[推荐学习]高中数学第一章推理与证明1.1归纳与类比类比推理教案北师大版选修2_2
高中数学 第一章 推理与证明章节复习教案 北师大版选修22

第一章 推理与证明一、教学目标1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用。
2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程与特点。
3、了解间接证明的一种基本方法——反证法;了解反证法的思考过程与特点。
4、了解数学归纳法原理,能用数学归纳法证明一些简单的数学命题。
二、教学重点:1、能利用归纳和类比等进行简单的推理2、能用综合法、分析法、反证法、数学归纳法证明一些简单的数学命题。
教学难点:数学归纳法 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)知识结构本章在回顾已有知识的基础上逐一介绍了合情推理的两种基本思维方式:归纳推理、类比推理,以及数学证明的主要方法:分析法、综合法、反证法、数学归纳法,上述推理方式和证明方法都是数学的基本思维过程,它们贯穿于整个高中数学的学习中,数学知识的学习过程推理与证明FBCMEA也是这些思维方法的领悟、训练和应用的过程,要通过学习感受逻辑思维在数学以及日常生活中的作用。
(二)、例题探析例1、将下面平面几何中的概念类比到立体几何中的相应结果是什么?请将下表填充完整。
例2、分别用分析法和综合法证明:在△ABC 中,如果AB =AC ,BE ,CF 分别是三角形的高线,BE 与CF 相交于点M ,那么,MB =MC 。
证明:(分析法)要证明MB =MC ,只需证明△BFM ≌△CEM 。
因为△BFM ,△CEM 均为直角三角形,且∠BMF =∠CME , 只需证明BF =CE 即可。
在Rt △BFC 与Rt △CEB 中,由于△ABC 为等腰三角形, ∠ABC =∠ACB ,BC =BC ,∠EBC =∠FCB ,有△BFC ≌△CEB ,BF =CE 以上各布可逆,故MB =MC 。
(综合法)在Rt △BFC 与Rt △CEB 中,由于△ABC 为等腰三角形, 有∠ABC =∠ACB ,BC =BC ,∠EBC =∠FCB ,可知△BFC ≌△CEB ,所以BF =CE 在Rt △BFM 与Rt △CEM 中,∠BMF=∠CME ,∠FBM =∠ECM , 所以△BFM ≌△CEM ,MB =MC ,得证。
部编版2020学年高中数学第一章推理与证明1归纳与类比教学案北师大版选修2294

§1 归纳与类比[对应学生用书P2]归纳 推 理问题1:我们知道铜、铁、铝、金、银都是金属,它们有何物理性质? 提示:都能导电.问题2:由问题1你能得出什么结论? 提示:一切金属都能导电.问题3:若数列{a n }的前四项为2,4,6,8,试写出a n . 提示:a n =2n (n ∈N +).问题4:上面问题2、3得出结论有何特点? 提示:都是由几个特殊事例得出一般结论.归纳推理定义特征根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,将这种推理方式称为归纳推理.归纳推理是由部分到整体,由个别到一般的推理.类 比 推 理问题1:试写出三角形的两个性质. 提示:(1)三角形的两边之和大于第三边; (2)三角形的面积等于高与底乘积的12.问题2:你能由三角形的性质推测空间四面体的性质吗?试写出来. 提示:(1)四面体任意三个面的面积之和大于第四个面的面积;(2)四面体的体积等于底面积与高乘积的13.问题3:试想由三角形的性质推测四面体的性质体现了什么.提示:由一类事物的特征推断另一类事物的类似特征,即由特殊到特殊.定义特征由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,把这种推理过程称为类比推理.类比推理是两类事物特征之间的推理.合情推理与演绎推理1.合情推理的含义合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.归纳推理和类比推理是最常见的合情推理.2.演绎推理的含义演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.1.归纳推理的特点:(1)由归纳推理得到的结论具有猜测的性质,结论是否正确,还需经过逻辑证明和实践检验,因此,归纳推理不能作为数学证明的工具;(2)一般地,如果归纳的个别对象越多,越具有代表性,那么推广的一般性结论也就越可靠.2.