经典PV操作讲解和练习题

合集下载

PV操作经典例题

PV操作经典例题

P就是请求资源,V就是释放资源。

问题1 一个司机与售票员的例子在公共汽车上,为保证乘客的安全,司机和售票员应协调工作:停车后才能开门,关车门后才能行车。

用PV操作来实现他们之间的协调。

S1:是否允许司机启动汽车的变量S2:是否允许售票员开门的变量driver()//司机进程{while (1)//不停地循环{P(S1);//请求启动汽车启动汽车;正常行车;到站停车;V(S2); //释放开门变量,相当于通知售票员可以开门}}busman()//售票员进程{while(1){关车门;V(S1);//释放开车变量,相当于通知司机可以开车售票P(S2);//请求开门开车门;上下乘客;}}注意:busman() driver() 两个不停循环的函数问题2 图书馆有100个座位,每位进入图书馆的读者要在登记表上登记,退出时要在登记表上注销。

要几个程序?有多少个进程?(答:一个程序;为每个读者设一个进程)(1)当图书馆中没有座位时,后到的读者在图书馆为等待(阻塞)(2)当图书馆中没有座位时,后到的读者不等待,立即回家。

解(1 )设信号量:S=100; MUTEX=1P(S)P(MUTEX)登记V(MUTEX)阅读P(MUTEX)注销V(MUTEX)V(S)问题3 有一座东西方向的独木桥;用P,V操作实现:(1)每次只允许一个人过桥;(2)当独木桥上有行人时,同方向的行人可以同时过桥,相反方向的人必须等待。

(3)当独木桥上有自东向西的行人时,同方向的行人可以同时过桥,从西向东的方向,只允许一个人单独过桥。

(此问题和读者与写者问题相同,东向西的为读者,西向东的为写者)。

(1)解设信号量MUTEX=1P (MUTEX)过桥V (MUTEX)(2)解设信号量:MUTEX=1 (东西方互斥)MD=1 (东向西使用计数变量互斥)MX=1 (西向东使用计数变量互斥)设整型变量:CD=0 (东向西的已上桥人数)CX=0 (西向东的已上桥人数)从东向西:P (MD)IF (CD=0){P (MUTEX) }CD=CD+1V (MD)过桥P (MD)CD=CD-1IF (CD=0){V (MUTEX) }V (MD)从西向东:P (MX)IF (CX=0){P (MUTEX) }CX=CX+1V (MX)过桥P (MX)CX=CX-1IF (CX=0){V (MUTEX) }V (MX)(3) 解:从东向西的,和(2)相同;从西向东的和(1)相同。

操作系统PV操作经典一百题

操作系统PV操作经典一百题
cobegin
procedure reader_i
begin // i=1,2,?.
P(rwmutex); //读者、写者互斥
P(rmutex);
V(rwmutex); // 释放读写互斥信号量,允许其它读、写进程访问资源
读数据;
V(rmutex);
end
procedure Writer_j
我们需要分两种情况实现该问题:
读优先: 要求指一个读者试图进行读操作时,如果这时正有其他读者在进行操作,他可直接开始读操作,而不需要等待。
写优先: 一个读者试图进行读操作时,如果有其他写者在等待进行写操作或正在进行写操作,他要等待该写者完成写操作后才开始读操作。
The P,V code Using Pascal
3)写者优先于读者(一旦有写者,则后续读者必须等待,唤醒时优先考虑写者)
如果读者数是固定的,我们可采用下面的算法:
rwmutex:用于写者与其他读者/写者互斥的访问共享数据
rmutex: 该信号量初始值设为10,表示最多允许10个读者进程同时进行读操作
var rwmutex, rmutex : semaphore := 1, 10 ;
操作系统P V题解
第一章 The P,V Theorem
在操作系统理论中有一个非常重要的概念叫做P,V原语。在我们研究进程间的互斥的时候经常会引入这个概念,将P,V操作方法与加锁的方法相比较,来解决进程间的互斥问题。实际上,他的应用范围很广,他不但可以解决进程管理当中的互斥问题,而且我们还可以利用此方法解决进程同步与进程通信的问题。
Figure 1.1: producer-consumer problem

