备就绪的情况时,操作装置就会把一些进程交换到外存里面来,同时的排进中期里面中去。
4、交换技术的优势则是将同时运行的进程的数量加大。
不足之处则是换入以及换出的工作把处理机的时间开销加长同时交换的单位是所有的进程地址的容积,并无思考程序运行的进程里面地址访问进行统计的功能。
虚拟存储器的基本概念

虚拟存储器是为扩大主存而采用 的一种设计技巧,它的容量与主存大 小无直接关系,而受限于计算机的地 址结构及可用的辅助存储器的容量。
12
4. 虚拟存储器的容量
• 1一个虚拟存储器的最大容量是由计算机 的 地 址 结 构 确 定 的 。 如 : 若 CPU 的 有 效 地址长度为32位,则程序可以寻址范围 是0~(2^32)-1 ,即虚存容量为 4GB。
9
第三,很少出现连续的过程调用,相反, 程序中过程调用的深度限制在小范围 内,一段时间内,指令引用被局限在 很少几个过程中。
第四,对于连续访问数组之类的数据结 构,往往是对存储区域中相邻位置的 数据的操作。
第五,程序中有些部分是彼此互斥的, 不是每次运行时都用到的,如出错处 理程序。
10
3.虚拟存储器的定义: 在具有层次结构存储器的计算机系统中, 具有请求调入功能和置换功能,能从逻辑 上对内存容量进行扩充的存储器系统, 为用户提供一个比物理主存容量大得多 的,可寻址的一种“主存储器”。
7
5. 局部性原理
• 程序局部性原理 在一段时间内一个程序的执行往往呈现出 高度的局部性,表现在时间与空间两方面
• 时间局部性: 一条指令被执行了,则在不久的将来它可 能再被执行
• 空间局部性: 若某一存储单元被使用,则在一定时间
内,与该存储单元相邻的单元可能被使用
8
第一,程序中只有少量分支和过程调用, 大都是顺序执行的指令。 第二,程序包含若干循环,是由相对 较少的指令组成,在循环过程中,计 算被限制在程序中很小的相邻部分中。
• 2虚拟存储器的容量与主存的实际大小没 有直接的关系,而是由主存与辅存的容量 之和所确定。
13
虚拟存储管理主要采用以下技 术实现:
第5章 虚拟存储器 (1)

• (2)驻留性,是指作业被装入内存后,整个作业都一直驻留在内存中,其中 任何部分都不会被换出,直至作业运行结束。尽管运行中的进程被阻塞,而处于 长期等待状态,它们都仍将驻留在内存中,继续占用宝贵的内存资源。
虚拟存储ห้องสมุดไป่ตู้概述
虚拟存储器的定义和特征
虚拟存储器的特征
• (3)虚拟性。是指能够从逻辑上扩充内存容量,使用户所看到的内存容 量远大于实际内存容量。这样,就可以在小的内存中运行大的作业,或者 能提高多道程序度。它不仅能有效地改善内存的利用率,还可提高程序执 行的并发程度。
• 虚拟存储器目前已在大、中、小及微机上广泛采用。虚拟性是以多次 性和对换性为基础的,或者说,仅当系统允许将作业分多次调入内存,并 能将内存中暂时不运行的程序和数据换至盘上时,才能实现虚拟存储器。
虚拟存储器概述
5.1.3 虚拟存储器的实现方法 P167
• 在虚拟存储器中,允许将一个作业分多次调入内存。所以,虚拟存储器的 实现,都建立在离散分配存储管理方式的基础上。目前,所有的虚拟存储器都 是采用下述方式之一实现的。
• 1.分页请求系统
• 分页请求是在分页的基础上增加了请求调页功能和页面置换功能所形成的 页式虚拟存储系统。它允许用户程序只装入少数页面的程序(及数据)即可启 动运行。以后,再通过调页功能及页面置换功能陆续地把即将运行的页面调入 内存,同时把暂不运行的页面换出到外存上。置换时以页面为单位;为了能实 现请求调页和页面置换功能,系统必须提供硬件支持和请求分页的软件。
5.2 请求分页存储管理方式 P168
虚拟存储器的工作原理