类比推理的特点:(1)运用类比推理常常先要寻找合适的类比对象;(2)如果类比的两类对象的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的结论就越可靠;(3)由类比推理得到的结论也具有猜测的性质,结论是否正确,还需经过逻辑证明和实践检验,因此,类比推理不能作为数学证明的工具.[对应学生用书P3]数与式的归纳[例1] 已知:1>12;1+12+13>1;1+12+13+14+15+16+17>32;1+12+13+…+115>2;….根据以上不等式的结构特点,请你归纳一般结论.[思路点拨] 观察不等式左边最后一项的分母特点为2n-1,不等式右边为n2,由此可得一般性结论.[精解详析] 1=21-1,3=22-1,7=23-1,15=24-1,…,猜想不等式左边最后一项的分母为2n-1,而不等式右端依次分别为:12,22,32,42,…,n 2.归纳得一般结论:1+12+13+…+12n -1>n2(n ∈N +).[一点通] 根据给出的数与式,归纳一般结论的思路:(1)观察数与式的结构特征,如数、式与符号的关系,代数式的相同或相似之处等; (2)提炼出数、式的变化规律; (3)运用归纳推理写出一般结论.1.已知a n =⎝ ⎛⎭⎪⎫13n,把数列{a n }的各项排成如下的三角形:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( )A.⎝ ⎛⎭⎪⎫1367B.⎝ ⎛⎭⎪⎫1368C.⎝ ⎛⎭⎪⎫13111 D.⎝ ⎛⎭⎪⎫13112 解析:该三角形每行所对应元素的个数为1,3,5……那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝ ⎛⎭⎪⎫13112.答案:D2.(陕西高考)已知f (x )= x1+x ,x ≥0,若 f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +,则f 2 014(x )的表达式为________.解析:由f 1(x )=x1+x ⇒f 2(x )=f ⎝ ⎛⎭⎪⎫x 1+x =x1+x 1+x 1+x=x1+2x ;又可得f 3(x )=f (f 2(x ))=x1+2x 1+x1+2x=x1+3x,故可猜想f 2 014(x )=x1+2 014x.答案:x1+2 014x3.已知数列{a n }中,a 1=1,a n +1=a n1+2a n(n =1,2,3,…). (1)求a 2,a 3,a 4;(2)归纳猜想数列{a n }的通项公式. 解:(1)当n =1时,a 1=1,由a n +1=a n 1+2a n (n ∈N +),得a 2=13,a 3=a 21+2a 2=15,a 4=a 31+2a 3=17. (2)由a 1=1=11,a 2=13,a 3=15,a 4=17,可归纳猜想a n =12n -1(n ∈N +).图与形的归纳[例2] 某少数民族的刺绣有着悠久的历史,图①②③④所示为她们刺绣的最简单的四个图案,这些图案都是由小正方形构成的,小正方形数越多,刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f 1+1f2-1+1f3-1+…+1fn -1的值.[思路点拨] 先求出f (1),f (2),f (3),f (4),f (5)的值,并归纳出n 与f (n )的关系,然后即可解决问题(2)、(3).[精解详析] (1)f (5)=41. (2)f (2)-f (1)=4=4×1,f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4,……由上式规律,得f (n +1)-f (n )=4n . ∴f (n +1)=f (n )+4n ,f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1. (3)当n ≥2时,1fn -1=12nn -1=12⎝ ⎛⎭⎪⎫1n -1-1n ,∴1f 1+1f2-1+1f 3-1+…+1fn -1=1+12⎝ ⎛⎭⎪⎫11-12+12⎝ ⎛⎭⎪⎫12-13+…+12⎝ ⎛⎭⎪⎫1n -1-1n=1+12⎝ ⎛⎭⎪⎫1-1n =32-12n.[一点通] 解决此类问题可以从两个方面入手:(1)从图形的数量规律入手,找到数值变化与序号的关系.(2)从图形的结构变化规律入手,发现图形的结构每发生一次变化,与上一次比较,数值发生了怎样的变化.4.如图是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )解析:由图可知该五角星对角上亮的两盏花灯依次按逆时针方向亮一盏,故下一个呈现出来的图形是A中所示的图形.