1[1]52定积分--高中数学选修2-2第一章导数及应用
人教版高中数学选修2-2第一章导数及其应用复习优质

3.利用导数研究函数的极值和最值
1.应用导数求函数极值的一般步骤: (1)确定函数f(x)的定义域; (2)解方程f′(x)=0的根; (3) 检 验 f′(x) = 0 的 根 的 两 侧 f′(x) 的 符 号. 若左正右负,则f(x)在此根处取得极大值; 若左负右正,则f(x)在此根处取得极小值; 否则,此根不是f(x)的极值点.
(2)法一:设切点为(x0,y0), 则直线 l 的斜率为 f′(x0)=3x2 0+1, ∴直线 l 的方程为 3 y=(3x2 + 1)( x - x ) + x 0 0 0+x0-16, 又∵直线 l 过点(0,0), 3 ∴0=(3x2 + 1)( - x ) + x 0 0 0+x0-16, 3 整理得,x0=-8, ∴x0=-2.
解之得,x0=-2, 3 ∴y0=(-2) +(-2)-16=-26, k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x, 切点坐标为(-2, -26). x (3)∵切线与直线 y=- +3 垂直, 4 ∴切线的斜率 k=4. 设切点坐标为(x0, y0),则 f′ (x0)= 3x2 0+ 1= 4, ∴ x0= ± 1, x0=1 x0=-1, ∴ 或 y0=- 14 y0=- 18. 即切点为 (1,- 14)或 (- 1,- 18). 切线方程为 y=4(x- 1)-14 或 y= 4(x+ 1)-18. 即 y=4x- 18 或 y=4x- 14.
例 3: 已知函数 f(x)=-x3+ax2+bx, 在区间(-2,1) 2 内,当 x=-1 时取极小值,当 x= 时取极大值. 3 (1)求函数 y=f(x)在 x=-2 时的对应点的切线方程; (2)求函数 y=f(x)在[-2,1]上的最大值与最小值.
_高中数学第一章导数及其应用2

[提示] ΔΔyx=x+Δx2+xΔ+2xΔx-x2+2x
=2x+Δx+xx-+2Δx
∴ lim Δx→0
2x+Δx+xx-+2Δx
=2x-x22.
Байду номын сангаас
[问题3] F(x)的导数与f(x)、g(x)的导数有何关系? [提示] F(x)的导数等于f(x)、g(x)导数和.
[问题 4] 试说明 y=cos3x-π4如何复合的. [提示] 令 u=g(x)=3x-π4,y=f(u)=cos u,
(3)y′=(2x2+3)′·(3x-2)+(2x2+3)·(3x-2)′
=4x·(3x-2)+(2x2+3)·3
=18x2-8x+9.
(4)y′=xl+n x1′-(2x)′
=1xx+x+1- 12ln
x -2xln
2
=1+x1x+-1ln2
x -2xln
2.
二. 复合函数的导数
例题 2 求下列函数的导数:
(1)y=1-12x3;
(2)y=cos x2;
(3)y=sin3x-π4; (4)y=lg(2x2+3x+1).
• [思路点拨] 解答本题可先分析复合函数的复合过 程,然后运用复合函数的求导法则求解.
解析: (1)设 y=u13,u=1-2x, 则 y′x=y′u·u′x =u13′·(1-2x)′ =-3u-4·(-2) =1-62x4. (2)设 y=cos u,u=x2, 则 y′x=y′u·u′x=(cos u)′·(x2)′ =-sin u·2x =-2x·sin x2.
(4)开始学习求复合函数的导数要一步步写清楚,熟 练后中间步骤可省略.
特别提醒:只要求会求形如f(ax+b)的复合函数的导 数.
高中数学选修2-2定积分在物理中的应用课件

4、 一圆柱形蓄水池高为5米,底半径为3米,底半径为3米,池内盛满了水全部吸出,需作多少功?
