(2.2.2用样本数字特征估计总体数字特征(标准差、方差)
高中数学2.2.2 用样本的数字特征估计总体的数字特征1

2.(1)由平均数公式得 x=
(182×27+80×21)≈81.13(分).
48
(2)因为男生的中位数是75分,所以至少有14人得分不超过75
分.
又因为女生的中位数是80分,所以至少有11人得分不超过80分.
所以全班至少有25人得分不超过80分.
(3)男生的平均分与中位数的差别较大,说明男生中两极分化现
2.2.2 用样本的数字特征估计总体的数字特征
1.正确理解样本数据标准差的意义和作用,学会计算数据的标 准差. 2.能根据实际问题的需要合理地选取样本,从样本数据中提取 基本的数字特征(如平均数、标准差),并作出合理的解释. 3.会用样本的基本数字特征估计总体的基本数字特征,形成对 数据处理过程进行初步评价的意识.
x1 x2 xn
则 x =_______n_______.
2.方差、标准差 假设样本数据是x1,x2,x3,…,xn, x 是平均数,则 (1)方差是
s2=__n1[___x1___x_2____x_2 __x__2 ______x_n__x__2_].
(2)标准差为
s=__n1_[__x_1__x__2___x_2___x_2____ __x_n___x__2 ]_.
【解题指南】1.由平均数和方差的定义直接求解.
2.先画出茎叶图,再利用平均数和方差结合的形式分析稳定性.
【自主解答】1.
s2
1 [ 21
a1
x
2
a2 x
2
a20 x
2
xx
2
]
1 20 0.20 4 0.19.
21
21
答案:0.19
2.(1)作出茎叶图如下:
(2)派甲参赛比较合适.理由如下:
用样本的数字特征估计总体的数字特征

2. 右面是某校学生 日睡眠时间的抽样 h),试估计该校学 ),试估计该校学 ), 生的日平均睡眠时 间。
睡眠时间 人 数 频 率 [6, 6.5) 5 0.05 [6.5, 7) [7, 7.5) [7.5, 8) [8, 8.5) [8.5, 9] 17 33 37 6 2 100 0.17 0.33 0.37 0.06 0.02 1
众数、中位数、 二 、 众数、中位数、平均数与 频率分布直方图的关系
频率 组距 例如,在上一节调查的 例如,在上一节调查的100位居民的月均用水量的 位居民的月均用水量的 问题中, 问题中,从这些样本数据的频率分布直方图可以看 月均用水量的众数是2.25t.如图所示: 如图所示: 出,月均用水量的众数是 如图所示
8
3、平均数是频率分布直方图的“重心”. 、平均数是频率分布直方图的“重心” 是直方图的平衡点. 是直方图的平衡点 n 个样本数据的平均数 由公式: 由公式 x = 1 ( x 1 + x 2 + … + x n ) 给出
n
频率 组距
下图显示了居民月均用 水量的平均数: 水量的平均数
0.5 0.4 0.3 0.2 0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5
பைடு நூலகம்
22
标准差和频率直方图的关系 从标准差的定义可知, 从标准差的定义可知,如果样本各数 据都相等,则标准差得0, 据都相等,则标准差得 ,这表明数据没 有波动幅度,数据没有离散性; 有波动幅度,数据没有离散性;若个体 的值与平均数的差的绝对值较大, 的值与平均数的差的绝对值较大,则标 准差也较大, 准差也较大,表明数据的波动幅度也很 数据的离散程度很高,因此标准差 大,数据的离散程度很高,因此标准差 描述了数据对平均数的离散程度。 描述了数据对平均数的离散程度。
2.2.2 用样本的数字特征估计总体的数字特征(二) 标准差

2.2.2 用样本的数字特征估计总体的数字特征(二) 标准差 ●学习目标1、能从样本数据中求出标准差,并做出合理解释;2、进一步体会用样本估计总体的思想,会用样本的标准差估计总体的特征;3、注意对样本标准差的随机性的体会,并能够正确利用标准差解决一些简单的实际问题. ●学习重点从样本数据中求出标准差并做出合理解释;样本估计总体的思想. ●学习难点体会统计的作用和样本标准差的随机性,并利用标准差解决一些简单的实际问题. ●学习过程 一.温故知新1、众数、中位数和平均数都是描述一组数据_________的量.2、两名射击运动员在一次射击测试中各射靶10次,每次命中的环数如下: 甲:7 8 7 9 5 4 9 10 7 4 乙:9 5 7 8 7 6 8 6 7 7 分别求出这两名运动员射击成绩的众数、中位数和平均数,对这次射击情况应如何评价?二.走进课堂1、极差:反映一组数据的变化的___________,它对一组数中的______非常敏感,由此可以得到一种“______________,______________”的统计策略.2、标准差:考察样本数据的______________最常用的统计量,是样本数据到_______的一种____________,一般用s 表示.(1)标准差的表达式:______________________s =;变形得:s = (2)标准差的大小,受样本中每个数据的影响,如果数据间变异大,则标准差也大,反之则小.因此,标准差越大,数据的离散程度_____,标准差越小,数据的离散程度_____; (3)标准差的取值范围是:______s ∈;(4)标准差常被理解为稳定性,标准差的单位与原数值的单位相同. 