答案:A5.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签为2 0132的格点的坐标为( )A.(1 006,1 005) B.(1 007,1 006)C.(1 008,1 007) D.(1 009,1 008)解析:因为点(1,0)处标1=12,点(2,1)处标9=32,点(3,2)处标25=52,点(4,3)处标49=72,依此类推得点(1 007,1 006)处标2 0132.答案:B6.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=____________;当n>4时,f(n)=______________.(用含n的数学表达式表示)解析:画图可知,f (4)=5,当n >4时, 可得递推式f (n )-f (n -1)=n -1,由f (n )-f (n -1)=n -1, f (n -1)-f (n -2)=n -2,…f (4)-f (3)=3,叠加可得, f (n )-f (3)=12(n +2)(n -3),又f (3)=2,所以f (n )=12(n +2)(n -3)+2,化简整理得f (n )=12(n -2)(n +1).答案:5 12(n -2)(n +1).几何图形的类比[例3] (1)圆心与弦(非直径)中点的连线垂直于弦; (2)与圆心距离相等的两弦长相等; (3)圆的周长C =πd (d 是直径); (4)圆的面积S =πr 2.[思路点拨] 先找出相似的性质再类比,一般是点类比线、线类比面、面类比体. [精解详析] 圆与球有下列相似的性质:(1)圆是平面上到一定点的距离等于定长的所有点构成的集合;球面是空间中到一定点的距离等于定长的所有点构成的集合.(2)圆是平面内封闭的曲线所围成的对称图形;球是空间中封闭的曲面所围成的对称图形.通过与圆的有关性质类比,可以推测球的有关性质.圆球圆心与弦(非直径)中点的连线垂直于弦 球心与截面(不经过球心的小圆面)圆心的连线垂直于截面与圆心距离相等的两条弦长相等与球心距离相等的两个截面的面积相等圆的周长C =πd 球的表面积S =πd 2圆的面积S =πr 2球的体积V =43πr 3[一点通] 解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中,相关类比点如下:平面图形 立体图形 点 点、线 直线 直线、平面 边长 棱长、面积面积 体积 三角形 四面体 线线角 面面角 平行四边形平行六面体圆球7.平面内平行于同一直线的两直线平行,由此类比我们可以得到( ) A .空间中平行于同一直线的两直线平行 B .空间中平行于同一平面的两直线平行 C .空间中平行于同一直线的两平面平行 D .空间中平行于同一平面的两平面平行解析:利用类比推理,平面中的直线和空间中的平面类比. 答案:D8.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S =底×高2,可推知扇形面积公式S 扇等于( )A.r 22 B.l 22C.lr2D.不可类比解析:扇形的弧长类比三角形的底,扇形的半径类比三角形的高.所以S扇形=l×r 2.答案:C9.如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cosB,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.解:如图所示,在四面体P—ABC中,S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.定义、定理或性质中的类比[例4][精解详析] (1)两实数相加后,结果是一个实数,两向量相加后,结果仍是向量;(2)从运算律的角度考虑,它们都满足交换律和结合律,即:a+b=b+a,a+b=b+a,(a+b)+c=a+(b+c),(a+b)+c=a+(b+c);(3)从逆运算的角度考虑,二者都有逆运算,即减法运算,即a+x=0与a+x=0都有唯一解,x=-a与x=-a;(4)在实数加法中,任意实数与0相加都不改变大小,即a+0=a.在向量加法中,任意向量与零向量相加,既不改变该向量的大小,也不改变该向量的方向,即a+0=a.[一点通] 运用类比推理常常先要寻找合适的类比对象,本例中实数加法的对象为实数,向量加法的对象为向量,且都满足交换律与结合律,都存在逆运算,而且实数0与零向量0分别在实数加法和向量加法中占有特殊的地位.因此我们可以从这四个方面进行类比.10.