解:建立坐标系如图
取x为积分变量,x [0,5]
取任一小区间[ x, x dx],
这一薄层水的重力为 9.8 32 dx
功元素为 dw 88.2 x dx,
5
w 0 88.2 x dx
88.2
所对应的薄层的体积用圆柱体体积代替,得到
0 x
x dx
Ry
x
新知探究
dV = πy2dx = π(R2 - x2 )dx.
由于将这一薄层水吸出是这一薄层水的重力在作功,设水的比重为 γ = 1, 所以功的元素为
dW = γπx(R2 - x2 )dx
(3) 求定积分:将满池水全部抽出所作的功为
W = R γπx(R2 - x2 )dx = π R x(R2 - x2 )dx = π R4
答:克服弹力所作的功为
. 1 kl2(J) 2
Q
l
F
新知探究
万有引力定律
两个质量分别为 m1 , m2 ,相距为 r 的质点间的引力
F
k
m1m2 r2
若要计算一细长杆对一质点的引力,此时由于细杆上各点与质点的距离是变化的,所以不能直接 利用上述公式计算.
新知探究
例3
设有一长为 l 质量为 M 的均匀细杆,另有一质量为 m 的质点和杆在一条直线上,它到杆
人教版高中数学选修2-2
第1章 导数及其应用
定积分在物理中的应用
课前导入
定积分的物理应用包括作功、水压力和引力等问题。本节仅给出作功、水压力和引力问题的例子. 定积分的物理应用包括变速直线运动作功、水压力和引力等.本节仅给出变速直线运动作功、水 压力和引力问题的例子.
高中数学选修2-2第一章知识点及测试题

高中数学选修2-2知识点总结第一章 导数及其应用1. 平均变化率 xf x f x y x x ∆-∆+=∆∆)()(00 2. 导数(或瞬时变化率) x x f x x f x f x ∆-∆+='→∆)()(lim)(0000导函数(导数): xx f x x f x f x ∆-∆+='→∆)()(lim )(03. 导数的几何意义:函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f '(x 0).4. 导数的运算:(1)几种常见函数的导数:①(C )′=0(C 为常数); ②(x α)′=1x αα-(x >0,Q α∈); ③(sin x )′=cos x ; ④(cos x )′=-sin x ; ⑤(e x )′=e x ; ⑥(a x )′=a x ln a (a >0,且a ≠1); ⑦xx 1)(ln =; ⑧1(log )ln a x x a =(a >0,且a ≠1).(2)导数的运算法则:①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ); ③)0)(()()()()()(])()([2=/'-'='⋅x v x v x v x u x v x u x v x u . 5. 设函数()u x ϕ=在点x 处有导数()x u x ϕ'=',函数()y f u =在点x 的对应点u 处有导数()u y f u '=',则复合函数(())y f x ϕ=在点x 处也有导数,且x u x u y y '''⋅= 或(())()()x f x f u x ϕϕ'='⋅'。
高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

′
解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−
即
8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得
即
(x0 − 2)2 (x0 + 1) = 0.
