pv操作总结
操作系统--PV操作

操作系统--PV操作操作系统PV 操作在操作系统中,PV 操作是一种非常重要的同步机制,用于解决进程之间的互斥和同步问题。
这一概念对于理解操作系统的工作原理以及优化多进程的协同工作至关重要。
让我们先来了解一下什么是进程。
进程可以简单理解为正在运行的程序的实例。
在一个操作系统中,通常会有多个进程同时运行,它们可能需要共享资源或者按照特定的顺序执行某些操作。
这时候,就需要一种有效的机制来协调它们,确保系统的正常运行,而 PV 操作就是这样一种机制。
P 操作和 V 操作是两个原语操作。
P 操作又称为 wait 操作,V 操作又称为 signal 操作。
先来说说 P 操作。
当一个进程执行 P 操作时,如果对应的资源可用(也就是信号量的值大于 0),那么它会顺利地获取资源,并将信号量的值减 1。
但如果信号量的值为 0,那么这个进程就会被阻塞,进入等待队列,直到其他进程释放资源,将信号量的值增加,它才有机会再次被唤醒并获取资源。
举个例子,假设有一个打印机资源,多个进程都可能需要使用它。
每个进程在使用打印机之前,都要执行 P 操作。
如果此时打印机空闲(信号量大于 0),进程就能顺利使用;如果打印机正在被其他进程使用(信号量为 0),那么当前进程就会被阻塞等待。
再来看 V 操作。
当一个进程执行 V 操作时,它会将信号量的值增加 1。
如果此时有进程正在等待这个资源(也就是在等待队列中),那么系统会从等待队列中唤醒一个进程,让它获取资源并继续执行。
还是以打印机为例,当一个进程使用完打印机后,它会执行 V 操作,释放打印机资源,使得信号量的值增加 1。
如果有其他进程正在等待打印机,那么其中一个等待进程就会被唤醒并获得使用打印机的机会。
PV 操作的应用场景非常广泛。
比如在生产者消费者问题中,生产者进程负责生产产品并放入缓冲区,消费者进程从缓冲区中取出产品进行消费。
为了保证缓冲区的正确使用,避免出现缓冲区满了生产者还在生产或者缓冲区空了消费者还在消费的情况,就需要使用 PV 操作来实现生产者和消费者之间的同步和互斥。
操作系统-PV操作

未来研究方向和挑战
01
随着云计算、大数据和人工智能等技术的快速发展,操作系统中的并发和并行 处理需求越来越高,PV操作在解决并发和并行处理中的问题也面临着新的挑战 。
02
未来的研究需要进一步探索PV操作在新型计算环境中的应用,例如在分布式系 统、物联网、边缘计算等领域中,PV操作的应用和优化具有重要的研究价值。
详细描述
生产者消费者问题描述了一个共享缓冲区的场景,其中生产者产生数据放入缓冲区,消费者从缓冲区取出数据进 行处理。为了防止缓冲区溢出和数据饥饿,需要使用PV操作来控制对缓冲区的访问。
读者写者问题
总结词
读者写者问题是生产者消费者问题的 变种,主要解决多个读者共享数据和 单个写者修改数据时的同步问题。
03
同时,随着系统规模的扩大和复杂度的增加,PV操作的管理和维护也变得越来 越困难,如何有效地管理和维护PV操作也是未来的重要研究方向之一。
THANKS FOR WATCHING
感谢您的观看
操作系统-pv操作
目 录
• 引言 • PV操作原理 • PV操作实现 • PV操作的应用 • 总结与展望
01 引言
操作系统简介
操作系统是计算机系统的核心软件, 负责管理计算机硬件和应用程序的资 源分配、调度和监控。
操作系统的主要功能包括进程管理、 内存管理、文件管理和设备管理。
PV操作的基本概念
饥饿问题
饥饿问题是当一个或多个进程长期得不到足够的资源,导致其无法正常执行的情况。为避免饥饿问题 ,可以采用一些调度算法,如先来先服务、最短作业优先等,确保每个进程都能获得足够的资源。
04 PV操作的应用
生产者消费者问题
总结词
生产者消费者问题是操作系统中经典的并发循环执行
pv原语总结(打印版)

PV原语的含义P操作和V操作是不可中断的程序段,称为原语。
PV原语及信号量的概念都是由荷兰科学家E.W.Dijkstra提出的。
信号量sem是一整数,sem大于等于零时代表可供并发进程使用的资源实体数,但sem小于零时则表示正在等待使用临界区的进程数。