试根据等式的性质猜想不等式的性质并填写下表.等式不等式a =b ⇒a+c =b +c ① a =b ⇒ac =bc ② a =b ⇒a 2=b 2③答案:①a >b ⇒a +c >b +c ②a >b ⇒ac >bc (c >0) ③a >b >0⇒a 2>b 2.(说明:“>”也可改为“<”)11.已知等差数列{a n }的公差为d ,a m ,a n 是{a n }的任意两项(n ≠m ),则d =a n -a mn -m,类比上述性质,已知等比数列{b n }的公比为q ,b n ,b m 是{b n }的任意两项(n ≠m ),则q =________.解析:∵a n =a m q n -m,∴q =⎝ ⎛⎭⎪⎫a n am 1n m-.答案:⎝ ⎛⎭⎪⎫a nam 1n m -1.用归纳推理可从具体事例中发现一般规律,但应注意,仅根据一系列有限的特殊事例,所得出的一般结论不一定可靠,其结论的正确与否,还要经过严格的理论证明.2.进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.3.多用下列技巧会提高所得结论的准确性: (1)类比对象的共同属性或相似属性尽可能的多些. (2)这些共同属性或相似属性应是类比对象的主要属性.(3)这些共同(相似)属性应包括类比对象的各个方面,并尽可能是多方面.[对应课时跟踪训练一]1.由数列2,20,200,2 000,…,猜测该数列的第n 项可能是( ) A .2×10nB .2×10n -1C .2×10n +1D.2×10n -2答案:B2.如图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a 所表示的数是( )11 11 2 11 3 3 11 4 a 4 11 5 10 10 5 1A .2B .4C .6 D.8解析:由杨辉三角形可以发现:每一行除1外,每个数都是它肩膀上的两数之和.故a =3+3=6.答案:C3.(湖北高考)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227 B.258 C.15750 D.355113解析:由题意知275L 2h =13πr 2h ⇒275L 2=13πr 2,而L =2πr ,代入得π=258. 答案:B4.从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性( )解析:每一行图中的黑点从右上角依次递减一个.答案:A5.类比平面内正三角形的“三边相等,三内角相等”的性质,你认为可推知正四面体的下列哪些性质________.(填写序号)①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.解析:正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.答案:①②③6.四个小动物换座位,开始时鼠、猴、兔、猫分别坐在编号为1,2,3,4的位置上(如图),第1次前后排动物互换座位,第2次左右列动物互换座位,第3次前后排动物互换座位,……这样交替进行下去,那么第2 014次互换座位后,小兔的座位对应的编号是________.解析:第4次左右列动物互换座位后,鼠、猴、兔、猫分别坐在编号为1,2,3,4的位置上,即回到开始时的座位情况,于是可知这样交替进行下去,呈现出周期为4的周期现象,又2 014=503×4+2,故第2 014次互换座位后的座位情况就是第2次互换座位后的座位情况,所以小兔的座位对应的编号是2.答案:27.观察等式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,你能得出怎样的结论?解:通过观察发现:等式的左边为正奇数的和,而右边是整数(实际上就是左边奇数的个数)的完全平方.因此可推测得出:1+3+5+7+9+…+(2n-1)=n2(n≥2,n∈N+).8.如图,在三棱锥S-ABC中,SA⊥SB,SB⊥SC,SA⊥SC,且SA,SB,SC和底面ABC所成的角分别为α1,α2,α3,三侧面△SBC,△SAC,△SAB 的面积分别为S 1,S 2,S 3.类比三角形中的正弦定理,给出空间情形的一个猜想.解:在△DEF 中,由正弦定理,得d sin D =e sin E =fsin F .于是,类比三角形中的正弦定理, 在四面体S -ABC 中,猜想S 1sin α1=S 2sin α2=S 3sin α3成立.。
高中数学第一章推理与证明1.1归纳与类比课件北师大版选修220831227

则仿照上面的规律,可猜想此类不等式的一般形式为
.