高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

第一章导数及其应用知识点及练习题知识点1:导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:导数的几何意义及其应用[例题] 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程; (3)求斜率为4的曲线的切线方程.[变式训练] 已知函数f(x)=x3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标.知识点2:导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln x f x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° 5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =知识点3:导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.考点:1.导数在研究函数单调性中的应用2.导数在求函数极值与最值中的应用题型一:导数在研究函数单调性中的应用[例题] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y=(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间.[变式训练] 设函数f(x)=xekx(k ≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k 的取值范围.题型二:导数在求函数极值与最值中的应用[例题]已知函数f(x)=-x3+ax2+bx在区间(-2,1)内,当x=-1时取极小值,当x=23时取极大值.(1)求函数y=f(x)在x=-2时的对应点的切线方程;(2)求函数y=f(x)在[-2,1]上的最大值与最小值.[变式训练] 设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.知识点4:解决实际问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用题型一:导数在切线方程中的运用1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43题型二:导数在单调性中的运用1.函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数 D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数3.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.题型三:导数在最值、极值中的运用1.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.52.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 163.已知函数)0()(3≠++=adcxaxxf是R上的奇函数,当1=x时)(xf取得极值-2.(1)试求a、c、d的值;(2)求)(xf的单调区间和极大值;4.设函数2312)(bxaxexxf x++=-,已知12=-=xx和为)(xf的极值点。
高中数学选修2-2知识点总结(最全版)

高中数学选修2-2知识点总结第一章、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,平均变化率 可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()g x均可导(可积),则有:f x,().用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。
(2) 求函数f(x)的导数'()f x(3)求方程'()f x=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。
人教版高中数学选修2-2课后习题参考答案

新课程数学选修2(一)—2第一章课后习题解答第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升.练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”1的思想. 练习(P9) 函数33()4Vr V π=(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆.所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第 5 s 时的瞬时速度为10 m /s ,它在第 5 s 的动能213101502k E =⨯⨯= J.4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=.车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin 33xy '=-; (6)21y x '=-.习题1.2 A 组(P18)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=. 2、()9.8 6.5h t t '=-+. 3、3213()34r V Vπ'=.4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x xy x -+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++. 5、()82f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =. 6、(1)ln 1y x '=+; (2)1y x =-. 7、1xy π=-+.8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少. 习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P .x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增;当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递减.4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-.