如何对上面甲、乙两名射击运动员做出评价?3、方差:即标准差的平方2s .(1)方差的表达式:2________________________________s =;(2)方差也是反映数据离散程度的特征数字,它的单位是原数值的单位的平方. 【夯实基础】(1)甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球个数的标准差为0.3,下列说法正确的有( )①甲队的技术比乙队好; ②乙队发挥比甲队稳定 ③乙队几乎每场都进球; ④甲队的表现时好时坏A.1个 B.2个 C.3个 D.4个 (2)某班有50名学生,某次数学考试的成绩经计算得到的平均分数是70分,标准差是s ,后来发现记录有误,某甲得70分却记为40分,某乙50分误记为80分,更正后重新计算得标准差为1s ,则s 与1s 之间的大小关系是( )A.s =1s B.s <1s C.s >1s D.不能确定 (3)已知一个样本为:x ,1,y ,5,其中x ,y 是方程组222,10x y x y +=⎧⎨+=⎩的解,则这个样本的标准差是( )A.2 C.5(4)一组数据的方差是2s ,将这组数据中的每一个数都乘以2,得到一组新数据,其方差是( ) A.212s B.22s C.24s D.2s(5)一组数据中的每一个数都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )A.81.2,4.4 B.78.8,4.4 C.81.2,84.4 D.78.8,75.6 (6)五个数1,2,3,4,a 的平均数是3,,则a =____,这五个数的标准差是_____.(7)若1a ,2a ,…,20a ,这20个数据的平均数为x ,方差为0.20,则数据1a ,2a ,…,20a ,x 这21个数据的方差约为__________(保留2位有效 ).4、典例精析【例1】从一批棉花中抽取9根棉花的纤维,长度如下:(单位:mm ) 82,202,352,321,25,293,86,206,115. 求样本的平均数、样本的方差和样本的标准差.【例2】现有A 、B 两个班级,每个班级有45名学生参加一次测验,每名参加者可获得0,1B 班的测试结果如右图:(1)你认为哪个班级的成绩比较稳定?(2)若两班共有60人及格,则参加者最少获得 多少分才可能及格?5、课堂小结:(1)众数、中位数和平均数都是描述一组数据集中趋势的特征数;标准差、方差都是用来描述一组数据波动情况的特征数,标准差更具无偏性.(2)当两个样本的平均数相等或相差无几时,就要用标准差来反映样本数据的离散程度. 作业:。
2.2.2用样本的数字特征估计总体的数字特征

学习课题:2.2.2 用样本的数字特征估计总体的数字特征※学习目标1.正确理解样本数据标准差的意义和作用,学会计算数据的标准差;2.能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释;3.会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识。
※课前准备(阅读课本P71-P78)※探索新知一、众数、中位数、平均数众数:_______________________________________________________________________中位数:_______________________________________________________________________平均数:_______________________________________________________________________ 思考探究:1、在频率分布直方图中如何求出众数、中位数、平均数。
2、分别利用原始数据和频率分布直方图求出众数、中位数、平均数,观察所得的数据,你发现了什么问题?为什么会这样呢?3、你能说说这几个数据在描述样本信息时有什么特点吗?二、标准差、方差标准差S=思考探究:1、标准差的大小和数据的离散程度有什么关系?2、标准差的取值范围是什么?标准差为0的样本数据有什么特点?注:在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差。
※例题精析例:农场种植的甲乙两种水稻,在面积相等的两块稻田连续6年的年平均产量如下:甲:900,920,900,850,910,920乙:890,960,950,850,860,890那种水稻的产量比较稳定?※当堂检测(ABC班完成)1、求下列各组数据的众数、中位数、平均数(1)1 ,2,3,3,3,4,6,7,7,8,8,8(2)1 ,2,3,3,3,4,6,7,8,9,92、下列对一组数据的分析,不正确的说法是()A、数据极差越小,样本数据分布越集中、稳定B、数据平均数越小,样本数据分布越集中、稳定C、数据标准差越小,样本数据分布越集中、稳定D、数据方差越小,样本数据分布越集中、稳定※延伸拓展(AB班完成)某公司的33名职工的月工资(单位:元)如下表:(2)若董事长、副董事长的工资分别从5500元、5000元提升到30000元、20000元,那么公司职工新的平均数、中位数和众数又是什么?你认为哪个统计量更能反映这个公司员工的工资水平?。