1
2
1
3
解析:观察式子可得规律:不等号的左侧是 1+ + +…+
1
+1
2
,共
-1
+1
n+1
(2 -1)项的和;不等号的右侧是
.故猜想此类不等式的一般形式
1
2
2
1
1
+1
>
.
+1
3
2
2
-1
1 1
1
+1
答案:1+ + +…+ +1 >
2 3
2
解析:5=22+1,9=23+1,17=24+1,33=25+1,归纳得x=26+1=65.
答案:B
第五页,共33页。
2.类比推理
(1)定义:由于两类不同对象具有某些类似的特征,在此基础上,根据一
类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种
推理过程称为类比推理.
(2)特征:类比推理是两类事物特征之间的推理,是由特殊到特殊的过
探究(tànjiū)
三
1
2
1
a1+a2+a3=2
令 n=3,有 S3=
即
1
3
1
3 +
3
3 +
探究四
思维辨析
,
,
化简可得32 +2√2a3-1=0,
因为 a3>0,所以 a3=√3 − √2.
1
2
【精品学习】高中数学第一章推理与证明1.1归纳与类比演绎推理教案北师大版选修2_2

演绎推理一、教学目标 1、知识与技能:(1)了解演绎推理 的含义;(2)能正确地运用演绎推理 进行简单的推理; (3)了解合情推理与演绎推理之间的联系与差别。
2、方法与过程:认识演绎推理的主要形式为三段论,认识三段论推理一般模式,包括三步(1)大前提,(2)小前提,(3)结论.再从实际应用中认识数学中的证明,主要通过演绎推理来进行的.从实例中认识它的重要作用和具体做法。
3、情感态度与价值观:通过本节的学习,使学生认识到演绎推理在数学中的重要性,我们既需要用合情推理来发现结论,也要用演绎推理来证明结论的对否。
二、教学重点:了解演绎推理的含义,能利用“三段论”进行简单的推理.教学难点:了解合情推理与演绎推理之间的联系与差别, 分析证明过程中包含的“三段论”形式,三段论的证明原理三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习准备:1. 练习: ① 对于任意正整数n ,猜想(2n -1)与(n +1)2的大小关系? ②在平面内,若,a c b c ⊥⊥,则//a b . 类比到空间,你会得到什么结论?(结论:在空间中,若,a c b c ⊥⊥,则//a b ;或在空间中,若,,//αγβγαβ⊥⊥则) 2. 讨论:以上推理属于什么推理,结论正确吗?合情推理的结论不一定正确,有待进一步证明,有什么能使结论正确的推理形式呢? 3. 导入:(小前提)是二次函数函数12++=x x y(二)、新课探析 1.概念:① 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。
要点:由一般到特殊的推理。
② 讨论:演绎推理与合情推理有什么区别?合情推理⎧⎨⎩归纳推理:由特殊到一般类比推理:由特殊到特殊;演绎推理:由一般到特殊.③ 提问:观察上面导入的表格,它们都由几部分组成,各部分有什么特点?2.“三段论”是演绎推理的一般模式;包括 ⑴大前提---已知的一般原理; ⑵小前提---所研究的特殊情况; ⑶结论-----据一般原理,对特殊情况做出的判断. 三段论的基本格式M —P (M 是P ) (大前提) S —M (S 是M ) (小前提) S —P (S 是P )(结论)3.三段论推理的依据,用集合的观点来理解:如图若集合M 的所有元素都具有性质P,S 是M 的一个子集,那么S 中所有元素也都具有性质P. ④ 举例:举出一些用“三段论”推理的例子. 2.例题探析:21.1y x x =++例把“函数的图象是一条抛物线”恢复成完全三段论。
北师大版高中数学选修高二第一章推理与证明归纳推理教学设计

第一章 推理与证明1.1归纳推理教学目标:1.通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。
2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
教学重点:了解合情推理的含义,能利用归纳法进行简单的推理。
教学难点:用归纳进行推理,做出猜想。