第11课PV操作练习

第11课PV操作练习

P(S1); 将缓冲区R中记 从T中取出记录 录拷贝到缓冲区 放入文件G中; T中; V(S2);
此种解法是否正确: GET: P(S1); 从文件F取记录 放入缓冲区R中; V(S2); COPY: P(S2); 将缓冲区R中记 录拷贝到缓冲区 T中; V(S3); PUT: P(S3); 从T中取出记录 放入文件G中; V(S1);
P145 GET: P(S2); 从文件F取记录 放入缓冲区R中; V(S1); COPY: PUT:
信号量S1,S2 初始值S1=0;S2=0
P(S1); 将缓冲区R中记 从T中取出记录 录拷贝到缓冲区 放入文件G中; T中; V(S2);
此种解法是否正确: GET: P(S1); 从文件F取记录 放入缓冲区R中; V(S2); COPY: P(S2); 将缓冲区R中记 录拷贝到缓冲区 T中; V(S3); PUT: P(S3); 从T中取出记录 放入文件G中; V(S1);
课堂练习

独木桥问题。某条河上只有一座独木桥, 以便行人过桥,现在河的两边都有人要过 桥,按照下面的规则过桥,为了保证过桥 安全,请用P,V操作分别实现正确的管理。 过桥的规则: 每次只允许一个人过桥
课堂练习

独木桥问题。某条河上只有一座独木桥, 以便行人过桥,现在河的两边都有人要过 桥,按照下面的规则过桥,为了保证过桥 安全,请用P,V操作分别实现正确的管理。 过桥的规则: 同一方向的可连续过桥,某方向有人过桥 时另一方向的人要等待。
课堂练习

独木桥问题。某条河上只有一座独木桥, 以便行人过桥,现在河的两边都有人要过 桥,按照下面的规则过桥,为了保证过桥 安全,请用P,V操作分别实现正确的管理。 过桥的规则: 当独木桥上有自东向西的行人时,同方向 的行人可以同时过桥,从西向东的方向, 只允许一个人单独过桥。

pv原语练习题

pv原语练习题

pv原语练习题PV原语是指用于同步并发进程之间的操作,用来保证多个进程之间的顺序执行。

本文将介绍PV原语的定义、使用方法和一些练习题。

一、PV原语定义PV原语包括两个操作:P操作 (Proberen)和V操作 (Verhogen)。

P 操作用于申请资源,V操作用于释放资源。

当一个进程要申请某个资源时,需要执行P操作,如果资源未被占用,则申请成功,进程可以继续执行;如果资源已被占用,则进程被阻塞,直到资源被释放。

当一个进程不再需要某个资源时,需要执行V操作来释放资源。

二、PV原语使用方法PV原语通常与信号量 (Semaphore) 结合使用。

信号量表示可用的资源数量,可以为整数或者布尔值。

当某个进程要使用资源时,需要首先检查信号量的值,如果为正数或者True,则执行P操作并将信号量减1;如果为零或者False,则执行P操作的进程被阻塞。

当进程不再需要资源时,执行V操作并将信号量加1。

三、PV原语练习题1. 生产者-消费者问题PV原语经常用于解决生产者-消费者问题。

请使用PV原语编写代码解决以下生产者-消费者问题:假设有一个空的缓冲区,可以容纳n个物品。

生产者进程可以向缓冲区中放入物品,消费者进程可以从缓冲区中取出物品。

要求实现以下功能:- 生产者进程将物品放入缓冲区时,如果缓冲区已满,则生产者进程被阻塞。

- 消费者进程从缓冲区中取出物品时,如果缓冲区为空,则消费者进程被阻塞。

- 多个生产者和消费者进程可以同时运行,但缓冲区中的物品不能超过n个。

2. 哲学家就餐问题另一个著名的并发编程问题是哲学家就餐问题。

请使用PV原语编写代码解决以下哲学家就餐问题:五位哲学家坐在圆桌旁,每个哲学家需要左右两侧的一把叉子才能进餐。

每个哲学家总共会进行思考和进餐两种活动,思考时不需要占用叉子,进餐时需要同时占用左右两把叉子。

设计一个算法,使得五位哲学家可以循环地进行思考和进餐,且不会发生死锁现象。

3. 生产者-消费者问题的改进在生产者-消费者问题中,可以利用PV原语的改进版本来实现更高效的同步。

pv操作例题详细解释

pv操作例题详细解释

pv操作例题详细解释【最新版】目录1.PV 操作简介2.PV 操作例题3.例题详细解释正文一、PV 操作简介PV 操作,全称为过程 - 变量操作,是一种在计算机程序设计中用于处理过程和变量之间关系的操作方法。