P原语操作的动作是:(1)sem减1;(2)若sem减1后仍大于或等于零,则进程继续执行;(3)若sem减1后小于零,则该进程被阻塞后进入与该信号相对应的队列中,然后转进程调度。
V原语操作的动作是:(1)sem加1;(2)若相加结果大于零,则进程继续执行;(3)若相加结果小于或等于零,则从该信号的等待队列中唤醒一等待进程,然后再返回原进程继续执行或转进程调度。
PV操作对于每一个进程来说,都只能进行一次,而且必须成对使用。
在PV 原语执行期间不允许有中断的发生。
用PV原语实现进程的互斥由于用于互斥的信号量sem与所有的并发进程有关,所以称之为公有信号量。
公有信号量的值反映了公有资源的数量。
只要把临界区置于P(sem)和V(sem)之间,即可实现进程间的互斥。
就象火车中的每节车厢只有一个卫生间,该车厢的所有旅客共享这个公有资源:卫生间,所以旅客间必须互斥进入卫生间,只要把卫生间放在P(sem)和V(sem)之间,就可以到达互斥的效果。
以下例子说明进程的互斥实现。
例1生产围棋的工人不小心把相等数量的黑子和白子混装载一个箱子里,现要用自动分拣系统把黑子和白子分开,该系统由两个并发执行的进程组成,功能如下:(1)进程A专门拣黑子,进程B专门拣白子;(2)每个进程每次只拣一个子,当一个进程在拣子时不允许另一个进程去拣子;分析:第一步:确定进程间的关系。
由功能(2)可知进程之间是互斥的关系。
第二步:确定信号量及其值。
由于进程A和进程B要互斥进入箱子去拣棋子,箱子是两个进程的公有资源,所以设置一个信号量s,其值取决于公有资源的数目,由于箱子只有一个,s的初值就设为1。
操作系统实验——PV操作实现生产者消费者模型

/** * 单个生产者类 * @author Vfdxvffd * @count 生产的物品数量标号 */ class Producer implements Runnable{ int count = 0; //数量 @Override public void run() { while(count < 20) { //最多生产20件商品
Global.empty.Wait(); /*要生产物品了,给剩余空 闲缓冲区数量--,如果减完后变为负数,则说明当前没 有空闲缓冲区,则加入等待队列*/ //临界区,生产商品 int index = count % 2; Global.buffer[index] = count; System.out.println("生产者在缓冲区"+index+"中生产了物品"+count); count++;
假如生产者号生产了0号商品,但此时他还没做Global.pCount++这一步操作,CPU将执行权切换到生产者2号,这时Global.pCount的值还是 刚刚的0,没有加1,所以又会生产出一个0号商品,那消费者也同理,消费完还没加1,就被切换了执行权。
那就有个问题,如果我们将Global.pCount++这一步提前能不能解决问题呢,当然也是不行的,因为可能++完还没输出就被切换执行权,那下次 执行权回来时候就会继续执行输出操作,但此时的Global.pCount的值已经不知道加了多少了。
/*remove a process P from the waiting queue*/ wakeup(P); } }
信号量的应用
pv操作口诀

pv操作口诀PV操作口诀PV操作是指在计算机科学中,用于实现进程同步与互斥的一种经典算法。
下面我将介绍PV操作的基本概念和口诀。
一、什么是PV操作PV操作是一种用于实现进程同步与互斥的算法。
其中P操作用于申请资源,V操作用于释放资源。
在PV操作中,P操作会检查资源是否可用,如果可用则申请使用,如果不可用则进程将被阻塞;V操作则用于释放资源,使其他等待资源的进程可以获得资源并继续执行。
二、PV操作的口诀为了方便记忆和应用,我们可以使用以下口诀来帮助理解和使用PV 操作:1. P操作优先在使用PV操作时,首先要进行P操作。
P操作的目的是申请资源,如果资源不可用,则进程将被阻塞。
只有当资源可用时,才能继续执行。
2. V操作后在P操作成功后,我们需要进行V操作。
V操作的目的是释放资源,使其他等待资源的进程可以获得资源并继续执行。