注:图象形状不唯一.令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减.所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-. (2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当3x =-时,()f x 有极大值,并且极大值为54; 当3x =时,()f x 有极小值,并且极小值为54-. (3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-; 当2x =时,()f x 有极大值,并且极大值为22 (4)因为3()3f x x x =-,所以2()33f x x '=-.令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-; 当1x =时,()f x 有极大值,并且极大值为2 练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=;当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-; 又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈.因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数. 2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数. (4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值;(2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16; 当2x =时,()f x 有极小值,并且极小值为16-. (3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22; 当2x =时,()f x 有极小值,并且极小值为10-. (4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-; 当4x =时,()f x 有极大值,并且极大值为128. 6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16;当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略 (2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略(4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<; 当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >. . 综上,ln x x x e <<,0x >图略2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++. 下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减.当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减.当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去 四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+, 所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.所以,当6ax =时,无盖方盒的容积最大.3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+ 由2V R h π=,得2V h Rπ=. (第2题)因此,2222()222V V S R R R R R Rππππ=+=+,0R >. 令2()40V S R R R π'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>. 因此,R =是函数()S R 的极小值点,也是最小值点. 此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2xm ,半圆的面积为28x π2m ,矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m 因此铁丝的长为22()(1)244xa x a l x x x x x πππ=++-=++,0x <<令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<.令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点.所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c cc x a x b b-=-+⨯=--,54b a x <<. 令845()0c ac bc L x x b b+'=-+=,解得458a bx +=.当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极大值点,也是最大值点. 所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念 练习(P42) 83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n '∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =.于是 111()n n ni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑2112[()]ni i n n n ==-⋅+⋅∑22211111()()()2n n n n n n n n -=-⋅--⋅-⋅+2231[12]2n n=-++++31(1)(21)26n n n n ++=-⋅+111(1)(1)232n n =-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑ 说明:进一步体会“以不变代变”和“逼近”的思想. 2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题1.5 A 组(P50)1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=作和式 11()nni i i b af x b a nξ==-∆==-∑∑, 从而 11lim nban i b adx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此4π=⎰.5、(1)03114x dx -=-⎰. 由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得10133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=⎰⎰⎰由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx-⎰化为02331x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义. 习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m ); 不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)49.81tdt ⎰; 49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n l l n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作: 12,,,n m m m ∆∆∆,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l il n n ξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l il n n-上质量2()i i i lm x nρξξ∆≈∆=(1,2,i n =).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====∆≈∆=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm nξ→∞==∑,所以20l m x dx =⎰..1.6微积分基本定理练习(P55) (1)50; (2)503; (3)533-; (4)24; (5)3ln 22-; (6)12; (7)0; (8)2-.说明:本题利用微积分基本定理和定积分的性质计算定积分. 习题1.6 A 组(P55)1、(1)403; (2)13ln 22--; (3)9ln 3ln 22+-;(4)176-; (5)2318π+; (6)22ln 2e e --. 说明:本题利用微积分基本定理和定积分的性质计算定积分.2、3300sin [cos ]2xdx x ππ=-=⎰.它表示位于x 轴上方的两个曲边梯形的面积与x 轴下方的曲边梯形的面积之差. 或表述为:位于x 轴上方的两个曲边梯形的面积(取正值)与x 轴下方的曲边梯形的面积(取负值)的代数和. 习题1.6 B 组(P55)1、(1)原式=221011[]222x e e =-; (2)原式=4611[sin 2]22x ππ=; (3)原式=3126[]ln 2ln 2x =.2、(1)cos 1sin [][cos cos()]0mx mxdx m m m m ππππππ--=-=---=⎰;(2)sin 1cos [sin sin()]0mx mxdx m m m m ππππππ--=|=--=⎰;(3)21cos 2sin 2sin []224mx x mx mxdx dx m πππππππ----==-=⎰⎰;(4)21cos 2sin 2cos []224mx x mx mxdx dx mπππππππ---+==+=⎰⎰.3、(1)0.202220()(1)[]49245245t kt kt t kt t g g g g g gs t e dt t e t e t e k k k k k k----=-=+=+-=+-⎰.(2)由题意得 0.2492452455000t t e -+-=.这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围. 根据指数函数的性质,当0t >时,0.201t e -<<,从而 5000495245t <<, 因此,500052454949t <<. 因此50000.2749245 3.3610e-⨯-≈⨯,52450.2749245 1.2410e-⨯-≈⨯,所以,70.271.2410245 3.3610t e ---⨯<<⨯.从而,在解方程0.2492452455000t t e -+-=时,0.2245t e -可以忽略不计.因此,.492455000t -≈,解之得 524549t ≈(s ). 说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7定积分的简单应用 练习(P58)(1)323; (2)1.说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程. 练习(P59)1、52533(23)[3]22s t dt t t =+=+=⎰(m ).2、42403(34)[4]402W x dx x x =+=+=⎰(J ). 习题1.7 A 组(P60)1、(1)2; (2)92.2、2[]b b a a q q q qW k dr k k k r r a b==-=-⎰. 3、令()0v t =,即40100t -=. 解得4t =. 即第4s 时物体达到最大高度.最大高度为 424(4010)[405]80h t dt t t =-=-=⎰(m ). 4、设t s 后两物体相遇,则 2(31)105ttt dt tdt +=+⎰⎰,解之得5t =. 即,A B 两物体5s 后相遇.此时,物体A 离出发地的距离为 523500(31)[]130t dt t t +=+=⎰(m ).5、由F kl =,得100.01k =. 解之得1000k =. 所做的功为 0.120.10010005005W ldl l ==|=⎰(J ).6、(1)令55()501v t t t=-+=+,解之得10t =. 因此,火车经过10s 后完全停止. (2)1021000551(5)[555ln(1)]55ln1112s t dt t t t t =-+=-++=+⎰(m ). 