2.2.2用样本的数字特征估计总体的数字特征

举例 1. 甲在一次射击比赛中的得分如下: ( 单 位:环).7,8,6,8,6,5,9,10,7,5,则他命中的平均 数是_____. 7.1 2. 某次数学试卷得分抽样中得到:90分 的有3个人,80分的有10人,70分的有5人,60 77分 分的有2人,则这次抽样的平均分为______.
思考
2.2.2用样本的数字特征 估计总体的数字特征
创设意境
在一次射击比赛中,甲、乙两名运动员各射击
10次,命中环数如下﹕ 甲运动员﹕7,8,6,8,6,5,8,10,7,4; 乙运动员﹕9,5,7,8,7,6,8,6,7,7. 观察上述样本数据,你能判断哪个运动员发挥
的更稳定些吗?为了从整体上更好地把握总体的规
如何从频率分布直方图中估计中位数?
练习
应该采用平均数来表示每一个国家项目的平 均金额,因为它能反映所有项目的信息.但平均数 会受到极端数据2200万元的影响,所以大多数项 目投资金额都和平均数相差比较大.
标准差
有两位射击运动员在一次射击测试中各射 靶十次,每次命中的环数如下:
如果你是教练,你应当如何对这次射击情况作出 评价?如果这是一次选拔性考核,你应当如何作出选 择?
律,我们要通过样本的数据对总体的数字特征进行 研究——用样本的数字特征估计总体的数字特征.
1. 众数
在一组数据中,出现次数最多
的数据叫做这一组数据的众数. 2. 中位数 将一组数据按大小依次排列,把 处在最中间位置的一个数据(或两个数据的 平均数)叫做这组数据的中位数. 3. 平均数 (1) x = (x1+x2+……+xn) /n (2) x = x’ +a (3) x = (x1f1+x2f2+……xkfk)/n
(完整版)用样本的数字特征估计总体的数字特征

2.2.2用样本的数字特征估计总体的数字特征 (两课时)零号作业一、众数、中位数、平均数1、众数:(1)定义:一组数据中出现次数最多的数称为这组数据的众数.(2)特征:一组数据中的众数可能不止一个,也可能没有,反映了该组数据的集中趋势 [破疑点] 众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使其无法客观地反映总体特征.(3)在直方图中为最高矩形下端中点的横坐标 2、中位数:(1)定义:一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数. (2)特征:一组数据中的中位数是唯一的,反映了该组数据的集中趋势.在频率分布直方图中,中位数左边和右边的直方图的面积相等.[破疑点] 中位数不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点.(3) 直方图面积平分线与横轴交点的横坐标.左右两边面积各占一半3、平均数:(1)定义:一组数据的和与这组数据的个数的商.数据x 1,x 2,…,x n 的平均数为xn=x 1+x 2+…+x nn(2)特征:平均数对数据有“取齐”的作用,代表该组数据的平均水平.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中极端值的影响较大,使平均数在估计总体时可靠性降低.(3) 直方图中每个小矩形的面积与小矩形底边中点的横坐标的乘积之和. 二、标准差、方差1、标准差(1)定义:标准差是样本数据到平均数的一种平均距离,一般用s 表示,通常用以下公式来计算s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]可以用计算器或计算机计算标准差.(2)特征:标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较_ 小.2.方差(1)定义:标准差的平方,即s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](2)特征:与标准差的作用相同,描述一组数据围绕平均数波动程度的大小. (3)取值范围:[0,+∞)3、数据组x 1,x 2,…,x n 的平均数为x ,方差为s 2,标准差为s ,则数据组ax 1+b ,ax 2+b ,…,ax n +b (a ,b 为常数)的平均数为a x +b ,方差为a 2s 2,标准差为4、规律总结(1)用样本的数字特征估计总体的数字特征,是指用样本的众数、中位数、平均数和标准差等统计数据,估计总体相应的统计数据. 样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息. 平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数据的离散程度.用样本的数字特征估计总体的数字特征,是指用样本的众数、中位数、平均数和标准差等统计数据,估计总体相应的统计数据(2)平均数对数据有“取齐”的作用,代表一组数据的平均水平.标准差描述一组数据围绕平均数波动的幅度.在实际应用中,我们常综合样本的多个统计数据,对总体进行估计,为解决问题作出决策.(3)标准差越大离散程度越大,数据较分散;标准差越小离散程度越小,数据较集中在平均数周围.列出一组样本数据的频率分布表步骤说明:1、对同一个总体,可以抽取不同的样本,相应的平均数与标准差都会发生改变.