3. 顺序执行PV操作要求按照一定的顺序进行。
即先进行P操作,再进行V操作。
这样可以保证资源的正确申请和释放,避免死锁等问题的发生。
4. 互斥性PV操作的一个重要特性是互斥性。
即同一时间只能有一个进程对资源进行操作。
当一个进程正在执行P操作时,其他进程将被阻塞,直到该进程执行完V操作后,其他进程才能继续执行。
5. 合理调度在使用PV操作时,需要合理调度进程的执行顺序。
当多个进程同时申请资源时,调度器需要根据一定的策略来确定哪个进程先执行P 操作。
常见的策略有先来先服务和优先级调度等。
6. 避免死锁在使用PV操作时,需要注意避免死锁的发生。
死锁是指多个进程因相互等待对方所占用的资源而无法继续执行的情况。
为了避免死锁,需要合理安排进程的资源申请顺序,并及时释放资源。
7. 错误处理在使用PV操作时,需要考虑错误处理的情况。
例如,当P操作失败时,可能出现资源不可用的情况,此时需要根据具体情况进行错误处理,如等待一段时间后再进行P操作。
8. 唯一标识在使用PV操作时,需要为每个资源设置唯一的标识符。
信号量及其pv操作的物理意义

一、概述信号量是操作系统中用于进程同步与互斥的一种重要机制。
它可以控制对共享资源的访问,保证多个进程在共享资源上的互斥访问,并且通过对信号量进行操作来实现进程的同步。
pv操作是信号量的重要操作之一,它可以控制信号量的值,并且在实现互斥、同步等功能时起到关键作用。
本文将探讨信号量及其pv操作的物理意义。
二、信号量的物理意义1. 信号量的基本概念信号量是由Dijkstra在1968年提出的一种同步机制,它是一个整型变量,用于对共享资源的访问进行控制。
信号量可以有两种类型:二进制信号量和计数信号量。
二进制信号量只能取0或1两个值,用于互斥操作。
计数信号量可以取多个非负整数值,用于资源管理。
信号量的物理意义在于通过对其进行操作来保证对共享资源的合理访问。
2. 信号量的物理意义当一个进程需要访问一个共享资源时,它首先要检查信号量的值。
如果信号量的值大于0,则进程可以访问该资源,同时将信号量的值减1,表示该资源被占用。
如果信号量的值等于0,则表示资源已被占用,进程需要等待,直至信号量的值大于0。
当进程释放资源后,需要将信号量的值加1,以通知其他等待进程资源可用。
这种对信号量进行加减操作的过程就是pv操作。
三、pv操作的物理意义1. pv操作的基本概念pv操作是对信号量进行操作的关键手段,它包括P操作和V操作两种。
P操作用于申请共享资源,V操作用于释放共享资源。
具体来说,P操作会将信号量的值减1,代表占用资源;而V操作会将信号量的值加1,代表释放资源。
这两种操作是互逆的,可以有效地控制对共享资源的访问。
2. pv操作的物理意义从物理意义上来讲,P操作和V操作影响着系统中的进程调度和资源分配。
当一个进程执行P操作时,它在获取资源之前会检查信号量的值,如果信号量的值大于0,即资源可用,进程会将信号量的值减1,表示资源被占用。
如果信号量的值等于0,则进程需要等待,直至信号量的值大于0。
而当一个进程执行V操作时,它会释放占用的资源,将信号量的值加1,以通知其他等待进程资源已经释放。
计算机PV操作系统总结

计算机PV操作系统总结计算机PV操作系统总结一:概述1.1 引言在计算机系统中,操作系统是一种重要的软件组件,负责管理和协调计算机硬件与软件资源,提供用户和其他软件的接口,以实现计算机系统的正常运行和高效利用。
本文档总结了PV操作系统的基本原理、功能模块及其应用。
1.2 目的本文档旨在介绍PV操作系统的核心概念以及其在计算机系统中的作用,为开发人员和用户提供一个全面的参考。