PV 操作广泛应用于各种编程语言中,如 C、C++、Java 等。

通过 PV 操作,程序员可以实现对变量的读取、修改、锁定等操作,以确保程序在多线程环境下的正确性和可靠性。

二、PV 操作例题假设有一个简单的程序,需要实现一个功能:当一个整数变量 x 的值在 0 到 100 之间时,输出“x 的值在 0 到 100 之间”。

如果 x 的值小于 0 或大于 100,则输出“x 的值不在 0 到 100 之间”。

请使用 PV 操作实现这个功能。

三、例题详细解释为了实现这个功能,我们可以使用 C 语言中的 PV 操作。

具体实现如下:```c#include <stdio.h>#include <pthread.h>int x = 0;int flag = 0;void thread_function(){pthread_mutex_lock(&mutex); // 加锁if (x < 0 || x > 100) { // 判断 x 的值是否在 0 到 100 之间flag = 1; // 设置标志位}pthread_mutex_unlock(&mutex); // 解锁}int main(){pthread_t thread;pthread_mutex_init(&mutex, NULL); // 初始化互斥锁pthread_create(&thread, NULL, thread_function, NULL); // 创建线程pthread_join(thread, NULL); // 等待线程结束if (flag == 1) {printf("x 的值不在 0 到 100 之间");} else {printf("x 的值在 0 到 100 之间");}pthread_mutex_destroy(&mutex); // 销毁互斥锁return 0;}```在这个例子中,我们使用了一个互斥锁(mutex)来保护对变量 x 的访问。

操作系统PV操作习题

操作系统PV操作习题

操作系统PV操作习题操作系统PV操作习题-----------------------------------------------------1、引言在操作系统中,PV操作(也称作P操作和V操作)是用于进程同步的一种常见机制。

P操作用于获取或申请资源,V操作用于释放资源。

本文将为您提供一些关于PV操作的习题,以帮助您巩固相关的概念和原理。

2、PV操作基本概念2.1 P操作描述P操作的基本概念和含义,以及在实际应用中的具体场景。

2.2 V操作解释V操作的基本概念和含义,并举例说明其在实际问题中的应用。

3、PV操作习题集3.1 习题一、生产者-消费者问题描述一个典型的生产者-消费者问题,并通过使用P操作和V操作对其进行解决。

3.2 习题二、读者-写者问题解释一个典型的读者-写者问题,并使用PV操作来实现对该问题的解决。

3.3 习题三、哲学家就餐问题描述哲学家就餐问题的场景,并说明如何采用PV操作来解决这一问题。

4、常见PV操作错误4.1 死锁解释什么是死锁以及为什么会发生死锁现象,同时提供一些避免死锁的方法。

4.2 饥饿描述什么是饥饿,以及一些可能导致饥饿的常见原因,并提供解决饥饿问题的一些策略。

5、附录本文档附带以下附件:- 习题的解答和详细说明- 相关的代码示例6、法律名词及注释在本文档中,涉及的法律名词及其注释如下:- PV操作:即P操作和V操作,用于进程同步的一种机制。

- 生产者-消费者问题:一种经典的并发控制问题,涉及到生产者和消费者之间的资源竞争。

- 读者-写者问题:一种并发控制问题,涉及到多个读者和写者对共享资源的访问。

- 哲学家就餐问题:一种经典的并发控制问题,涉及到多个哲学家通过共享的餐具进行就餐。

pv操作例题

pv操作例题

pv操作例题(原创实用版)目录1.PV 操作概述2.PV 操作的实例3.PV 操作的解题技巧4.总结正文一、PV 操作概述PV 操作是计算机编程中的一种操作,主要用于处理并发读写问题。

PV 操作是基于 C 语言的线程操作,通过 PV 操作,可以实现线程之间的同步和互斥。

PV 操作主要包括 P 操作和 V 操作两个方面。

P 操作用于线程申请资源,如果资源已经被其他线程占用,则线程需要等待。

V 操作用于线程释放资源,当有其他线程正在等待该资源时,V 操作会唤醒等待的线程。

二、PV 操作的实例下面通过一个简单的实例来介绍 PV 操作的使用方法。

假设有两个线程,线程 A 负责生产产品,线程 B 负责消费产品。

由于产品库存有限,需要通过 PV 操作来实现线程之间的同步和互斥。

1.定义一个 PV 结构体,包括 P 操作和 V 操作的 sem_t 结构体。

```ctypedef struct {sem_t p;sem_t v;} PV;```2.初始化 PV 结构体。

