用向量知识判断三角形的形状
向量的知识点总结和解三角形

平面向量复习基本知识点结论总结一、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);例题 已知向量,则与其共线的单位向量为__________.(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。
的相反向量是-。
例题下列命题:(1)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若AB DC =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5)若,a b b c ==,则a c =。
(6)若//,//a b b c ,则//a c 。
其中正确的是_______ 二、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法。
三,平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
例题(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =( )a +( )b ;(2)下列向量组中,能作为平面内所有向量基底的是( )A. 12(0,0),(1,2)e e ==-B. 12(1,2),(5,7)e e =-=C. 12(3,5),(6,10)e e ==D. 1213(2,3),(,)24e e =-=- (3)已知,AD BE 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==,则BC 可用向量,a b 表示为_____(4)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___四、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:()()1,2a a λλ=当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=,注意:λa ≠0。
三角形的四心与平面向量知识点总结

三角形的四心与平面向量知识点总结
三角形的四心与平面向量是一个关于平面几何的较为深奥的概念,它的概念要求学生
具备一定的几何知识,掌握这一概念对于学习几何领域的深入学习是十分有用的。
三角形的四心指的是在特定三角形ABC内构成特殊位置
三个点I(三角形BC边AB中点),J(三角形AC边BC中点),K(三角形AB边AC
中点),四点ABCIK组成的四边形,四边形的面积等于三角形的三分之一,此四边形称为BCIK三角形的四心.
此外,三角形的四心还有一个与平面向量密切相关的概念,在三角形的四心中,任
意三个角的夹角均为60°,在三角形四心ABCIK任意三点构成的三角形内构成平行四边形,平行四边形内两条边构成的三角形含有相同的角,平行四边形内两条边所在平面垂直于BCIK三角形的两条边,BCIK三角形的两条边构成的平面是BCIK三角形的平面向量.
三角形的四心与平面向量让学生熟悉一些它不同于其他几何图形所具有的形态特征,
有助于更深入地了解几何相关的知识,学习者不仅可以学习三角形的四心,还可以将其结
合实际的问题,学习如何用四心确定三角形的面积等相关的实际问题.。
人教版高二数学上向量的三角形不等式归纳

人教版高二数学上向量的三角形不等式归纳向量在高中数学教学中具有较强的实用性,下面是店铺给大家带来的人教版高二数学上向量的三角形不等式归纳,希望对你有帮助。
高二数学向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;① 当且仅当a、b反向时,左边取等号;② 当且仅当a、b同向时,右边取等号。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
① 当且仅当a、b同向时,左边取等号;② 当且仅当a、b反向时,右边取等号。
高中数学学习方法(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。
记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
(2)建立数学纠错本。
把平时容易出现错误的知识或推理记载下来,以防再犯。
争取做到:找错、析错、改错、防错。
达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
(5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
(6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。
(7)学会从多角度、多层次地进行总结归类。
如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
(8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
三角形“四心”向量形式的充要条件应用知识总结

三角形“四心”向量形式的充要条件应用1.O 是ABC ∆的重心0OC OB OA=++;若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故=++;1()3PG PA PB PC =++u u u r u u u r u u u r u u u r ⇔G 为ABC ∆的重心.2.O 是ABC ∆的垂心OA OC OC OB OBOA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆故C tan B tan A tan=++3.O 是ABC ∆的外心||||||==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆::::故0OC C 2sin OB B 2sin OAA 2sin =++4.O是内心ABC ∆的充要条件是|CB ||CA |(|BC ||BA |(AC|AB |(=⋅=⋅=⋅引进单位向量,使条件变得更简洁。
如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e ()e e ()e e (322131=+⋅=+⋅=+⋅ ,O 是ABC ∆内心的充要条件也可以是0OC c OB b OAa =++ 。