习题1.7 B 组(P60)1、(1)22a aa x dx --⎰表示圆222x y a +=与x 轴所围成的上半圆的面积,因此2222aaa a x dx π--=⎰(2)120[1(1)]x x dx ---⎰表示圆22(1)1x y -+=与直线y x =所围成的图形(如图所示)的面积,因此,2120111[1(1)]114242x x dx ππ⨯---=-⨯⨯=-⎰. 2、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为2y ax =,则2()2b h a =⨯,所以24ha b =.从而抛物线的方程为 224hy x b =.于是,抛物线拱的面积232202204422()2[]33b b h h S h x dx hx x bh b b =-=-=⎰. 3、如图所示.解方程组223y x y x⎧=+⎨=⎩得曲线22y x =+与曲线3y x =交点的横坐标11x =,22x =. 于是,所求的面积为122201[(2)3][3(2)]1x x dx x x dx +-+-+=⎰⎰.y xO1(第1(2)题)yxh b O (第2题)4、证明:2[]()R hR h R RMm Mm MmhW Gdr G G r r R R h ++==-=+⎰. 第一章 复习参考题A 组(P65)1、(1)3; (2)4y =-.2、(1)22sin cos 2cos x x xy x+'=; (2)23(2)(31)(53)y x x x '=-+-; (3)22ln ln 2x xy x x '=+; (4)2422(21)x x y x -'=+. 3、32GMm F r '=-. 4、(1)()0f t '<. 因为红茶的温度在下降.(2)(3)4f '=-表明在3℃附近时,红茶温度约以4℃/min 的速度下降. 图略.5、因为()f x =()f x '=.当()0f x '=>,即0x >时,()f x 单调递增;当()0f x '=<,即0x <时,()f x 单调递减.6、因为2()f x x px q =++,所以()2f x x p '=+. 当()20f x x p '=+=,即12px =-=时,()f x 有最小值. 由12p-=,得2p =-. 又因为(1)124f q =-+=,所以5q =. 7、因为2322()()2f x x x c x cx c x =-=-+, 所以22()34(3)()f x x cx c x c x c '=-+=--. 当()0f x '=,即3cx =,或x c =时,函数2()()f x x x c =-可能有极值. 由题意当2x =时,函数2()()f x x x c =-有极大值,所以0c >.由于 所以,当3c x =时,函数2()()f x x x c =-有极大值. 此时,23c=,6c =. 8、设当点A 的坐标为(,0)a 时,AOB ∆的面积最小. 因为直线AB 过点(,0)A a ,(1,1)P ,所以直线AB 的方程为001y x a x a--=--,即1()1y x a a =--. 当0x =时,1a y a =-,即点B 的坐标是(0,)1aa -. 因此,AOB ∆的面积21()212(1)AOBa a S S a a a a ∆===--.令()0S a '=,即2212()02(1)a aS a a -'=⋅=-. 当0a =,或2a =时,()0S a '=,0a =不合题意舍去. 由于 所以,当2a =,即直线的倾斜角为时,的面积最小,最小面积为2. 9、D .10、设底面一边的长为x m ,另一边的长为(0.5)x +m. 因为钢条长为14.8m. 所以,长方体容器的高为14.844(0.5)12.88 3.2244x x xx --+-==-.设容器的容积为V ,则32()(0.5)(3.22)2 2.2 1.6V V x x x x x x x ==+-=-++,0 1.6x <<.令()0V x '=,即26 4.4 1.60x x -++=. 所以,415x =-(舍去),或1x =. 当(0,1)x ∈时,()0V x '>;当(1,1.6)x ∈时,()0V x '<. 因此,1x =是函数()V x 在(0,1.6)的极大值点,也是最大值点. 所以,当长方体容器的高为1 m 时,容器最大,最大容器为1.8 m 3.11、设旅游团人数为100x +时,旅行社费用为2()(100)(10005)5500100000y f x x x x ==+-=-++(080)x ≤≤. 令()0f x '=,即105000x -+=,50x =.又(0)100000f =,(80)108000f =,(50)112500f =. 所以,50x =是函数()f x 的最大值点.所以,当旅游团人数为150时,可使旅行社收费最多. 12、设打印纸的长为x cm 时,可使其打印面积最大.因为打印纸的面积为623.7,长为x ,所以宽为623.7x,打印面积623.7()(2 2.54)(2 3.17)S x x x=-⨯-⨯23168.396655.9072 6.34x x=--,5.0898.38x <<. 令()0S x '=,即23168.3966.340x -=,22.36x ≈(负值舍去),623.727.8922.36≈. 22.36x =是函数()S x 在(5.08,98.38)内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为27.89cm ,22.36cm 时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为y 元.则 21()20000100300200002y R q q q q =--=-+-(0400,)q q N <≤∈.令0y '=,即3000q -+=,300q =.当300q =时,25000y =;当400q =时,20000y =.300q =是函数()y p 在(0,400]内唯一极值点,且为极大值点,从而是最大值点. 所以,每年养300头猪时,可使总利润最大,最大总利润为25000元.14、(1)2; (2)22e -; (3)1;(4)原式=22222000cos sin (cos sin )[sin cos ]0cos sin x x dx x x dx x x x xπππ-=-=+=+⎰⎰;(5)原式=22001cos sin 2[]224x x x dx πππ---==⎰.15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2.17、由F kl =,得0.0490.01k =. 解之得 4.9k =.所做的功为 20.30.30.10.14.9 4.90.1962l W ldl ==⨯|=⎰(J )第一章 复习参考题B 组(P66)1、(1)43()10210b t t '=-⨯. 