```cPV pv = {0};```3.线程 A 执行 P 操作申请资源。

```cpv.p = sem_wait(&pv.p);```4.线程 A 执行生产操作。

```c// 生产产品操作```5.线程 A 执行 V 操作释放资源。

```csem_post(&pv.v);```6.线程 B 执行 P 操作申请资源。

```cpv.p = sem_wait(&pv.p);```7.线程 B 执行消费操作。

```c// 消费产品操作```8.线程 B 执行 V 操作释放资源。

```csem_post(&pv.v);```三、PV 操作的解题技巧在实际编程过程中,PV 操作的解题技巧主要包括以下几点:1.根据实际需求,合理地设置 PV 操作的资源。

2.确保 PV 操作的同步和互斥性,避免死锁现象的发生。

3.在编写 PV 操作时,要注意线程之间的切换和调度。

操作系统PV操作经典例题与答案

操作系统PV操作经典例题与答案

操作系统PV操作经典例题与答案1. 推广例子中的消息缓冲问题。

消息缓冲区为k个,有1个发送进程,n个接收进程,每个接收进程对发送来的消息都必须取一次若有m个发送进程呢?Send:SB=k; //信号量,标记当前空余缓冲区资源。

i = 0; //标记存放消息的缓冲区位置while (true) {P(SB);往Buffer [i]放消息;V(SM);i = (i+1) % k;};Receive:j = 0; //标记取产品的缓存区位置SM=0;//信号量,标记初始没有消息ReadCount=0;//读进程计数器Mutex =1;//读进程互斥信号量SW=0; //信号量,读进程在此信号量等待while (true) {P(SM);从Buffer[j]取消息;ReadCount++If(ReadCount<n){< p="">V(SM);P(SW)}else{V(SB);j = (j+1) % k;for(int g=1; g< ReadCount;g++)V(SW);ReadCount=0;}};2.第二类读者写者问题:写者优先条件:1)多个读者可以同时进行读2)写者必须互斥(只允许一个写者写,也不能读者写者同时进行)3)写者优先于读者(一旦有写者,则后续读者必须等待,唤醒时优先考虑写者)rc=0, //正在读者计数器wc, //写计数器rw, //读等计数器R //等待读信号量W //等待写信号量读者:while (true) {P(mutex);if (wc >0){rw++P (R);}rc++;If(rw>0&&wc=0){V(R)rw--}V(mutex);读P(mutex);rc --;if (rc==0){If(wc>0)V(w)}V(mutex);};写者:while (true) {P(mutex);wc ++;if((wc >1)||(rc>0)){P(W)}V(mutex);写P(mutex);Wc --;if(wc>0)V(W);Else if(rw>0)V(R)rw--V(mutex);};3.理发师睡觉问题理发店里有一位理发师,一把理发椅和N把供等候理发的顾客坐的椅子如果没有顾客,则理发师便在理发椅上睡觉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在计算机操作系统中,PV操作是进程管理中的难点。

首先应弄清PV操作的含义:PV操作由P操作原语和V操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下:
P(S):①将信号量S的值减1,即S=S-1;
②如果S³0,则该进程继续执行;否则该进程置为等待状态,排入等待队列。

V(S):①将信号量S的值加1,即S=S+1;
②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。

PV操作的意义:我们用信号量及PV操作来实现进程的同步和互斥。

PV操作属于进程的低级通信。

什么是信号量?信号量(semaphore)的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。

信号量的值与相应资源的使用情况有关。

当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。

注意,信号量的值仅能由PV操作来改变。

一般来说,信号量S³0时,S表示可用资源的数量。

执行一次P操作意味着请求分配一个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。

而执行一个V操作意味着释放一个单位资源,因此S
的值加1;若S£0,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。

利用信号量和PV操作实现进程互斥的一般模型是:
进程P1 进程P2 ……进程Pn
………………
P(S); P(S); P(S);
临界区;临界区;临界区;
V(S); V(S); V(S);
……………………
其中信号量S用于互斥,初值为1。