二:PV操作系统的基本原理2.1 进程管理2.1.1 进程概念2.1.2 进程调度2.1.3 进程同步2.1.4 进程通信2.2 内存管理2.2.1 内存分配2.2.2 虚拟内存2.2.3 内存保护2.3 文件系统管理2.3.1 文件组织2.3.2 文件存储2.3.3 文件操作2.4 设备管理2.4.1 设备概念2.4.2 设备分配2.4.3 设备驱动三:PV操作系统的功能模块3.1 用户界面3.1.1 命令行界面3.1.2 图形用户界面3.2 系统调用接口3.2.1 系统调用类型3.2.2 系统调用的实现3.3 文件系统3.3.1 文件管理3.3.2 目录管理3.3.3 文件权限控制3.4 进程管理3.4.1 进程创建与撤销3.4.2 进程调度算法3.4.3 进程通信方式3.5 内存管理3.5.1 内存分配策略3.5.2 空间置换算法3.5.3 虚拟内存管理3.6 设备管理3.6.1 设备驱动程序3.6.2 设备分配策略3.6.3 设备中断处理四:PV操作系统的应用领域4.1 个人计算机4.2 服务器系统4.3 嵌入式系统4.4 移动设备附件:1. PV操作系统示例代码2. PV操作系统用户手册法律名词及注释:1. 版权:法律规定的对原创作品的独占权利。
2. 许可证:一种法律许可文件,允许使用者在符合某些条款和条件的情况下使用特定的软件或作品。
3. 用户协议:一种法律文件,规定了软件或服务的使用条款和条件,用户使用软件或服务前需要同意并接受这些条款和条件。
PV操作

PV操作PV操作的含义:PV操作由P操作原语和V操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下:P(S):①将信号量S的值减1,即S=S-1;②如果S≥0,则该进程继续执行;否则该进程置为等待状态,排入等待队列。
V(S):①将信号量S的值加1,即S=S+1;②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。
PV操作的意义:我们用信号量及PV操作来实现进程的同步和互斥。
PV操作属于进程的低级通信。
什么是信号量?信号量(semaphore)的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。
信号量的值与相应资源的使用情况有关。
当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。
注意,信号量的值仅能由PV操作来改变。
一般来说,信号量S≥0时,S表示可用资源的数量。
执行一次P操作意味着请求分配一个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。
而执行一个V操作意味着释放一个单位资源,因此S的值加1;若S≤0,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。
利用信号量和PV操作实现进程互斥的一般模型是:进程P1 进程P2 ……进程Pn ………… ……P(S);P(S);P(S);临界区;临界区;临界区;V(S);V(S);V(S);………… …… ……其中信号量S用于互斥,初值为1。
使用PV操作实现进程互斥时应该注意的是:(1)每个程序中用户实现互斥的P、V操作必须成对出现,先做P操作,进临界区,后做V操作,出临界区。
若有多个分支,要认真检查其成对性。
(2)P、V操作应分别紧靠临界区的头尾部,临界区的代码应尽可能短,不能有死循环。
(3)互斥信号量的初值一般为1。
利用信号量和PV操作实现进程同步PV操作是典型的同步机制之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
s.value=s.value-1;
if (s.value<0) asleep(s.queue);
}
procedure v(var s:samephore);
{
s.value=s.value+1;
if (s.value<=0) wakeup(s.queue);
}
其中用到两个标准过程:
asleep(s.queue);执行此操作的进程的PCB进入s.queue尾部,进程变成等待状态wakeup(s.queue);将s.queue头进程唤醒插入就绪队列
分析:第一步:确定进程间的关系.售票厅是各进程共享的公有资源,当售票厅中多于20名购票者时,厅外的购票者需要在外面等待.所以进程间是互斥的关系.第二步:确定信号量及其值.只有一个公有资源:售票厅,所以设置一个信号量s.售票厅最多容纳20个进程,即可用资源实体数为20,s的初值就设为20.