如果样本的代表性差,则对总体所作的估计就会产生偏差;如果样本没有代表性,则对总体作出错误估计的可能性就非常大,由此可见抽样方法的重要性.2.在抽样过程中,抽取的样本是具有随机性的,如从一个包含6个个体的总体中抽取一个容量为3的样本就有20中可能抽样,因此样本的数字特征也有随机性.用样本的数字特征估计总体的数字特征,是一种统计思想,没有惟一答案.3.在实际应用中,调查统计是一个探究性学习过程,需要做一系列工作,我们可以把学到的知识应用到自主研究性课题中去.一号作业11、众数(1)定义:一组数据中出现次数______的数称为这组数据的众数.(2)特征:一组数据中的众数可能______一个,也可能没有,反映了该组数据的____________.在直方图中为最高矩形下端中点的____________最多不止集中趋势横坐标2.中位数(1)定义:一组数据按从小到大的顺序排成一列,处于______位置的数称为这组数据的中位数.(2)特征:一组数据中的中位数是______的,反映了该组数据的______________.在频率分布直方图中,中位数左边和右边的直方图的面积______..中间唯一集中趋势相等3.平均数(1)定义:一组数据的和与这组数据的个数的商.数据x1,x2,…,x n的平均数为x n=_________________.(2)特征:平均数对数据有“取齐”的作用,代表该组数据的_____________.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的______,但平均数受数据中_________的影响较大,使平均数在估计总体时可靠性降低.直方图中每个小矩形的面积与小矩形底边中点的横坐标的. ______x1+x2+…+x nn平均水平信息极端值乘积之和4.标准差(1)定义:标准差是样本数据到平均数的一种平均距离,一般用s表示,通常用以下公式来计算s=__________________________.可以用计算器或计算机计算标准差.(2)特征:标准差描述一组数据围绕______波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差较大,数据的离散程度较______;标准差较小,数据的离散程度较______.1n[(x1-x)2+(x2-x)2+…+(x n-x)2]平均数大小5.方差(1)定义:标准差的平方,即s2=________________________________________.(2)特征:与____________的作用相同,描述一组数据围绕平均数波动程度的大小.(3)取值范围:___________.1n[(x1-x)2+(x2-x)2+…+(x n-x)2] 标准差[0,+∞)数据组x1,x2,…,x n的平均数为x,方差为s2,标准差为s,则数据组ax1+b,ax2+b,…,ax n+b(a,b为常数)的平均数为a x+b,方差为a2s2,标准差为as.典例讲解中位数、众数、平均数的应用例1据报道,某公司的33名职工的月工资(以元为单位)如下:(1)求该公司的职工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到1元)(3)你认为哪个统计量更能反映这个公司职工的工资水平?结合此问题谈一谈你的看法.[解析](1)平均数是x=1 500+4 000+3 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元.(2)平均数是x′=1 500+28 500+18 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司职工的工资水平.因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数偏差较大,所以平均数不能反映这个公司职工的工资水平.练习1:某小区广场上有甲、乙两群市民正在进行晨练,两群市民的年龄如下(单位:岁):甲群13,13,14,15,15,15,15,16,17,17;乙群54,3,4,4,5,5,6,6,6,57.(1)甲群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好反映甲群市民的年龄特征?(2)乙群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好反映乙群市民的年龄特征?[答案](1)甲群市民年龄的平均数为13+13+14+15+15+15+15+16+17+1710=15(岁),中位数为15岁,众数为15岁.平均数、中位数和众数相等,因此它们都能较好地反映甲群市民的年龄特征.(2)乙群市民年龄的平均数为54+3+4+4+5+5+6+6+6+5710=15(岁),中位数为5岁,众数为6岁.由于乙群市民大多数是儿童,所以中位数和众数能较好地反映乙群市民的年龄特征,而平均数的可靠性较差.例2:(1)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差(2)某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.①求这次测试数学成绩的众数.