虚拟存储器的工作原理
虚拟存储器是一种计算机内存管理技术,它通过将应用程序所需的数据和指令分为多个页面(或称为块或帧)来实现。
虚拟存储器的工作原理包括以下几个步骤:
1. 分页:将应用程序的内存划分为固定大小的页面,通常为
4KB或8KB。
每个页面都有一个唯一的页面编号。
2. 页面映射:将每个页面映射到物理内存的一个帧(或页框),帧的大小与页面大小相同。
这个映射关系被记录在页表中,页表保存在主存储器中。
3. 页面调度:当应用程序需要访问内存中的某个页面时,先检查页表。
如果该页面已经在物理内存中,则直接访问对应的物理地址;如果该页面不在物理内存中,则发生页面错误(缺页错误)。
4. 页面置换:当发生页面错误时,操作系统需要选择一个页面来替换出去,以腾出空间来加载所需的页面。
常见的页面置换算法有最近最少使用(LRU)和先进先出(FIFO)。
5. 页面加载:一旦选择了要换出的页面,操作系统会从外部存储(如硬盘)中加载所需的页面,并更新页表中的映射关系。
6. 页面更新:当应用程序对页面进行写操作时,会先将数据写入缓存页面(缓冲区),然后再由操作系统将缓存页面写回到
外部存储。
虚拟存储器的工作原理使得应用程序能够访问比物理内存更大的内存空间,而且不需要将所有数据一次性加载到内存中。
这种分页和页面调度的技术可以提高程序的整体性能,并且允许多个应用程序同时运行,因为它们不会相互干扰彼此的内存空间。
简述实现虚拟存储器的基本原理

简述实现虚拟存储器的基本原理虚拟存储器是计算机系统中一种技术,可以将物理内存和磁盘空间组合使用,使得计算机系统可以处理大型程序和数据集。
它的基本原理是将物理内存中未使用或频繁不用的部分换出到磁盘中,以增加可用物理内存空间。
当程序需要这些数据时,虚拟存储器会将其换入物理内存。
下面将介绍实现虚拟存储器的基本原理。
一、分段和分页实现虚拟存储器的首要任务是对物理内存和磁盘空间进行分割,以便于管理。
分段和分页是两种基本的内存管理技术。
分页将物理内存空间划分为固定大小的块,称为页面,而分段则将内存空间分为不同段,每个段具有不同的长度和属性。
虚拟存储器的实现通常采用分页技术,因为它可以更好地利用内存空间。
二、页面交换在虚拟存储器中,磁盘空间被称为页面文件,操作系统会将物理内存中的页面换出到页面文件中,以空出空间。
当程序需要访问这些页面时,操作系统会将页面从磁盘中换入到物理内存中。
这个过程被称为页面交换。
页面交换的首要目的是增加可用的物理内存空间。
每个程序使用的内存不能超过物理内存的大小,因此,操作系统必须决定哪些页面需要换出,以便于后续的访问。
三、页面置换算法在虚拟存储器中,操作系统必须确定哪些页面需要换出,并决定哪些页面需要换入,这个过程是页面置换算法。
页面置换算法的目的是将频繁不用或未使用的页面换出到磁盘中,以便于释放物理内存空间。
常见的页面置换算法有FIFO、LRU和钟表算法,它们各自有不同的实现细节和效率。
FIFO算法通过维护一个页面队列来确定需要换出的页面,LRU算法则使用页面访问时间来确定页面的访问频率。
钟表算法可以更好地处理循环访问问题。
四、页面保护机制虚拟存储器还需要有页面保护机制,以确保程序之间的内存不受到互相干扰。
页面保护机制需要暴露页面是否可以被访问的信息,以及访问权限是否正确。
当程序访问一个页面时,操作系统会检查该页面是否被保护,以及访问权限是否正确。
如果访问权限不正确,操作系统会产生一个异常,以防止程序继续访问这个页面。
虚拟内存