所以,细菌在5t =与10t =时的瞬时速度分别为0和410-.(2)当05t ≤<时,()0b t '>,所以细菌在增加;当55t <<+()0b t '<,所以细菌在减少.2、设扇形的半径为r ,中心角为α弧度时,扇形的面积为S .因为212S r α=,2l r r α-=,所以2lrα=-.222111(2)(2)222l S r r lr r r α==-=-,02l r <<.令0S '=,即40l r -=,4lr =,此时α为2弧度.4lr =是函数()S r 在(0,)2l 内唯一极值点,且是极大值点,从而是最大值点.所以,扇形的半径为4l、中心角为2弧度时,扇形的面积最大.3、设圆锥的底面半径为r ,高为h ,体积为V ,那么222r h R +=.因此,222231111()3333V r h R h h R h h ππππ==-=-,0h R <<.令22103V R h ππ'=-=,解得h =.容易知道,h =是函数()V h 的极大值点,也是最大值点.所以,当h R =时,容积最大.把3h R =代入222r h R +=,得3r R =.由2R r απ=,得3α=.所以,圆心角为α=时,容积最大. 4、由于28010k =⨯,所以45k =. 设船速为x km /h 时,总费用为y ,则2420204805y x x x=⨯+⨯ 960016x x=+,0x > 令0y '=,即29600160x -=,24x ≈.容易知道,24x =是函数y 的极小值点,也是最小值点.当24x =时,960020(1624)()9412424⨯+÷≈(元/时) 所以,船速约为24km /h 时,总费用最少,此时每小时费用约为941元.5、设汽车以x km /h 行驶时,行车的总费用2390130(3)14360x y x x=++⨯,50100x ≤≤令0y '=,解得53x ≈(km /h ). 此时,114y ≈(元) 容易得到,53x ≈是函数y 的极小值点,也是最小值点.因此,当53x ≈时,行车总费用最少.所以,最经济的车速约为53km /h ;如果不考虑其他费用,这次行车的总费用约是114元.6、原式=4404422022[]2xxx x x e dx e dx e dx e e e e -----=+=-+|=+-⎰⎰⎰.7、解方程组 2y kx y x x=⎧⎨=-⎩ 得,直线y kx =与抛物线2y x x =-交点的横坐标为0x =,1k -.抛物线与x 轴所围图形的面积2312100111()[]23236x x S x x dx =-=-=-=⎰.由题设得11200()2k k Sx x dx kxdx --=--⎰⎰31221001()[]23kkk x x x kx dx x ---=--=-⎰3(1)6k -=.又因为16S =,所以31(1)2k -=.于是1k =说明:本题也可以由面积相等直接得到111220()()kk k x x kx dx kxdx x x dx -----=+-⎰⎰⎰,由此求出k 的值. 但计算较为烦琐.新课程数学选修2—2第二章课后习题解答第二章推理与证明2.1合情推理与演绎推理 练习(P77)1、由12341a a a a ====,猜想1n a =.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=⋅⋅. 练习(P81) 1、略.2、因为通项公式为n a 的数列{}n a , 若1n na p a +=,其中p 是非零常数,则{}n a 是等比数列;……………………大前提 又因为0cq ≠,则0q ≠,则11n n nn a cq q a cq++==;……………………………小前提 所以,通项公式为(0)n n a cq cq =≠的数列{}n a 是等比数列. ……………………结论 3、由AD BD >,得到ACD BCD ∠>∠的推理是错误的. 因为这个推理的大前提是“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中.习题2.1 A 组(P83)1、21n a n =+()n N *∈. 2、2F V E +=+.3、当6n ≤时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *∈.4、212111(2)n n A A A n π++≥-(2n >,且n N *∈). 5、121217n n b b b b b b -=(17n <,且n N *∈).6、如图,作DE ∥AB 交BC 于E .因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形ABED 是平行四边形.因为平行四边形的对边相等.又因为四边形ABED 是平行四边形. 所以AB DE =.因为与同一条线段等长的两条线段的长度相等,又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的.又因为△DEC 是等腰三角形, 所以DEC C ∠=∠ 因为平行线的同位角相等又因为DEC ∠与B ∠是平行线AB 和DE 的同位角, 所以DEC B ∠=∠ 因为等于同角的两个角是相等的,又因为DEC C ∠=∠,DEC B ∠=∠, 所以B C ∠=∠ 习题2.1 B 组(P84)1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略.2.2直接证明与间接证明 练习(P89)1、因为442222cos sin (cos sin )(cos sin )cos 2θθθθθθθ-=+-=,所以,命题得证. 2>,只需证22>,即证1313+>+>,只需要22>,即证4240>,这是显然成立的. 所以,命题得证. 3、因为222222222()()()(2sin )(2tan )16sin tan a b a b a b αααα-=-+==, 又因为sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab αααααααααα+-=+-=⋅22222222sin (1cos )sin sin 161616sin tan cos cos αααααααα-===, 从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.(第6练习(P91)1、假设B ∠不是锐角,则90B ∠≥︒. 因此9090180C B ∠+∠≥︒+︒=︒. 这与三角形的内角和等于180°矛盾.所以,假设不成立. 从而,B ∠一定是锐角.2成等差数列,则=所以22=,化简得5=225=,即2540=, 这是不可能的. 所以,假设不成立..