教学过程: 一、课堂引入:从一个或几个已知命题得出另一个新命题的思维过程称为推理。
见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理 二、新课讲解:1、 蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。
蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。
2、 三角形的内角和是180︒,凸四边形的内角和是360︒,凸五边形的内角和是540︒ 由此我们猜想:凸边形的内角和是(2)180n -⨯︒3、221222221,,,331332333+++<<<+++,由此我们猜想:a a mb b m+<+(,,a b m 均为正实数) 这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳) 归纳推理的一般步骤:⑴ 对有限的资料进行观察、分析、归纳 整理; ⑵ 提出带有规律性的结论,即猜想; ⑶ 检验猜想。
三、例题讲解:例1 通过观察下列等式,猜想一个一般性结论,并证明结论的真假。
23130sin 75sin 15sin 222=++ ;23145sin 85sin 25sin 222=++ ; 23150sin 90sin 30sin 222=++ ;23180sin 120sin 60sin 222=++ 。
高中数学 第一章 推理与证明 1 归纳与类比 北师大版选修2-2

推理与证明
§1 归纳与类比
课前预习学案
相传,春秋时期鲁国的公输班(后人称鲁班,被认为是木 工的祖师),一次去林中砍树时,一不小心,手被一种野草的 叶子划破了.他摘下叶片轻轻一摸,原来叶子两边长着锋利的 齿,他的手就是被这些小齿划破的.鲁班想,这样齿状的工具 不是也能很快地锯断树木吗?他经过多次试验,终于发明了锋 利的锯子,大大提高了工效.
又因为a1>0,所以a1=1.
2分
当n≥2时,Sn=12an+a1n,Sn-1=12an-1+an1-1,
两式相减得:an=12an+a1n-12an-1+an1-1,
即an-a1n=-an-1+an1-1,
4分
所以a2-a12=-2,又因为a2>0,所以a2= 2-1.
a3-a13=-2 2,又因为a3>0,所以a3= 3- 2.
课堂互动讲义
数列中的归纳推理
已知正项数列{an}满足Sn=12an+a1n,求出a1,a2, a3,a4,并推测an.
[思路导引] 既可以直接在已知条件中取n的特殊值,依 次求出前4项,再猜测an,也可以先由Sn与an的关系先推出an的 递推公式,再求前4项,最后猜测an.
[规范解答] 方法一:a1=S1=12a1+a11,
[思路导引] 设凸n边形有an条对角线,则a4=2,a5=5, a6=9,由此观察an的规律不明显,直接用归纳推理猜想an不方 便,但由a5-a4=3,a6-a5=4,a7-a6=5,…
可看出an-an-1的规律性较强,因此可先猜想an-an-1, 再推出an.
[边听边记] 凸三角形有0条对角线,凸四边形有2条对角
∵a3>0,∴a3= 3- 2.
6分
令n=4,则S4=12a4+a14,
高中数学第一章推理与证明1.1归纳与类比1.1.2类比推理课件北师大版选修22

2.进行类比推理时,要注意比较两个对象的相同点和不同点,找到 可以进行类比的两个量,然后加以推测,得到类比结果,最好能够结 合相关的知识进行证明,以确保类比结果的合理性.
题型一 题型二 题型三
设等比数列{bn}的公比为 q,首项为 b1,
则 T4= ������14������6, ������8 = ������18������1 + 2 + ⋯+7= ������18������28,
T12= ������112������1 + 2 + ⋯+11= ������112������66,
答案:
������8 ������4
������12 ������8
题型一 题型二 题型三
题型二 平面几何与空间几何之间的类比
【例2】 在矩形ABCD中,对角线AC与两邻边AB,BC所成的角分 别为α,β,则cos2α+cos2β=1.在立体几何中,通过类比,给出一个猜想 并证明.