使用PV操作实现进程互斥时应该注意的是:
(1)每个程序中用户实现互斥的P、V操作必须成对出现,先做P操作,进临界区,后做V操作,出临界区。

若有多个分支,要认真检查其成对性。

(2)P、V操作应分别紧靠临界区的头尾部,临界区的代码应尽可能短,不能有死循环。

(3)互斥信号量的初值一般为1。

利用信号量和PV操作实现进程同步
PV操作是典型的同步机制之一。

用一个信号量与一个消息联系起来,当信号量的值为0时,表示期望的消息尚未产生;当信号量的值非0时,表示期望的消息已经存在。

用PV操作实现进程同步时,调用P操作测试消息是否到达,调用V操作发送消息。

使用PV操作实现进程同步时应该注意的是:
(1)分析进程间的制约关系,确定信号量种类。

在保持进程间有正确的同步关系情况下,哪个进程先执行,哪些进程后执行,彼此间通过什么资源(信号量)进行协调,从而明确要设置哪些信号量。

(2)信号量的初值与相应资源的数量有关,也与P、V操作在程序代码中出现的位置有关。

(3)同一信号量的P、V操作要成对出现,但它们分别在不同的进程代码中。

PV操作(二)
【例1】生产者-消费者问题
在多道程序环境下,进程同步是一个十分重要又令人感兴趣的问题,而生产者-消费者问题是其中一个有代表性的进程同步问题。

下面我们给出了各种情况下的生产者-消费者问题,深入地分析和透彻地理解这个例子,对于全面解决操作系统内的同步、互斥问题将有很大帮助。

(1)一个生产者,一个消费者,公用一个缓冲区。

定义两个同步信号量:
empty——表示缓冲区是否为空,初值为1。

full——表示缓冲区中是否为满,初值为0。

生产者进程
while(TRUE){
生产一个产品;
P(empty);
产品送往Buffer;
V(full);
}
消费者进程
while(True){
P(full);
从Buffer取出一个产品;
V(empty);
消费该产品;
}
(2)一个生产者,一个消费者,公用n个环形缓冲区。

定义两个同步信号量:
empty——表示缓冲区是否为空,初值为n。

full——表示缓冲区中是否为满,初值为0。

设缓冲区的编号为1~n-1,定义两个指针in和out,分别是生产者进程和消费者进程使用的指针,指向下一个可用的缓冲区。

生产者进程
while(TRUE){
生产一个产品;
P(empty);
产品送往buffer(in);
in=(in+1)mod n;
V(full);
}
消费者进程
while(TRUE){
P(full);
从buffer(out)中取出产品;
out=(out+1)mod n;
V(empty);
消费该产品;
}
(3)一组生产者,一组消费者,公用n个环形缓冲区
在这个问题中,不仅生产者与消费者之间要同步,而且各个生产者之间、各个消费者之间还必须互斥地访问缓冲区。

定义四个信号量:
empty——表示缓冲区是否为空,初值为n。

full——表示缓冲区中是否为满,初值为0。

mutex1——生产者之间的互斥信号量,初值为1。

mutex2——消费者之间的互斥信号量,初值为1。

设缓冲区的编号为1~n-1,定义两个指针in和out,分别是生产者进程和消费者进程使用的指针,指向下一个可用的缓冲区。

生产者进程
while(TRUE){
生产一个产品;
P(empty);
P(mutex1);
产品送往buffer(in);
in=(in+1)mod n;
V(mutex1);
V(full);
}
消费者进程
while(TRUE){
P(full);
P(mutex2);
从buffer(out)中取出产品;
out=(out+1)mod n;
V(mutex2);
V(empty);
消费该产品;
}
需要注意的是无论在生产者进程中还是在消费者进程中,两个P操作的次序不能颠倒。

应先执行同步信号量的P操作,然后再执行互斥信号量的P操作,否则可能造成进程死锁。

【例2】桌上有一空盘,允许存放一只水果。

爸爸可向盘中放苹果,也可向盘中放桔子,儿子专等吃盘中的桔子,女儿专等吃盘中的苹果。

规定当盘空时一次只能放一只水果供吃者取用,请用P、V原语实现爸爸、儿子、女儿三个并发进程的同步。

分析在本题中,爸爸、儿子、女儿共用一个盘子,盘中一次只能放一个水果。

当盘子为空时,爸爸可将一个水果放入果盘中。

若放入果盘中的是桔子,则允许儿子吃,女儿必须等待;若放入果盘中的是苹果,则允许女儿吃,儿子必须等待。

本题实际上是生产者-消费者问题。

相关文档
最新文档