说明:进一步熟悉运用反证法证明数学命题的思考过程与特点. 习题2.2 A 组(P91)1、由于0a ≠,因此方程至少有一个跟bx a=.假设方程不止一个根,则至少有两个根,不妨设12,x x 是它的两个不同的根,则1ax b =①2ax b =②①-②得12()0a x x -=因为12x x ≠,所以120x x -≠,从而0a =,这与已知条件矛盾,故假设不成立. 2、因为(1tan )(1tan )2A B ++=展开得1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ①假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B π<+<,从而2A B π+=,与已知矛盾.因此1tan tan 0A B -≠.①式变形得tan tan 11tan tan A BA B +=-,即tan()1A B +=.又因为0A B π<+<,所以4A B π+=. 说明:本题也可以把综合法和分析法综合使用完成证明.3、因为1tan 12tan αα-=+,所以12tan 0α+=,从而2sin cos 0αα+=.另一方面,要证3sin 24cos2αα=-,只要证226sin cos 4(cos sin )αααα=-- 即证222sin 3sin cos 2cos 0αααα--=, 即证(2sin cos )(sin 2cos )0αααα+-=由2sin cos 0αα+=可得,(2sin cos )(sin 2cos )0αααα+-=,于是命题得证. 说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.4、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B π<不成立,即2B π≥,则B 是ABC ∆的最大内角,所以,b a b c >>(在三角形中,大角对大边), 从而11112a c b b b +>+=. 这与211b a c=+矛盾. 所以,假设不成立,因此,2B π<.习题2.2 B 组(P91)1、要证2s a <,由于22s ab <,所以只需要2s s b<,即证b s <.因为1()2s a b c =++,所以只需要2b a b c <++,即证b a c <+. 由于,,a b c 为一个三角形的三条边,所以上式成立. 于是原命题成立. 2、由已知条件得2b ac =①2x a b =+,2y b c =+②要证2a cx y+=,只要证2ay cx xy +=,只要证224ay cx xy += 由①②,得22()()2ay cx a b c c a b ab ac bc +=+++=++,24()()2xy a b b c ab b ac bc ab ac bc =++=+++=++, 所以,224ay cx xy +=,于是命题得证. 3、由tan()2tan αβα+=得sin()2sin cos()cos αβααβα+=+,即sin()cos 2cos()sin αβααβα+=+. ……①要证3sin sin(2)βαβ=+即证3sin[()]sin[()]αβααβα+-=++即证3[sin()cos cos()sin ]sin()cos cos()sin αβααβααβααβα+-+=+++ 化简得sin()cos 2cos()sin αβααβα+=+,这就是①式.所以,命题成立.说明:用综合法和分析法证明命题时,经常需要把两者结合起来使用. 2.3数学归纳法 练习(P95)1、先证明:首项是1a ,公差是d 的等差数列的通项公式是1(1)n a a n d =+-. (1)当1n =时,左边=1a ,右边=11(11)a d a +-=, 因此,左边=右边. 所以,当1n =时命题成立. (2)假设当n k =时,命题成立,即1(1)k a a k d =+-. 那么,11(1)[(1)1]k k k a a d a k d d a k d +=+=+-+=++-. 所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立.再证明:该数列的前n 项和的公式是1(1)2n n n S na d -=+. (1)当1n =时,左边=11S a =,右边=111(11)12a d a ⨯-⨯+=,因此,左边=右边. 所以,当1n =时命题成立.(2)假设当n k =时,命题成立,即1(1)2k k k S ka d -=+.那么,1111(1)[(1)1]2k k k k k S S a ka d a k d ++-=+=++++-1(1)(1)[1]2k k a k d -=+++1(1)(1)2k kk a d +=++所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立. 2、略.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AS
oa
x b
直线 x = a, x = b, y = 0 所
围成的曲边梯形的面积 即:
b
f ( x ) dxS
a
当函数 f (x) 0 , x[a, b] 时
b
定积分 f (x)dx几何意义 a
就是位于 x 轴下方的曲 y
边梯形面积的相反数.
o
b
即a f(x)dxS
a
b
S
y=f (x)
当函数 f (x)在 x[a, b] 有正有负时,
思考: 函数在区间[a,b]上的定积分
能否为负的?
1
定积分 (x1)dx_________.__ 2 2
定积分 (x1)dx=__________. 1
三 .定积分的几何意义.
当 f (x) ≥ 0,定积分
b
a f (x)dx
的几何意义就是曲线 y = f (x)
y=f (x) y
定积分b f (x)dx 几何意义 a
就是图中几个曲边图形面积的代数和,(x
轴上方面积取正号,x轴下方面积取负号)
b
即f( a
x )S d1x S2S3
y
S1 O S3
S2
X
例题分析:
求定积分,只要
1求下列定积分:理解被积函数和
定积分的意义,
(1)
5
0 (2x4)dx
并作出图形,即 可解决。
(2) 2 sinxdx 0
积零为整
取逼近
取逼近
精确值——定积分
3.定积分的几何意义及简单应用
Thank You
1
(3)
1x2dx
1
用定积分表示下列阴影部分面积
y
y=sinx
O
X -1
y
y
y=x2-4x-5 5
y=cosx
2
3 2
O
XOLeabharlann XS=______; S=______; S=______;
四、小结
1.定积分的实质:特殊和式的逼近值. 2.定积分的思想和方法:
分割
化整为零
求和
求近似以直(不变)代曲(变)