若O 是ABC ∆的内心,则cb a S S S AOB AOC BOC ::::=∆∆∆故0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔u u u r u u u r u u u r u u u r u u u r u u u r r是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠u u u r u u u ru u ur u u u r 所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);(一)将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的()(A )外心(B )内心(C )重心(D )垂心是向量AB u u u r 的单位向量设AB u u u r 与AC u u ur 方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心. (反之亦然(证略)) 例3.(湖南)P 是△ABC 所在平面上一点,若PA PC PC PB PBPA ⋅=⋅=⋅,则P 是△ABC 的(D)A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA 得.即0,0)(=⋅=-⋅CA PB PC PA PB 即则AB PC BC PA CA PB⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D.(三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心. 证明 作图如右,图中GE GC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线. 将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=. 证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略)) 例6 若O 为ABC ∆内一点,0OA OB OC ++=u u u r u u u r u u u r r,则O 是ABC ∆ 的( )A .内心B .外心C .垂心D .重心解析:由0OA OB OC ++=u u u r u u u r u u u r r 得OB OC OA +=-u u u r u u u r u u u r ,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=u u u r u u u r u u u r,由平行四边形性质知12OE OD =u u u r u u u r,2OA OE=,同理可证其它两边上的这个性质,所以是重心,选D 。
【课件】用向量法研究三角形的性质+课件高一下学期数学人教A版(2019)必修第二册+

证明:
取
,
则
=
所以
又
为基底,并设
+
=
=
−
= (
− )
=
−
+
=
=
− )
=
+
= (
,
=
+
+
)-2(
.
,所以由平面向量基本定理,得
2(t1 1) 1
1
1
t1 , t2
2
2
2(t2 1) 1
所以
=
=
;
-2(
,
,
=
.
;
+
)
又
所以
立
-
=
因此
=
=
+
=
=
+
+
=
= (
−
=
)+
“ tan A OA tan B OB tan C OC 0 ”
【微探究2】
【例2】 我们知道“三角形的三条高线相交于一点,这个交点叫做三角
形的垂心”,试证明:三角形的三条高线相交于一点.
解:如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,设AD,BE相交
于一点I,连接CI并延长交AB于一点F,试用向量法证明CF⊥AB.
外接圆的圆心,叫做三角形的外心”,试证明:三角形三边的垂直平分线
相交于一点.
总结:
=
所以
=
+ (
+
−
=
+
)= (
+
),
因为 OD⊥BC,
三角形四心向量形式知识总结

三角形“四心”向量形式的充要条件应用1.O 是ABC ∆的重心⇔=++;若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++ ⇔G 为ABC ∆的重心.2.O 是ABC ∆的垂心⇔⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S A OBA OC BOC ::::=∆∆∆故0OC C tan OB B tan OA A tan =++3.O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222O O O ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOBAOC BOC =∠∠∠=∆∆∆::::故C 2sin B 2sin A 2sin =++4.O是内心ABC ∆的充要条件是|CB ||CA |(|BC ||BA |(AC|AB |(=⋅=⋅=⋅引进单位向量,使条件变得更简洁。
如果记CA ,BC,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成0)e e (O C )e e (O B )e e (O A 322131=+⋅=+⋅=+⋅ ,O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 。
若O 是ABC ∆的内心,则c b a S S S A OB A OC BOC ::::=∆∆∆故C sin B sin A sin c b a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);(一)将平面向量与三角形内心结合考查例1.O是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心AB 的单位向量设AB 与AC方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理AB HC ⊥,⊥.故H 是△ABC 的垂心. (反之亦然(证略)) 例3.(湖南)P 是△ABC 所在平面上一点,若⋅=⋅=⋅,则P 是△ABC 的(D)A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅得.即0,0)(=⋅=-⋅即则AB PC BC PA CA PB ⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D.(三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心. 证明 作图如右,图中=+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线. 将GE GC GB =+代入GC GB GA ++=0,得+=0⇒2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=. 证明 +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略)) 例6 若O 为ABC ∆内一点,0OA OB OC ++=,则O 是ABC ∆ 的()A .内心B .外心C .垂心D .重心解析:由0OA OB OC ++= 得OB OC OA +=- ,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=,由平行四边形性质知12OE OD =,2OA OE=,同理可证其它两边上的这个性质,所以是重心,选D 。
数学探究:用向量法研究三角形的性质

3
A
A
6 5 1 5
综合运用
练 1、O 是平面上一 定点,A、B、C 是平面上不共线的三个点,动点 P 满足
OP OA ( AB AC ) [0, ). 则 P 的轨迹一定通过△ABC 的(
| AB | | AC |
B
).