实现:begin
value: integer;
queue: ^PCB;
end;
其中PCB是进程控制块,是操作系统为每个进程建立的数据结构。
s.value>=0时,s.queue为空;
s.value<0时,s.value的绝对值为s.queue中等待进程的个数;
2.PV原语
对一个信号量变量可以进行两种原语操作:p操作和v操作,定义如下:procedure p(var s:samephore);
end;
process B
begin
L2:P(s);
拣白子;
V(s);
goto L2;
end;
coend;
end;
判断进程间是否互斥,关键是看进程间是否共享某一公有资源,一个公有资源与一个信号量相对应.确定信号量的值是一个关键点,它代表了可用资源实体数.如下实例:
例2某车站售票厅,任何时刻最多可容纳20名购票者进入,当售票厅中少于20名购票者时,厅外的购票者可立即进入,否则需要在外面等待.每个购票者可看成一个进程.
为了进一步加深理解,再引入二个问题:
四,如果是互斥信号量的话,应该设置信号量Sen=1,但是当有5个进程都访问的话,最后在该信号量的链表里会有4个在等待,也是说S=-4,那么第一个进程执行了V操作使S加1,释放了资源,下一个应该能够执行,但唤醒的这个进程在执行P操作时因S〈0 ,也还是执行不了,这是怎么回事呢?
确定信号量及其值.由于进程A和进程B要互斥进入箱子去拣棋子,箱子是两个进程的公有资源,所以设置一个信号量s,其值取决于公有资源的数目,由于箱子只有一个,s的初值就设为1.
实现:begin
s:semaphore;
s:=1;
cobegin
process A
begin
L1: P(s);
拣黑子;
V(s);
goto L1;
s.value初值为1时,可以用来实现进程的互斥。
p操作和v操作是不可中断的程序段,称为原语。如果将信号量看作共享变量,则pv操作为其临界区,多个进程不能同时执行,一般用硬件方法保证。一个信号量只能置一次初值,以后只能对之进行p操作或v操作。
由此也可以看到,信号量机制必须有公共内存,不能用于分布式操作系统,这是它最大的弱点。
V原语的主要操作是:
(1)sem加1;
(2)若相加结果大于零,则进程继续执行;
(3)若相加结果小于或等于零,则唤醒一阻塞在该信号量上的进程,然后再返回原进程继续执行或转进程调度。
典型理解偏差:
一,以V原语的1、2步来做,Sem不就永远大于0,那进程不就一直循环执行成为死循环了?
二,Sem大于0那就表示有临界资源可供使用,为什么不唤醒进程?
五,Sem的绝对值表示等待的进程数,同时又表示临界资源,这到底是怎么回事?
析疑:四,当一个进程阻塞了的时候,它已经执行过了P操作,并卡在临界区那个地方。当唤醒它时就立即进入它自己的临界区,并不需要执行P操作了,当执行完了临界区的程序后,就执行V操作。五,当信号量Sem小于0时,其绝对值表示系统中因请求该类资源而被阻塞的进程数目.S大于0时表示可用的临界资源数。注意在不同情况下所表达的含义不一样。当等于0时,表示刚好用完。
三,Sem小于0应该是说没有临界资源可供使用,为什么还要唤醒进程?
析疑:一,P操作对sem减1的。P、V原语必须成对使用!从而不会造成死循环。二,Sem大于0的确表示有临界资源可供使用,而且这个时候没有进程被阻塞在这个资源上,也就是说没有进程因为得不到这类资源而阻塞,所以没有被阻塞的进程,自然不需要唤醒。三,V原语操作的本质在于:一个进程使用完临界资源后,释放临界资源,使Sem加1,以通知其它的进程,这个时候如果Sem<0,表明有进程阻塞在该类资源上,因此要从阻塞队列里唤醒一个进程来“转手”该类资源。比如,有2个某类资源,三个进程A、B、C、D要用该类资源,最开始Sem=2,当A进入,Sem=1,当B进入Sem=0,表明该类资源刚好用完,当C进入时Sem=-1,表明有一个进程被阻塞了,D进入,Sem=-2。当A用完该类资源时,进行V操作,Sem=-1,释放该类资源,而这时Sem<0,表明有进程阻塞在该类资源上,于是唤醒一个。
三、PV原语的含义、实现进程的互斥和同步
PV原语的含义
P操作和V操作是不可中断的程序段,称为原语.PV原语及信号量的概念都是由荷兰科学家E.W.Dijkstra提出的.信号量sem是一整数,sem大于等于零时代表可供并发进程使用的资源实体数,但sem小于零时则表示正在等待使用临界区的进程数.