②求这次测试数学成绩的中位数.③求这次测试数学成绩的平均分.[解析](1)x甲=15(4+5+6+7+8)=6,x乙=15(5×3+6+9)=6,甲的中位数是6,乙的中位数是5.甲的成绩的方差为15(22×2+12×2)=2,乙的成绩的方差为15(12×3+32×1)=2.4.甲的极差是4,乙的极差是4.所以A,B,D错误,C正确.(2)①由图知众数为70+802=75.②由图知,设中位数为x,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x-70),所以x≈73.3.③由图知这次数学成绩的平均分为:40+502×0.005×10+50+602×0.015×10+60+702×0.02×10+70+802×0.03×10+80+902×0.025×10+90+1002×0.005×10=72.[答案](1)C (2)见解析练习1:参加市数学调研抽测的某校高三学生成绩分布的茎叶图1和频率分布直方图2均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:求参加数学抽测的人数n,抽测成绩的中位数及分数分布在[80,90),[90,100]内的人数.[答案]分数在[50,60)内的频率为2,由频率分布直方图可以看出,分数在[90,100]内的同样有2人.由2n=10×0.008,得n=25.由茎叶图可知抽测成绩的中位数为73.∴分数在[80,90)之间的人数为25-(2+7+10+2)=4.参加数学竞赛人数n=25,中位数为73,分数在[80,90),[90,100]内的人数分一号作业21.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值都不相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的值相等.其中正确的结论的个数() A.1B.2 C.3 D.42、为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如下图所示,假设得分值的中位数为m e,众数为m O,平均值为x,则()A.m e=m O=x B.m e=m O<x C.m e<m O<x D.m O<m e<x3、某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是() A.31,6岁B.32.6岁C.33.6岁D.36.6岁4、阶段考试以后,班长算出了全班40个人数学成绩的平均分为M,如果把M当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均分为N,那么M N为________.1、A 2 D 3、C 4、 15、为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.90.80.9 2.4 1.2 2.6 1.3 1.4 1.60.5 1.80.6 2.1 1.1 2.5 1.2 2.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据绘制茎叶图,从茎叶图看,哪种药的疗效更好?[解析](1)设A药观测数据的平均数为x,B药观测数据的平均数为y.由观测结果可得x=120×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y=120×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x>y,因此可看出A药的疗效更好.(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有710的叶集中在茎2,3上,而B药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A药的疗效更好.标准差、方差的应用例3、从甲、乙两种玉米的苗中各抽10株,分别测它们的株高如下:(单位:cm)甲:25414037221419392142乙:27164427441640401640问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?[解析]看哪种玉米的苗长得高,只要比较甲、乙两种玉米的苗的均高即可;要比较哪种玉米的苗长得齐,只要看两种玉米的苗高的方差即可,因为方差是体现一组数据波动大小的特征数.(1)x甲=110(25+41+40+37+22+14+19+39+21+42)=110×300=30(cm),x乙=110(27+16+44+27+44+16+40+40+16+40)=110×310=31(cm).所以x甲<x乙.(2)s2甲=110[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=110(25+121+100+49+64+256+121+81+81+144)=110×1042=104.2(cm2),s2乙=110[(2×272+3×162+3×402+2×442)-10×312]=110×1288=128.8(cm2).所以s2甲<s2乙.[答案](1)乙种玉米的苗长得高,(2)甲种玉米的苗长得齐.