A.外心
B.内心
C.重心
D.垂心
分析练 2已、知A等B式C 即的A外P接 圆(| 的AABB圆| 心| AA为CC |)O,,设两A条E 边| AA上BB的|, A高F的 |交AACC点|,为显H然,
3.PG 1 (PA PB PC)
3
B
4.AP (AB AC), 0, ,则P一定经过三角形重心
G
M
C
E
02
垂心及其向量关系
2
:三角形的垂心是三角形三边上的高
的交点。
锐角三角形的垂心在三角形内;
性质: 直角三角形的垂心在直角顶点上;
钝角三角形的垂心在三角形外。
垂心的向量式
H是 ∆ ABC的垂心,则有以下结论:
AC COSC
的两边同乘以
BC
A
变式1.若H为△ABC所在平面内一点,
且
2
2
2
2
2
2
HA BC HB CA HC AB
,则H是∆ ABC
的 垂 心.
H
B
C
03
外心及其向量关系
3 三角形外心:三角形三边的垂直平分线的交点(或 三角形外接圆的圆心)
性质: 到三角形三个顶点的距离相等
外心的向量式
7.已知O是平面上一定点,A、B、C是平面上不共线的三个点,
动点P满足OP OA
三角形四心的向量性质及应用(详细答案版)

三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等;(3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0+⋅+⋅∆∆∆OC S OB S OA S O O CA O BC 证明:作:OA S OA OCB ⋅=∆',OB S OB OCA ⋅=∆',S OC OAB =∆'不难得知:AOB COA BOC OC B S S OC OC OB OB S S ∆∆∆∆⋅=⋅=''''即BO C AO B CO A O C B S S S S ∆∆∆∆⋅⋅='';同理==∆∆''''O B A O A C S S ''O C B BO C AO B CO A S S S S ∆∆∆∆=⋅⋅ 从而:O 为'''C B A ∆的重心,则+'OA +'OB 0'=OC , 得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S O AB O CA O BC .一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔== 02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S O AB O CA O BC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A ;常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S H AB H CA H BC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A ; 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;'有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a c b a OCc OB b OA a OI ++⋅+⋅+⋅=⇔cb a ACc AB b AI ++⋅+⋅=⇔ 0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:点P 的轨迹为BC 边的中线(射线),选C2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:AC AB OA OP ++=λ⇔AC AB AP +=λAC AB +必平分BAC ∠,理由如下:ADACABACACABAB=+==1111,1==,故四边形11DCAB为菱形,对角线AD平分一组对角,ADACAB=+必定平分11ACB∠,即BAC∠,从而ACABAP+=λ也平分BAC∠.故知点P的轨迹为A∠的内角平分线(射线),选 B3.O是ABC∆所在平面上一定点,动点P满足ACABOAOP++=λ,R∈λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:ACABOAOP++=λ⇔ACABAP+=λ由BCACBCABBCACBCABBCAP+=+=⋅λλ得:0|)|||(=+-=⋅BCBCBCAPλ,得BCAP⊥点P的轨迹为BC边的高线所在直线. 选D4.O是ABC∆所在平面上一定点,动点P满足ACABOAOP+=λ,[)+∞∈,0λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:由于CACCbBcBAB sin||sinsinsin||=⋅=⋅=,知点P的轨迹为BC边的中线(射线),选C5.O是ABC∆所在平面上一定点,动点P满足2cos cosOB OC AB ACOPAB B AC Cλ⎛⎫+ ⎪=++⎪⎝⎭,R∈λ,则点P的轨迹一定通过ABC△的( ).A.外心B.内心C.重心D.垂心解析:0||||=+-=+=⋅+BCBCBCACBCABBCACAB知点P的轨迹为BC边的中垂线, 选A6.O是ABC∆所在平面上一定点,动点P满足])21()1()1[(31OCOBOAOPλλλ++-+-=,*R∈λ,则点P的轨迹一定通过ABC△的( ).A.内心B.垂心C.