计算机系统内存管理的技术
01 简介
03 调度方式
目录
02 工作原理 04 虚拟存储地址变换
目录
05 的关键问题
07 相关概念
06 设置
虚拟内存是计算机系统内存管理的一种技术。它使得应用程序认为它拥有连续的可用的内存(一个连续完整 的地址空间),而实际上,它通常是被分隔成多个物理内存碎片,还有部分暂时存储在外部磁盘存储器上,在需 要时进行数据交换。大多数操作系统都使用了虚拟内存,如Windows家族的“虚拟内存”;Linux的“交换空间” 等。
相关概念
的访问过程
实地址与虚地址
异构体系
用户编制程序时使用的地址称为虚地址或逻辑地址,其对应的存储空间称为虚存空间或逻辑地址空间;而计 算机物理内存的访问地址则称为实地址或物理地址,其对应的存储空间称为物理存储空间或主存空间。程序进行 虚地址到实地址转换的过程称为程序的再定位。
虚存空间的用户程序按照虚地址编程并存放在辅存中。程序运行时,由地址变换机构依据当时分配给该程序 的实地址空间把程序的一部分调入实存。每次访存时,首先判断该虚地址所对应的部分是否在实存中:如果是, 则进行地址转换并用实地址访问主存;否则,按照某种算法将辅存中的部分程序调度进内存,再按同样的方法访 问主存。
由此可见,每个程序的虚地址空间可以远大于实地址空间,也可以远小于实地址空间。后一种情况通常出现 在多用户或多任务系统中:实存空间较大,而单个任务并不需要很大的地址空间,较小的虚存空间则可以缩短指 令中地址字段的长度。
有了虚存的机制后,应用程序就可以透明地使用整个虚存空间。对应用程序而言,如果主存的命中率很高, 虚存的访问时间就接近于主存访问时间,而虚存的大小仅仅依赖于辅存的大小。
虚拟存储器工作原理

虚拟存储器工作原理
虚拟存储器是计算机系统中的一种技术,它通过将磁盘的部分空间用作与主存储器(RAM)交换数据的扩展,以提供更大的可用存储空间。
虚拟存储器工作原理如下:
1. 虚拟存储器将主存储器划分为固定大小的页面(也称为页框),通常是4KB或8KB等大小。
2. 当一个程序被加载到主存储器时,操作系统将其分为固定大小的块,称为页面。
3. 当程序需要访问某个页面时,操作系统会检查该页面是否已存在于主存储器中。
4. 如果所需页面已存在于主存储器中,则程序可以直接访问该页面,无需进行磁盘读取操作。
这是最理想的情况,因为主存储器的访问速度要比磁盘快得多。
5. 然而,如果所需页面不在主存储器中,操作系统会将主存储器中的某个页面(通常是最近最少使用的页面)替换成需要的页面。
替换页面的过程称为页面置换。
6. 被替换出的页面会被写回到磁盘上的一个空闲页面中,以便在后续需要时可以重新加载到主存储器中。
7. 在访问磁盘上的页面并将其加载到主存储器之前,操作系统会通过磁盘存储器管理单元(MMU)进行地址转换,以确保正确访问到磁盘上的页面。
通过使用虚拟存储器,计算机系统可以充分利用磁盘空间来扩展主存储器的大小。
这样,即使计算机系统的物理内存有限,也可以运行更大的程序或处理更多的数据,而不会出现严重的
内存不足问题。
虚拟存储器的工作原理可以使计算机系统在物理内存有限的情况下更加灵活和高效地管理内存资源。
存储器类型及其特点解析