练习1:甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:s1,s2,s3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有() A.s3>s1>s2B.s2>s1>s3C.s1>s2>s3D.s2>s3>s1[答案] B练习2:一次数学知识竞赛中,两组学生成绩如下表:已经算得两个组的平均分都是80分,请根据你所学过的统计知识,进一步判断这两个组这次竞赛中成绩谁优谁次,并说明理由.[答案](1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些.(2)s2甲=12+5+10+13+14+6×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=150×(2×900+5×400+10×100+13×0+14×100+6×400)=172.s2乙=150×(4×900+4×400+16×100+2×0+12×100+12×400)=256.因为s2甲<s2乙,所以甲组成绩较乙组成绩稳定.(3)甲、乙两组成绩的中位数、平均数都是80分,其中甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,从这一角度看,甲组成绩总体较好.(4)从成绩统计表看,甲组成绩大于或等于90分的人数为20人,乙组成绩大于或等于90分的人数为24人,所以乙组成绩在高分阶段的人数多,同时,乙组得满分的比甲组得满分的多6人,从这一角度看,乙组成绩较好.一号作业31. 若样本数据x 1,x 2,……,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .322.为了稳定市场,确保农民增收,某农产品7个月份的每月市场收购价格与其前三个月的市场收购价格有关,并使其与前三个月的市场收购价格之差的平方和最小,下表列出的是该产品今年前6个月的市场收购价格:则前7A.757 B.767 C .11D.7873. 某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数4.由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)1、C2、B3、C4、1,1,3,3。
2.2.2 用样本的数字特征估计总体的数字特征009

2.2.2 用样本的数字特征估计总体的数字特征(必修三数学009)制作人:李媛 备课组长签字:一、学习目标:1、能从样本数据中提取基本的数字特征(如平均数、众数、中位数、方差、标准差),并做出合理的解释;2、正确理解样本数据标准差的意义和作用,学会计算数据的标准差.二、情景引入例:在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下甲运动员7,8,6,8,6,5,8,10,7,4;乙运动员9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?三、新知学习 样本的数字特征:1、平均数:nx x x x n+++= 21 2、方差:n x x x x x x s n 222212)()()(-++-+-= 3、标准差:n x x x x x x s s n222212)()()(-++-+-== 说明:方差与标准差描述了数据对平均数的离散程度,即稳定性。
方差与标准差越小,表明数据的波动幅度越小,越稳定。
四、典型例题例1、甲、乙两名学生,六次数学测验成绩(百分制)如图所示①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学高; ③甲同学的平均分比乙同学低;④甲同学成绩的方差小于乙同学成绩的方差。
上面说法中正确的是 。
甲 乙 6 7 8 9 8 7 8 6 2 0 6 2 0 9 2 6变式:甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm 2): 品种 第1年 第2年 第3年 第4年 第5年甲 9.8 9.9 10.1 10 10.2乙 9.4 10.3 10.8 9.7 9.8其中产量比较稳定的小麦品种是 。
五、巩固练习1、数据5,7,7,8,10,11的标准差为 .2、甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表: 甲的成绩 乙的成绩 丙的成绩环数 7 8 9 10 环数 7 8 9 10 环数 7 8 9 10 频数 5 5 5 5 频数 6 4 4 6 频数 4 6 6 4 123s s s ,, 分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ) A.312s s s >> B.213s s s >> C.123s s s >> D.231s s s >>3、某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由 此求出的平均数与实际平均数的差是( )A .3.5B .3-C .3D .5.0-4、已知样本9,10,11,,x y 的平均数是10,标准差是2,则xy =5、如果数据n x x x ,,,21 的平均数为x ,方差为2s ,则53,,53,5321+++n x x x 的平均值和方差分别为( ) (A )x 和2s (B )53+x 和29s (C )53+x 和2s (D )53+x 和253092++s s六、小结七、课后作业全品测评卷P29,1~9,11;(10、12选作)。