分析:本题主要考查类比推理的思想,考虑到平面几何中的矩形, 故可联想到立体几何中的长方体.
相似比的平方.同理,两个正四面体是两个相似的几何体,它们的体
积之比为相似比的立方,故体积比为1∶8.
答案:1∶8
2.合情推理与演绎推理 (1)归纳推理和类比推理是最常见的合情推理. (2)合情推理是根据实验和实践的结果、个人的经验和直觉、已有的 事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式. (3)演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则 得到新结论的推理过程. 【做一做2】 判断下列由合情推理所得的结论是否正确,并说明理由. (1)f(x)=(x-1)(x-2)(x-3)…(x-100)+2.因为 f(1)=2,f(2)=2,f(3)=2,…,f(100)=2,所以归纳猜想f(n)=2(n∈N+); (2)“在平面内,垂直于同一条直线的两条直线互相平行”,类比可得“在 空间中,垂直于同一个平面的两个平面互相平行”. 解:(1)不正确.当n>100时,f(n)≠2. (2)不正确.在空间中,垂直于同一
[推荐学习]高中数学第一章推理与证明章节复习教案北师大版选修2_2
![[推荐学习]高中数学第一章推理与证明章节复习教案北师大版选修2_2](https://img.taocdn.com/s3/m/4d63bb73804d2b160b4ec072.png)
第一章 推理与证明一、教学目标1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用。
2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程与特点。
3、了解间接证明的一种基本方法——反证法;了解反证法的思考过程与特点。
4、了解数学归纳法原理,能用数学归纳法证明一些简单的数学命题。
二、教学重点:1、能利用归纳和类比等进行简单的推理2、能用综合法、分析法、反证法、数学归纳法证明一些简单的数学命题。
教学难点:数学归纳法 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)知识结构本章在回顾已有知识的基础上逐一介绍了合情推理的两种基本思维方式:归纳推理、类比推理,以及数学证明的主要方法:分析法、综合法、反证法、数学归纳法,上述推理方式和证明方法都是数学的基本思维过程,它们贯穿于整个高中数学的学习中,数学知识的学习过程推理与证明FBCMEA也是这些思维方法的领悟、训练和应用的过程,要通过学习感受逻辑思维在数学以及日常生活中的作用。
(二)、例题探析例1、将下面平面几何中的概念类比到立体几何中的相应结果是什么?请将下表填充完整。
例2、分别用分析法和综合法证明:在△ABC 中,如果AB =AC ,BE ,CF 分别是三角形的高线,BE 与CF 相交于点M ,那么,MB =MC 。
证明:(分析法)要证明MB =MC ,只需证明△BFM ≌△CEM 。
因为△BFM ,△CEM 均为直角三角形,且∠BMF =∠CME , 只需证明BF =CE 即可。
在Rt △BFC 与Rt △CEB 中,由于△ABC 为等腰三角形, ∠ABC =∠ACB ,BC =BC ,∠EBC =∠FCB ,有△BFC ≌△CEB ,BF =CE 以上各布可逆,故MB =MC 。
(综合法)在Rt △BFC 与Rt △CEB 中,由于△ABC 为等腰三角形, 有∠ABC =∠ACB ,BC =BC ,∠EBC =∠FCB ,可知△BFC ≌△CEB ,所以BF =CE 在Rt △BFM 与Rt △CEM 中,∠BMF=∠CME ,∠FBM =∠ECM , 所以△BFM ≌△CEM ,MB =MC ,得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类比推理
一、教学目标
1、知识与技能:
(1)结合已学过的数学实例,了解类比推理的含义;
(2)能利用类比进行简单的推理;
(3)体会并认识类比推理在数学发现和生活中的作用。
2、方法与过程:递进的了解、体会类比推理的思维过程;体验类比法在探究活动中:类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
3、情感态度与价值观:体会类比法在数学发现中的基本作用:即通过类比,发现新问题、新结论;通过类比,发现解决问题的新方法。