重心D.AB边的中点解析:])21()1()1[(31OCOBOAOPλλλ++-+-=OCOD3)21(3)22(λλ++-=(D为AB边的中点)知CDP,,三点共线(因1321322=++-λλ),故知点P 的轨迹为AB 边的中线所在直线,但是0≠λ,故除去重心. 选D 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析:)22121(31OC OB OA OP ++=OC OD 3231+=(D 为AB 边的中点) 进而有:PC DP 2=,故为AB 边中线的三等分点(非重心), 选B8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心解析:CP AB CB CA ⋅-=222⇔02))((222=⋅-+-=⋅--CP AB CA CB CA CB CP AB CA CB 进而有:02=⋅PD AB (D 为AB 边的中点),故知点P 的轨迹为AB 边的中垂线, 选A9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( )A .2B .23C .3D .6 解析:P 为重心,得)(31AC AB AP +=,故AP AC AB ⋅=+3,选C10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S∆∆=2λ,ABC PAB S S ∆∆=3λ.定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对 解析:G 为重心,画图得知, 选A11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 解析:由OC OB OA -=+,平方得知, 选D12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:由2222CA OB BC OA +=+⇔2222BC CA OB OA -=-BA BC CA OB OA BA BC CA BC CA OB OA OB OA ⋅-=+⋅⇔+-=+-⇔)()())(())(( 0)2()(=⋅=-++⋅⇔OC BA CA BC OB OA BA ,得AB OC ⊥;同理得:AC OB ⊥,BC OA ⊥,故为垂心, 选D 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB 21||||=AC AC AB AB , 则ABC ∆为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:21||||=AC AC AB AB 0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB :表明A ∠的内平分线也垂直于BC (三线合一), 知ABC ∆等腰;21||||=AC AC AB AB :得到︒=∠60A ;两者结合得到ABC ∆为等边三角形. 选D 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形 解析:CA BC CB AB AC AB AB ⋅+⋅+⋅=2CA BC AB CA BC CB AC AB ⋅+=⋅++⋅=2)( 得到:0=⋅CA BC ,得:︒=∠90C ,选C 二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 解析:直接用结论16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 解析:)9(31)(31)(312+⋅=+⋅=+=⋅AC AB AC AC AB AC AC AB AC AO 利用:CB AC AB =-,两边平方得.23=⋅AC AB 故27)923(31=+=⋅AC AO17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 .解析:法1:利用工具结论易知:AOB COA BOC S S S ∆∆∆=::3:2:1,得:ABC S ∆=∆AOC S 32:6= 法2:0422232=+=+++=++OD OE OC OB OC OA OC OB OA (E 为AC 的中点,D 为BC 的中点)易得:D O E ,,三点共线,且OD EO 2=,从而得到:ABC ADC AOC S S S ∆∆∆==3132. 法3:作:OA OA =',OB OB 2'=,OC OC 3'=则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧======∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 236'''''' 从而得:331:13:)236(:==++=∆∆S S S S S S COA ABC . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 5 . 解析:法1:AC AB AO 5152+=,用O 拆开得:022=+⋅+⋅OC OB OA , 'A 'B 'C O)(A BC利用工具结论易知:AO B CO A BO C S S S ∆∆∆=::1:2:2,则:ABC S ∆51:5==∆AO B S 法2:AC AD AC AB AO 51545152+=+=,(D 为AB 边的中点),得到:C O D ,,共线,且OD CO 4=, 则:ABC S ∆5:==∆OD CD S AO B . 