2.2.2 用样本的数字特征估计总体的数字特征标准差

标准差
平均数向我们提供了样本数据的重要信息,但是 平均数向我们提供了样本数据的重要信息 但是 平均有时也会使我们作出对总体的片面判断. 平均有时也会使我们作出对总体的片面判断.因 为这个平均数掩盖了一些极端的情况, 为这个平均数掩盖了一些极端的情况,而这些极 端情况显然是不能忽的.因此, 端情况显然是不能忽的.因此,只有平均数还难 以概括样本数据的实际状态. 以概括样本数据的实际状态. 如:有两位射击运动员在一次射击测试中各 射靶10次 每次命中的环数如下: 射靶 次,每次命中的环数如下:
考察样本数据的分散程度的大小, 考察样本数据的分散程度的大小,最常用的统计量是 标准差. 标准差. 标准差是样本平均数的一种平均距离,一般用s表示 表示. 标准差是样本平均数的一种平均距离,一般用 表示. 所谓“平均距离” 其含义可作如下理解: 所谓“平均距离”,其含义可作如下理解: 假设样本数据是 x1 , x 2 ,⋅ ⋅ ⋅, x n , x 表示这组数据的平均 的距离是: 数,则 x i 到 x 的距离是: 则 的平均距离是: 于是样本数据 x1 , x 2 ,⋅ ⋅ ⋅, x n 到 x 的平均距离是:
甲 25.46, 25.32, 25.45, 25.39, 25.36 25.34, 25.42, 25.45, 25.38, 25.42 25.39, 25.43, 25.39, 25.40, 25.44 乙 25.40, 25.42, 25.35, 25.41, 25.39 25.40, 25.43, 25.44, 25.48, 25.48 25.47, 25.49, 25.49, 25.36, 25.34 25.33, 25.43, 25.43, 25.32, 25.47 25.31, 25.32, 25.32, 25.32, 25.48
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(甲)
频率 0.4 0.3 0.2 0.1 O
(乙)
4 5 6 7 8 9 10
环数
4 5 6 7 8 9 10 环数
甲的成绩比较分散,极差较大,乙的 成绩相对集中,比较稳定.
极差: 一组数据的最大值与最小值的差
极差越大,数据越分散,越不稳定 极差越小,数据越集中,越稳定
3.(高考题)某学员在一次射击测试中射靶10次,命 中环数如下: 7,8,7,9,5,4,9,10,7,4 则:(1)平均命中环数为________; (2)命中环数的标准差为________. 答案 (1)7 (2)2
利用平均值和标准差公式求解. - 7+8+7+9+5+4+9+10+7+4 (1)x= =7. 10 1 2 (2)s = [(7- 7)2 + (8- 7)2+ (7- 7)2 +(9 - 7)2+ (5- 7)2 + 10 (4-7)2+(9-7)2+(10- 7)2+(7-7)2+(4-7)2]=4, ∴s=2. 解析
-
(2)两台机床所加工零件的直径的平均值相同, 又 s甲 2 > s乙 2 , 所以乙机床加工零件的质量更稳定.
规律方法
1.极差、方差与标准差的区别与联系:
数据的离散程度可以通过极差、方差或标准差来描述.
(1)极差是数据的最大值与最小值的差,它反映了一组数据变
化的最大幅度,它对一组数据中的极端值非常敏感. (2)方差则反映了一组数据围绕平均数波动的大小,为了得到
1 解 (1)x甲= (99+ 100+ 98+ 100+ 100+ 103)= 100, 6 - 1 x乙= (99+ 100+ 102+ 99+ 100+ 100)= 100. 6 1 2 s 甲 = [(99- 100)2+ (100- 100)2+(98- 100)2+ (100- 100)2+ 6 7 2 2 (100- 100) + (103- 100) ]= , 3 1 2 s 乙 = [(99- 100)2+ (100- 100)2+(102- 100)2+ (99- 100)2+ 6 (100- 100)2+ (100- 100)2]= 1.
本数据的离散程度.方差与标准差的测量效果是一致
的,在实际应用中一般多采用标准差.
要点二 平均数和方差的运用 例2 甲、乙两机床同时加工直径为100 cm的 零件,为检验质量,各从中抽取6件测量, 数据为: 甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差; (2)根据计算结果判断哪台机床加工零件的 质量更稳定.
以样本数据的单位表示的波动幅度通常用标准差,即样本方
差的算术平方根,是样本数据到平均数的一种平均距离. 2.在实际问题中,仅靠平均数不能完全反映问题还要研究方 差,方差描述了数据相对平均数的离散程度,在平均数相同 的情况下,方差越大,离散程度越大,数据波动性越大,
稳定性越差;方差越小,数据越集中,质量越稳定.