培养分析问题的能力、学会解决问题的方法;增强探索问题的信心、收获论证成功的喜悦;体验数学发现的乐趣、领略数学方法的魅力!同时培养学生学数学、用数学,完善数学的正确数学意识。
二、教学重点:了解类比推理的含义,能利用类比进行简单的推理。
教学难点:培养学生“发现—猜想—证明”的推理能力。
三、教学方法:探析归纳,讲练结合
四、教学过程
(一)、复习:归纳推理的概念:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都具有这种属性。
我们将这种推理方式称为归纳推理。
注意:利用归纳推理得出的结论不一定是正确的。
①归纳推理的要点:由部分到整体、由个别到一般;②典型例子方法归纳。
(二)、引入新课:据科学史上的记载,光波概念的提出者,荷兰物理学家、数学家赫尔斯坦•惠更斯曾将光和声这两类现象进行比较,发现它们具有一系列相同的性质:如直线传播、有反射和干扰等。
又已知声是由一种周期运动所引起的、呈波动的状态,由此,惠更斯作出推理,光也可能有呈波动状态的属性,从而提出了光波这一科学概念。
惠更斯在这里运用的推理就是类比推理。
(三)、例题探析
例1:已知:“正三角形内一点到三边的距离之和是一个定值”,将空间与平面进行类比,空间中什么样的图形可以对应三角形?在对应图形中有与上述定理相应的结论吗?
解:将空间与平面类比,正三角形对应正四面体,三角形的边对应四面体的面。
得到猜测:正四面体内一点到四个面距离之和是一个定值。
例2:根据平面几何的勾股定理,试类比地猜测出空间中相应的结论。
解:平面中的直角三角形类比到空间就是直四面体。
如图,在四面体P -ABC
中,平面PAB 、平面PBC 、平面PCA 两两垂直
勾股定理:斜边长的平方等于两个直角边的平方和。
类比到空间就是:△ABC 面积的平方等于三个直角三角形面积的平方和。
即:2222PCA PBC PAB ABC S S S S ∆∆∆∆++=
在上述各例的推理过程中,都有共同之处:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理。
注意:利用类比推理得出的结论不一定是正确的。
归纳推理和类比推理是最常见的合情推理。
合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式。
(四)、巩固练习:
练习1、已知实数加法满足下列运算规律:(1)a b b a +=+;(2)()()c b a c b a ++=++. 类比实数的加法运算律,列出实数的乘法与加法相似的运算律.
练习2、我们已经学过了等差数列,是否想到过等和数列?
(1)类比“等差数列”给出“等和数列”定义;(2)探索等和数列{}n a 的奇数项和偶数项有什么特点;(3)等和数列{}n a 中,如果 求前n 项和. 练习3、若数列{}n a 是等差数列,且12...,n n a a a b n
+++=则{}n b 也是等差数列。
类比上述性质,相应地,数列{}n c 是等比数列,且0n c >,___________n d =,则{}n d 也是等比数列(以上*n N ∈)
练习4、在ABC ∆中,若,,AC BC AC b BC a ⊥==,则ABC ∆
的外接圆半径r =,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA SB SC 、、两两互相垂直,,,SA a SB b SC c ===,则四面体S ABC -的外接球半径R =( )
A
B
C
D
12,a a a b
==
练习5、类比解答(1)、(2):(1)求证:1tan tan 41tan x x x
π+⎛
⎫+= ⎪-⎝⎭;(2)设,x R a ∈为非零常数,且()1(),1()
f x f x a f x ++=-试问:()f x 是周期函数吗?证明你的结论。
(五)、小结:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理。
注意:利用类比推理得出的结论不一定是正确的。
归纳推理和类比推理是最常见的合情推理。
合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式。
归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,统称为合情推理。
(六)作业:课本课本7P 练习:2.课本7P 习题1-1:4.
五、教后反思:。