法3:同上题中法3,此处略.19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 解析:法1:由BC AB BC AB AB AC AB c b a AC c AB b AI ⋅+⋅=+⋅+⋅=++⋅+⋅=++⋅+⋅=165161016)(5555655法2:如图,线长易知,角平分线分线段成比例,得:3:5:=ID AI , 故)21(8585BC AB AD AI ⋅+⋅=⋅=AB +⋅=1658520.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 解析:法1:由BC y AB x AO +=AC y AB y x +-=)(,由AC AB y AB y x ABBC y AB y x AB AO AB ⋅+-=⇒+-⋅=⋅22)(2))((,得:y y x --=)(42;同理22)(2))((AC y AC AB y x ACBC y AB y x AC AO AC +⋅-=⇒+-⋅=⋅,得:y y x +--=)(21;易得:34,613==y x ,得27=+y x . 法2:以},{AC AB 为基底,表示:CO BO AO ,,,利用222CO BO AO ==,得之BC y AB x AO +=AC y AB y x +-=)(,y y x y y x AO )(2)(4222--+-=; AC y AB y x AB AO BO +--=-=)1(,y y x y y x BO )1(2)1(4222---+--=; AC y AB y x AC AO CO )1()(-+-=-=,)1)((2)1()(4222----+-=y y x y y x CO ;由22BO AO =0254=--⇒⇒y x 移项做差; 由22CO AO =0142=+-⇒⇒y x 移项做差; 联立方程解得:34,613==y x ,得27=+y x .BCA MNG21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 解析:由AO m AB B CAC C B AB AB 2)sin cos sin cos (⋅=⋅+⋅⋅ 得:22||sin cos cos ||||sin cos ||AB m B CA AC ABC B AB =⋅⋅⋅+⋅得:C m C A B mc BCA b c CB c sin cos cos cos sin cos cos sin cos 22⋅=+⇒=⋅⋅⋅+⋅得到:C A C A C A C A B C m sin sin cos cos )cos(cos cos cos sin =++-=+=⋅ 得:.2130sin sin =︒==A m 22.在ABC∆中,1,==⊥AD BC AB AD ,则⋅AD AC解析:.33)(2===⋅=⋅+=⋅AD AD AD BC AD BC AB AD AC 三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB = ,AN yAC = ,求证:113x y+=.解:由N G M ,,三点共线, 得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AO B CO A BO C S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP'A 'B 'C OABC从而得:3||21====P P同理可得:3||||1332==P P P P ,即321P P P ∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值.解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521|)(|21||=++==+=b a AD22116202521|)2(|21||=+-==-=b a BE 故:.919149142212393||||,cos ==⋅=>=<BE AD BEAD BE AD27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三 式 联 立 解 得 C 一 一 5 , 一 3 , 一 一 k b一 k口
3若 △AB 为正 三 角 形 , 显 然 有 a・6 . C 则 —
由
嘶
+
・( — n c )
向 萤 往 此 类 问题 中 的应 用 .
△ ABC 的 形 状 是 (
) .
A. 腰 三 角 形 等
B 直 角 三 角 形 .
C 等边三角形 .
D. 腰 直 角 三 角 形 等
【 解】 ( 一 2 )上 蕊 蕊 一0 故 蕊 . , 一2 . 2 )上
一
( 一2 )・ =0 ( 一 , :0 故 , .
.
/ k o C
D B
.
D 等边三角形. .
【】 非 向 蕊 与 满 ( 十 解 零 量 足
A. 腰 三 角形 等 C 等边三角形 .
) =, A 平 线 直 B, ・ 。 角 的 分 垂 于 c. 即 。 ・
直 角 三 角 形
一 5 o A = Lc s
0 0 l 0 l l
警 黢 毫
量 且 满 足 上 ,则
点 , 用 平 面 向量 的数 量 积 可 以处 理 有关 长 度 , 利 角 度 和垂 直 的 问 题 , 而 较 容 易 判 断三 角形 的 形 状 , 从 也 使 我 们 对 向量 形 式 的多 样 性 和 向量 运 算 的 灵 活 性 有 了 更 深 刻 的 认 识 .本 文 通 过 几 例 来 阐述 平 面
.