思考1:在一次射击选拔赛中,甲、乙 两名运动员各射击10次,每次命中的环 数如下: 甲:7 8 7 9 5 4 9 10 7 4 乙:9 5 7 8 7 6 8 6 7 7 甲、乙两人本次射击的平均成绩分 别为多少环?
x甲 7,
x乙 7
思考2:甲、乙两人射击的平均成绩相等,观 察两人成绩的频率分布条形图,你能说明其 水平差异在那里吗?
( x 1 - x ) + ( x 2 - x ) + L + (x n - x ) s= n
2
2
2
那么标准差的取值范围是什么?标准差为 0的样本数据有何特点? s≥0,标准差为0的样本数据都相等.
思考5:对于一个容量为2的样本:x1,
x1 + x 2 x 2 - x1 x2(x1<x2),则 x = ,s = 2 2
s甲=2,s乙=1.095.
设一组样本数据 x1,x2,…,xn ,其平均数为
x ,则
1 s [( x1 x )2 ( x2 x )2 n
2
( xn x ) 2 ]
它的算术平方根 称s2为这个样本的方差,
1 2 2 s [( x1 x ) ( x2 x ) n
( xn x ) ]
2
称为这个样本的标准差,分别称为样本方差、样本标准差
1.下列各数字特征中,能反映一组数据离散程度的 是( ) A.众数 B.平均数 C.标准差 D.中位数 答案 C 2.样本101,98,102,100,99的标准差为 ( )
A. 2 B. 0 C.1 D.2
答案
A
-
解析 样本平均数x=100,方差为 s2=2,∴标准差 s= 2, 故选 A.
知识探究(二):标准差 、方差
样本的众数、中位数和平均数常用来表示样本 数据的“中心值”,其中众数和中位数容易计算, 不受少数几个极端值的影响,但只能表达样本数 据中的少量信息. 平均数代表了数据更多的信息, 但受样本中每个数据的影响,越极端的数据对平 均数的影响也越大.当样本数据质量比较差时,使 用众数、中位数或平均数描述数据的中心位置, 可能与实际情况产生较大的误差,难以反映样本 数据的实际状况,因此,我们需要一个统计数字 刻画样本数据的离散程度.
极差体现了数据的离散程度
思考3:对于样本数据x1,x2,„,xn , 设想通过各数据到其平均数的平均距离 来反映样本数据的分散程度,那么这个 平均距离如何计算?
| x1 - x | + | x 2 - x | + L + | xn - x | n
思考4:反映样本数据的分散程度的大小,最 常用的统计量是标准差,一般用s表示.假设 样本数据x1,x2,„,xn的平均数为,则标准 差的计算公式是:
在数轴上,这两个统计数据有什么几何意义? 由此说明标准差的大小对数据的离散程度有 何影响?
标准差越大离散程度越大,数据较分散; 标准差越小离散程度越小,数据较集中 在平均数周围.
计算甲、乙两名运动员的射击成绩的 标准差,比较其射击水平的稳定性. 甲:7 8 7 9 5 4 9 10 7 4 乙:9 5 7 8 7 6 8 6 7 7
例3 抽样统计甲、乙两位射击运动员的5次训练成绩 (单位:环),结果如下:
运动员 第1次 第2次 第3次 第4次 第5次 甲 乙 87 89 91 90 90 91 89 88 93 92
则成绩较为稳定(方差较小)的那位运动员成绩的方差 为________. 答案 2
解析 由表中的数据计算可得x甲=90,x乙=90,且方差 s 甲 2= ( 87- 90)2+( 91- 90) 2+( 90-90)2+( 89- 90) 2+( 93- 90) 5 = 4. s 乙 2= ( 89- 90)2+( 90- 90) 2+( 91-90)2+( 88- 90) 2+( 92- 90) 5 = 2.所以乙运动员的成绩较稳定,方差为 2.
-
-
1.一组数据中的众数可能不止一个,中位数是唯一的,求中
位数时,必须先排序. 2.利用直方图求数字特征 (1)众数是最高的矩形的底边的中点. (2)中位数左右两边直方图的面积应相等.
(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横
坐标之和. 3.标准差的平方s2称为方差,有时用方差代替标准差测量样