存储器类型及其特点解析计算机存储是指计算机用于存储和检索数据、指令和程序的设备。
存储器类型及其特点对于计算机的性能和功能起着至关重要的作用。
本文将就存储器的各种类型进行分析,并对其特点展开解析。
一、内存内存是指计算机中用于暂时存储数据和指令的设备。
根据存储介质和特点的不同,内存可分为以下几种类型:1. 随机存取存储器(RAM)RAM是一种易失性存储器,其特点在于数据在断电后会丢失。
其中最常见的类型是动态随机存取存储器(DRAM)和静态随机存取存储器(SRAM)。
DRAM的主要特点是容量大、成本低,而SRAM则具有访问速度快、功耗低的特点。
内存条就是一种典型的RAM存储器。
2. 只读存储器(ROM)ROM是一种只能读取而不能写入的存储器,其中存储的数据是在制造过程中被编程进去的,因此具有较高的稳定性。
常见的ROM类型包括EPROM、EEPROM和闪存等。
ROM常用来存储计算机启动程序BIOS。
3. 快取存储器(Cache)Cache是一种速度较快的存储器,用于存放近期频繁使用的数据和指令。
其特点是容量较小,但访问速度相对内存较快。
Cache的存在可以大大提高计算机的运行速度,常见的有一级缓存和二级缓存。
4. 虚拟存储器(Virtual Memory)虚拟存储器是一种利用硬盘空间来扩展计算机内存容量的技术。
它可以将部分不常用的数据和指令暂时存放到硬盘上,从而释放出内存空间给其他程序使用。
虚拟存储器的特点是容量较大,但访问速度相对较慢。
二、外存储器外存储器是指计算机中用于长期存储数据和程序的设备。
与内存不同,外存储器具有非易失性的特点,即数据在断电后能够长期保存。
以下是几种常见的外存储器类型:1. 硬盘硬盘是一种采用磁性原理存取数据的存储设备。
它具有容量大、读写速度快的特点,广泛应用于个人电脑和服务器。
硬盘采用磁道和扇区的组织方式来存储数据。
2. 固态硬盘(SSD)固态硬盘是一种采用闪存芯片存储数据的存储设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作系统实现虚拟存储的方法有哪几种?
虚拟存储器的实现都是建立在离散分配存储管理方 式的基础上,有以下三种方法: 请求页式 请求段式 请求段页式
请求页式
请求分页系统是在分页存储管理方式的基础上增加了 请求调页功能、页面置换功能所形成的页式虚拟存储 系统。程序启动运行时装入部分用户程序页和数据页, 在以后的运行过程中,访问到其他逻辑页时,再陆续 将所需的页调入内存。请求调页和置换时,需要页表 机构、缺页中断机构、地址变换机构等软硬件支持。
特点
第四题
组员:金春11122400(主讲人) 盛俊11121763 金亲亲11123089 周芸竹11121700
4、为什么要采用虚拟存储器技术?操作系统实 现虚拟存储的方法有哪几种?请举例说明,并分 析它们的特点。
原因: 1.作业过大,所需内存空间超过内存总容量,作业不 能完全装入内存,致使该作业无法运行 2.有大量作业要求运行,内存容量不足以容纳所有这 些作业,只能将少数作业装入内存让他们先运行,有 大量作业留在外存上等待。
请求段式
请求分段系统是在分段存储管理方式的基础上增加了 请求调段及分段置换功能而形成的段式虚拟存储系统, 只需装入部分程序和数据进程即可启动运行,以后出 现缺段时再动态调入。实现请求分段同样需要请求分 段的段表机制、缺段中断机构、地址变换机构等软硬 件支持。
பைடு நூலகம்
请求段页式
段页式虚拟存储器是段式虚拟存储器和页式虚拟存储 器的结合。它把程序按逻辑单位分段以后,再把每段 分成固定大小的页。主存空间也划分为若干个同样大 小的页。虚存和实存之间以页为基本传送单位,每个 程序对应一个段表,每段对应一个页表。虚地址包含 段号、段内页号、页内地址三部分。CPU访问时, 首先将段表起始地址与段号合成,得到段表地址,然 后从段表中取出该段的页表起始地址,与段内页号合 成,得到页表地址,最后从页表中取出实页号,与页 内地址拼接形成主存实地址。 段页式存储器综合了前两种结构的优点,但要经过两 级查表才能完成地址转换,要多花费一些时间。