蕊 一 . =2 . , 【 I 即蕊 :
【 解】 ’ . 。
.
>0 即 l 1.1 Io , 蕊 s c
’。 一 而 需一 ‘ cA 丢.
所 以△ A BC为 等 边 三 角 形 .
( 一B) , .o B .△ A C是 钝 角 三角 形 . 7 【 >0 . cs <O ‘ ‘ . B
故 d6c : : :: =2
4令 tIl l I } . . —J — 一1 - o -
因 此 最 大 角 的 余 弦 为 c s 一 oC
她
> :
图 1
- c I— l J I ) cs . 葡 (一c 一一 boC I c o
1
则蔬 上 , 所以△A c B 为等腰三角形.
・ —c・ . 由 a・6 矗・ — c・ c 口则 一 c n
ac s boC=÷ ( n + 一c) 故 a +6一c 一一 , 。
D. 腰 直 角 三 角 形 等
【 原 式可 变 为 魂 ・ 一 解】 ( + 一 ) , 魂 . + ) . 一0 即 ( 一o
可 知 平 行 四边 形 A D 为 菱 形 , 以 △AB BC 所 C
需・ 1
・ ・
A 手 一
故 △ AB C为 等 边 三 角 形 .
5 2
( 总第3 期) 5 在△AB 例 】 c中, 硫 =口c 一6 若 ,- - - I ,
=c 且 a ・6一 ・c c・a 则 △ AB 的 形 状 , — , C
是( ) .
- . c ) I
形状.
【
A. 腰 三 角 形 等
B 直 角 三 角 形 .
【 1 在△AB 例 】 c中
b O则△A C的形状是( > , B
=Ⅱ 赢 一6 且 Ⅱ・ , ,
) .
( ~2- - 4#).
2 . =0 蕊
・ . .
A 锐 角 三 角 形 . c .钝 角 三 角 形
B 直 角 三 角 形 . D 等 腰 直 角 三 角 形 .
=O 6 ( 一口 . 上 c )
由 2中 图 1 示 性 质 知 一 I , 理 有 f f 所 口l同 D
=
4 显然 <0 从 而 C 、= , 一  ̄= , , , = / , b / , n
~ ,
, ll则 △ A 6 BC为 正 三 角 形 .
碡 一 一
1
C .等 边 三 角 形
D 等 腰 直 角三 角 形 .
角形.
【 】 ‘ n 6 c ,‘ + 6 一 c . ( + 解 . + + 一0 . n ‘ . 一 ,. a 。
6 c 一 c , 。a・c ) 0 . . + ・c 一 c , + c 一 , ‘ ( 一 0口 = . 口 . +c )・6 一 b ,‘a ・6 c・6 一 6 , ’ a ・6 一 . . + 一 。又 . ‘ =
a ・ c 。 .. c 一 。
2
.
同 理 可 得 c =6 一a . 。
所 以△ABC是 等 边 三 角 形 .
【 6  ̄AA C中, ・ )( ・ ) 例 1 B ( : 砣 :
( ・ 一123则 △AB 百 ) :: , c的形 状 是 ( ) .
A 不 等 边 的锐 角 三 角 形 .
c 直 角 三 角 形 .
【 】 解 . = , .
B 等 腰 三 角形 .
D 等 边 三 角 形 .
一2 , .
一3( =0 , l J ,c , kk = )令 百 一日 f- j / I —b l - -
.
I ‘ 一 . ・
【 2 若 O 为 △ABC所 在 平 面 内一 点 , 例 1 且
满足 ( 一 ).( + 一 2 )一 0 则 , △AB 的 形状 是 ( C ) .
【 4 已 知 非 零 向量 蕊 例 1
与
满 足
( + )葡一且 . 一 , ・ 。 专
则 △ AB C的 形 状 是 ( ) . A. 边 均 不 相 等 的 三 角形 ; 三 B 直角三角形 ; . C 等 腰 非 等 边 三 角形 ; .