P原语操作的动作是:
所谓信号灯,实际上就是用来控制进程状态的一个代表某一资源的存储单元。例如,P1和P2是分别将数据送入缓冲B和从缓冲B读出数据的两个进程,为了防止这两个进程并发时产生错误,狄克斯特拉设计了一种同步机制叫“PV操作”,P操作和V操作是执行时不被打断的两个操作系统原语。执行P操作P(S)时信号量S的值减1,若结果不为负则P(S)执行完毕,否则执行P操作的进程暂停以等待释放。执行V操作V(S)时,S的值加1,若结果不大于0则释放一个因执行P(S)而等待的进程。对P1和P2可定义两个信号量S1和S2,初值分别为1和0。进程P1在向缓冲B送入数据前执行P操作P(S1),在送入数据后执行V操作V(S2)。进程P2在从缓冲B读取数据前先执行P操作P(S2),在读出数据后执行V操作V(S1)。当P1往缓冲B送入一数据后信号量S1之值变为0,在该数据读出后S1之值才又变为1,因此在前一数未读出前后一数不会送入,从而保证了P1和P2之间的同步。我国读者常常不明白这一同步机制为什么叫PV操作,原来这是狄克斯特拉用荷兰文定义的,因为在荷兰文中,通过叫passeren,释放叫vrijgeven,PV操作因此得名。这是在计算机术语中不是用英语表达的极少数的例子之一。
实现: begin
s1,s2:
process A
begin
L1: P(s1);
拣黑子;
V(s2);
goto L1;
end;
process B
begin
L2:P(s2);
拣白子;
V(s1);
一、PV操作知识
PV操作与信号灯的处理相关,P表示通过的意思,V表示释放的意思。
1962年,狄克斯特拉离开数学中心进入位于荷兰南部的艾恩德霍芬技术大学(Eindhoven Technical University)任数学教授。在这里,他参加了X8计算机的开发,设计与实现了具有多道程序运行能力的操作系统——THE Multiprogramming System。THE是艾恩德霍芬技术大学的荷兰文Tchnische Hoogeschool Eindhov–en的词头缩写。狄克斯特拉在THE这个系统中所提出的一系统方法和技术奠定了计算机现代操作系统的基础,尤其是关于多层体系结构,顺序进程之间的同步和互斥机制这样一些重要的思想和概念都是狄克斯特拉在THE中首先提出并为以后的操作系统如UNIX等所采用的。
PV操作对于每一个进程来说,都只能进行一次,而且必须成对使用.在PV原语执行期间不允许有中断的发生.
用PV原语实现进程的互斥
由于用于互斥的信号量sem与所有的并发进程有关,所以称之为公有信号量.公有信号量的值反映了公有资源的数量.只要把临界区置于P(sem)和V (sem)之间,即可实现进程间的互斥.就象火车中的每节车厢只有一个卫生间,该车厢的所有旅客共享这个公有资源:卫生间,所以旅客间必须互斥进入卫生间,只要把卫生间放在P(sem)和V(sem)之间,就可以到达互斥的效果.以下例子说明进程的互斥实现.
用PV原语实现进程的同步
与进程互斥不同,进程同步时的信号量只与制约进程及被制约进程有关而不是与整组并发进程有关,所以称该信号量为私有信号量.利用PV原语实现进程同步的方法是:首先判断进程间的关系为同步的,且为各并发进程设置私有信号量,然后为私有信号量赋初值,最后利用PV原语和私有信号量规定各进程的执行顺序.下面我们将例1增添一个条件,使其成为进程间是同步的.